

**Click Here**





When dealing with complex organic compounds that contain multiple functional groups, naming them can become a challenge. The good news is that there's a straightforward approach to follow, especially when it comes to deciding which functional group takes priority in the name. This involves understanding the hierarchy of functional groups established by IUPAC (International Union of Pure and Applied Chemistry). The key is identifying the highest priority group, then determining whether any lower-priority groups act as substituents rather than main functional groups. **How To Prioritize Functional Groups** The prioritization is primarily based on the oxidation number within each functional group. Essentially, the higher the number of bonds to oxygen (and hence the higher oxidation number), the more prominent the group becomes in the naming process. This means that carboxylic acids outrank ketones, which in turn outrank alcohols and bromine-based groups. **Functional Group Priority Table** Following this logic leads to a simpler way to name complex molecules: - Carboxylic acids take precedence over all other groups. - Sulfonic acids also hold a high priority. - Esters, acid halides, and amides come next in line. - After that comes nitrile, aldehyde, ketone, alcohol, thiol, and amine. **When Alkenes and Alkynes Are Involved** This gets slightly more complicated when dealing with alkene or alkyne functional groups. The priority given to these groups is somewhat flexible, but the general rule of thumb is that if you have both an alkene and a ketone, for example, the ketone would take precedence. **Exceptions to Priority Rules** There are some functional groups whose presence dictates that they become prefixes rather than suffixes in nomenclature. These include halides, alkoxides, azides, and nitro groups. So, if your molecule contains one of these groups along with others, it will always be treated as a prefix. **Putting It All Together** To illustrate this, consider the scenario where you have both a carboxylic acid and a ketone in your molecule. The naming priority would then be determined by consulting a table that shows the hierarchy of functional groups. This ensures consistency across different molecules and avoids any confusion when it comes to nomenclature. **Tools for Learning and Practice** IUPAC's guidelines are supported by various tools, including videos and quizzes designed specifically to help chemists master these rules. A Functional Groups Quiz is also available to test your knowledge in practice. When determining the priority of functional groups according to IUPAC, note that carboxylic acids and their derivatives take precedence over other groups, except sulfonic acids which have a unique position. The next tier includes nitriles, aldehydes, ketones, alcohols, thiols, and amines. When a molecule contains an alkene or alkyne, these are considered substituents with lower priority than amines unless higher-priority groups are present. Alkenes take precedence over alkynes in terms of numbering, but for the name, the order is reversed. Carboxylic acids and their derivatives, such as acid halides and esters, hold high positions in the hierarchy due to their oxidation state and priority rules. However, the exact ranking may require consulting IUPAC's detailed guidelines or a computer algorithm due to the complexity of these rules. The presence of multiple functional groups can sometimes result in confusion, particularly when an alkene and alkyne coexist within the same molecule. Here, alphabetization of suffixes takes precedence, with "-yne" coming before "-ene". When determining numbering, if there's a tie between an alkene and an alkyne for the lowest locant, the alkene has priority. Certain groups, such as halides (bromo, chloro, fluoro, iodo), ethers ("alkoxy"), azide, and nitro functional groups, are relegated to being prefixes rather than suffixes due to their status as less significant in terms of nomenclature purposes. Examples of molecules with multiple functional groups illustrate the application of these rules, where the highest-ranked group becomes the suffix. This understanding is crucial for solving nomenclature problems and accurately applying IUPAC's guidelines for naming compounds. **Notes** Note 1. This article takes into account the latest recommendations of the IUPAC Blue Book (2013 edition). Note 2. Just for the record, these "rules for seniority" can be found in section P-41 of the Blue Book, page 428 of the 2013 edition. Quiz Yourself! Become a MOC member to see the clickable quiz with answers on the back. References and Further Reading IUPAC Recommendations and Preferred Names 2013: Henri A. Favre, Warren H. Powell DOI: doi.org/10.1039/9781849733069 This book contains IUPAC's preferred names for organic compounds, which is not to say that all chemists follow their recommendations unanimously. Section P-41, page 428 contains the rules for "seniority". With the ability to identify functional groups, next we will learn how to give IUPAC names to compounds containing several functional groups by following a set of rules. **1. Cycloalkanes** The suffix "-one" indicates a ketone group. \* In this case, "cyclohexanone" is the parent name with the suffix added. \* The complete name is "3-ethylcyclohexanone". **2. Alkenes with ketones and hydroxyl groups** \* A 3-carbon alkene with a ketone group should be named "octenone". \* Numbers on the chain start from the left side to ensure the ketone has the lowest number. \* The complete name is "5-bromo-7-chloro-6-hydroxy-2,2,5-trimethyl-7-octen-4-one". **3. Cyclic alcohols with phenyl substituents** \* A cyclic alcohol with a benzene ring as a substituent should be named using the "phenyl" prefix. \* The complete name is "2,2-dimethyl-3-(3-isopropylphenyl)cyclopropanol". **4. Esters** \* An ester has an OR group replacing the OH group of a carboxylic acid. \* The name of the R in the OR group comes first, followed by the name of the acid with "oic acid" replaced by "oate". \* The complete name is "tert-butylpropanoate". **5. Substituted benzenes** \* A benzene ring as a parent structure should have its substituents indicated by numbers and names. \* For di-substituted benzenes, the relative positions of the two substituents can be indicated using ortho-, meta-, or para-. \* Common names are used for mono-substituted benzenes with specific functional groups (e.g. phenol, benzaldehyde). \* For compounds with other substituents, the common name is used as the parent name, with the base functional group given the #1 position. **6. Benzene derivatives** \* When a benzene ring is connected to a carbon chain with six or more carbons, the carbon chain should be regarded as the parent structure. \* The benzene ring becomes a substituent and is indicated with the prefix "phenyl". \* An example is given: 2-phenylheptane.