

Click Here

Benchling Contact Gel electrophoresis is a fundamental laboratory technique used to separate charged molecules such as nucleic acids based on their size and electrical charge. This process allows researchers to analyze and isolate these molecules how gel electrophoresis works gel electrophoresis separates charged molecules by their migration through a porous gel matrix under an electric current. Gels typically agarose or polyacrylamide act as a sieve smaller molecules move faster through its pores than larger ones nucleic acids with their negative phosphate backbone migrate towards the positively charged electrode. This differential migration separates molecules into distinct bands based on size researchers use a ladder of known sizes to estimate sample lengths. Gel Electrophoresis for RNA is different from other types because it requires modifications due to RNAs single-stranded nature and tendency to fold into complex secondary structures which affect migration. To ensure size-based separation denaturing conditions are used. Strands denaturing agents like formaldehyde or urea are incorporated into gel to disrupt hydrogen bonds and denature RNA into a linear conformation. The gel electrophoresis depends on RNA size; denaturing agarose gels for larger species mRNA, rRNA, and polyA+ mRNAs. tRNA and smaller RNAs tRNA due to their higher refolding power. An RNase-free environment is also crucial as RNA is highly susceptible to degradation. Applications of RNA electrophoresis offer insights into RNA quality quantity and specific sequences a primary application is to assess RNA sample integrity total RNA from eukaryotic cells typically shows distinct 28S and 18S ribosomal RNA rRNA bands. Sharp clear bands with the 28S band approximately twice as intense as the 18S suggest high-quality RNA. A smeared appearance or diminished 28S:18S ratio suggests degradation. Electrophoresis also estimates RNA quantity and verifies transcript size ensuring suitability for downstream applications. Another application is Northern blotting which detects specific RNA sequences. The preparation of high-quality RNA is crucial for various molecular biology applications. The recommended gel electrophoresis conditions involve using 1X TAE buffer instead of 1X TBE agarose gel in a concentration of 1.1%–1.2%, and adding ethidium bromide to the gel and electrophoresis buffer to prevent RNase degradation. # Key Steps for Successful RNA Preparation 1. **Gel Electrophoresis Conditions**. Ensure the use of fresh gel and buffer, clean electrophoresis equipment, and gloves to protect samples from degradation. 2. **Heat Treatment**. Heat an aliquot of the RNA solution at 70°C for 1 min before loading on a gel. 3. **Loading Standards**. Load a known amount of DNA or RNA ladder alongside your sample as a standard for determining RNA concentration. 4. **RNA Quality Check**. Look for signs of degradation, such as a slight smear starting from the rRNA bands and extending to shorter fragments. # Characteristics of Successful RNA Preparation * Mammalian total RNA: two intensive bands representing 28S and 18S rRNA with a ratio of intensities about 1.5–2.5:1 * Non-mammalian sources: normal mRNA smear or the non-denaturing agarose gel may not exceed 2–3 kb, with possible "hidden break" in some organisms. # Troubleshooting Tips * If experimental RNA is shorter than expected and/or degraded, prepare fresh RNA after checking the quality of purification reagents. * Problems persist? May need to use different purification reagents or techniques. RNA gel electrophoresis is a crucial step in molecular biology workflows that allows researchers to separate RNA molecules based on their size, assess their integrity, and sometimes approximate their quantity. The primary goal of using agarose gel for RNA is to verify the quality of RNA, determine its concentration and purity, and separate different RNA species. The technique relies on a combination of specific components and carefully controlled conditions. RNA samples can be total RNA extracted from cells or tissues or specific RNA populations such as mRNA. Agarose gel acts as a molecular sieve with varying pore sizes depending on the concentration. Electrophoresis buffer maintains a stable pH, providing ions to conduct electrical current. Denaturing agents like formaldehyde or glyoxal/DMSO are used to disrupt hydrogen bonds and keep RNA molecules in a linear, denatured state. The loading dye contains a dense agent and tracking dyes allow samples to sink into the gel wells and visually monitor progress. An RNA ladder/marker is used to estimate the size of sample RNA bands. RNA Integrity Assessment using Agarose Gel Electrophoresis ===== Looking forward to see everyone at the meeting tomorrow and discussing our strategies, agarose gel electrophoresis is a crucial technique in molecular biology that helps preserve RNA integrity and ensure accurate separation. First, agarose powder is dissolved in denaturing MOPS buffer by heating, and then the solution is poured into a casting tray with a comb to form wells, which solidifies later on. To prepare the samples, RNA samples are mixed with a denaturing loading buffer containing formaldehyde or glyoxal, and sometimes an additional agent is added. This process ensures complete denaturation before loading. The prepared samples are then pipetted into the wells, followed by the application of an electric current across the gel. Since RNA is negatively charged due to its phosphate backbone, it migrates towards the positive electrode. As the smaller RNA molecules move faster through the gel's pores than larger ones, this technique separates RNA molecules based on size. However, the denaturing conditions in the gel and buffer prevent RNA from refolding during migration. After electrophoresis, the gel is stained with a fluorescent nucleic acid dye, such as ethidium bromide or SYBR Safe, and then visualized under a UV transilluminator. The sizes of sample RNA bands are estimated by comparison to the RNA ladder, while RNA integrity is assessed by observing the distinctness and ratio of ribosomal RNA (rRNA) bands. In eukaryotic total RNA, the 28S and 18S rRNA bands are the most prominent, with a typical ratio of 2:1 for intact RNA being a key indicator of quality. Degraded RNA will show smearing and a reduced 28S/18S ratio, whereas high-quality total RNA displays sharp, distinct 28S and 18S rRNA bands. This technique also provides approximate quantification of RNA concentration by estimating the intensity of rRNA bands. Additionally, it helps identify contaminants with genomic DNA (gDNA) and prepares the RNA for downstream applications. In conclusion, agarose gel electrophoresis is a vital pathway in molecular biology that enables the separation of RNA molecules based on size, assesses their integrity, and provides a clear visual assessment. This technique serves as a critical quality control step, ensuring reliable and accurate experimental results, which are foundational to generating reliable scientific data. Successful RNA gel electrophoresis is crucial for downstream applications like RT-qPCR, Northern blotting, and RNA sequencing in eukaryotic samples. Denaturing conditions are necessary to prevent RNA folding into complex structures, ensuring they migrate based on size only. The primary goal of using agarose gel for RNA is to separate molecules by size, assess integrity, and visually estimate quantity, which is vital for successful downstream applications. RNA integrity can be assessed by observing the distinctiveness and ratio of ribosomal RNA (rRNA) bands; intact eukaryotic RNA should have sharp 28S and 18S rRNA bands with a characteristic 2:1 ratio. Key components involved in RNA gel electrophoresis include RNA samples, agarose gel, MOPS buffer, denaturing agents, loading dye, an RNA ladder, staining agent, and the electrophoresis apparatus. Agarose gel electrophoresis can detect contaminants such as genomic DNA, which appears as a high molecular weight band that doesn't migrate far or shows faint smearing above the 28S band. In a cell, genes are transcribed into precursor molecules that undergo post-transcriptional processing to form shorter mature forms, like rRNA precursors. For instance, when ribosomes assemble, a large pre-rRNA transcript is processed into three different rRNAs: 18S (1.9 kb), 5.8S (0.16 kb), and 28S rRNAs (4.7 kb) through several intermediate steps. Using Electrophoresis Procedures as Detailed in the Text ===== We employed a mini-gel horizontal system to run a 1% agarose gel at 100 V (6 V/cm) for 2 h, with bromophenol blue migrating ~7 cm in all cases. Our standard protocol included commercial RNA ladders as marker lanes and total RNA extracted from *Saccharomyces cerevisiae* cells, along with total RNA from mouse 3T3 fibroblasts. Standard Protocol Equal amounts of RNAs were loaded on all gels. Although the rRNA bands appeared less intense due to a lower efficiency of SYBR Gold staining in the MOPS buffer compared to HT and TT buffers, RNA ladders were premixed with 0.0125% ethidium bromide. Northern Hybridization Mouse rRNA precursors were separated on gels as described earlier. Northern hybridization was performed using the ITS1-1c probe, visualized by a Typhoon 8600 Phosphorimager (GE Healthcare Life Sciences), and indicated positions of 45S (12.8 kb), 41S (8.8 kb), 36S (6.9 kb), 34S (6.3 kb), and 20S (2.9 kb) pre-rRNAs. Advantages of HT- and TT-Based Electrophoresis The use of HT- and TT-based electrophoresis media showed improved resolution compared to the traditionally used MOPS/sodium acetate buffer, particularly when analyzing high molecular size fragments of double-stranded DNA. The buffers' higher buffering capacity, balanced ionic composition, and ability to maintain RNA molecules in a denatured state may contribute to their separation according to molecular size. Applications and Storage HT and TT buffers can be prepared as a 50×stock solution, which does not precipitate during storage and is stable under ambient light conditions. We observed no changes in the performance of these solutions stored for up to a year. Reducing Formaldehyde Concentration Reducing formaldehyde concentration from 2.2 M to 0.4 M was sufficient to obtain well-separated pre-rRNAs, indicating that this concentration provides adequate denaturation of large RNA molecules without compromising integrity during separation and gel handling. ===== Submersion of gels running buffer just before sample loading minimizes formaldehyde loss and exposure to this toxic chemical, with a five-fold reduction in formaldehyde concentration in our system. Unlike high-formaldehyde gels, low-formaldehyde gels can be directly used for blotting onto nylon membranes in 10×SSC, reducing the need for incubation in water prior to transfer. We found that EDTA was not required during DNA electrophoresis and did not affect RNA separation both HT and TT systems. However, its absence from the loading dye led to abnormal RNA migration due to residual metal ions interfering with denaturation. In contrast, including glycerol in the loading dye proved unnecessary as samples containing 50% formaldehyde had sufficient density for agarose gel underlaying. A convenient method to prepare such samples involved dissolving RNA in 100% formaldehyde, protecting it from RNase degradation. Our protocol simplifies sample preparation by eliminating pipetting steps and reducing time compared to previous procedures. The loading dye was prepared by combining 50×HT or TT buffer stock solution with 0.5M EDTA and bromophenol blue in deionized water to the final concentrations of 2.1× electrophoresis buffer, 1 mM EDTA, and 0.04% bromophenol blue. The dye could be stored at -20°C for at least one year and was stable for a short period when mixed with formaldehyde. To proceed with electrophoresis, RNA samples were dissolved in formaldehyde and added to microtubes or PCR strips. A 2× loading master mix was prepared by combining the loading dye with 3% formaldehyde and then added to each sample. The contents were mixed, heated at 70°C for 5 minutes, cooled, and loaded into gel wells. In conclusion, our method provides an efficient way to run agarose-formaldehyde gels, resolving long RNAs. It requires fewer reagents and manipulations compared to traditional protocols and works well in different gel formats. The HT and TT buffers are suitable alternatives for RNA separation, with the TT formulation being useful for improved resolution of large RNAs due to its higher cost. The assessment of an RNA preparation's overall quality can be performed through denaturing agarose electrophoresis on a gel, which also provides information on the yield of RNA. A denaturing system is recommended due to most RNAs forming extensive secondary structure via intramolecular base pairing, preventing them from migrating strictly according to their size. ===== To prepare the gel, wells must be created with enough capacity for at least 25 µl of sample. Assemble the gel in the tank and add sufficient 1X MOPS running buffer to cover the gel by a few millimeters. Once this is done, remove the comb and proceed to preparing the RNA sample. we usually apply 1 microgram and 2.5 microgram samples onto 1% agarose gels in tris-borate-EDTA buffer with 0.5 microgram per milliliter ethidium bromide added to the gel add ten times native agarose gel loading solution to our RNA samples until we reach a final concentration of one we dont need to boil the RNA before putting it on the gels some peoples always do this but its not necessary so after applying the samples just put them in the machine make sure to take a sample of the RNA that still intact to be like a positive control