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What Caused Racial Disparities in Particulate Exposure 
to Fall? New Evidence from the Clean Air Act 
and Satellite-Based Measures of Air Quality†

By Janet Currie, John Voorheis, and Reed Walker*

This project links administrative census microdata to spatially 
continuous measures of particulate pollution (PM2.5) to first doc-
ument and then decompose the key drivers of convergence in black-
white pollution exposure differences. We use quantile regression to 
show that a significant portion of the convergence in Black-White 
exposure is attributable to differential impacts of the Clean Air Act 
(CAA) in Black and White communities. Areas with larger Black 
populations saw greater CAA-related declines in PM2.5. We show 
that the CAA can account for over 60 percent of the racial conver-
gence in PM2.5 pollution exposure in the United States since 2000. 
(JEL J15, K32, Q51, Q53, Q58)

Landmark studies in the 1980s (see for example GAO 1983; Chavis and Lee 
1987) demonstrated that low income and/or racial minorities in the United States 
are more likely to be exposed to environmental burdens. This issue had become so 
politically important by the 1990s that President Clinton issued Executive Order 
12898 in 1994, which ordered the US Environmental Protection Agency (EPA) to 
explicitly study this “environmental justice” question.1 However, despite its large 
volume, the existing evidence about racial disparities in pollution exposure is largely 
piecemeal and indirect.

The evidence is piecemeal because pollution monitoring networks are sparse. 
For example, less than 20 percent of US counties contain a regulatory grade device 

1 Banzhaf, Ma, and Timmins (2019) have an excellent recent review of the economics literature on this subject.
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capable of monitoring small particulates (Fowlie, Rubin, and Walker 2019).2 The 
evidence remains somewhat indirect because researchers have been forced to use 
proxies for potential exposure such as distance to a polluting facility.3 Distance 
to a facility is an imperfect substitute for ambient air pollution exposure, both for 
reasons related to air transport and because mobile sources of pollution are also 
important contributors to local air quality. Hence, while we know that there are 
racial differences in the proximity to toxic facilities and hazardous waste sites, it is 
less clear how these differences translate into differences in measured exposures. 
Moreover, we know very little about why racial gaps in pollution exposure may have 
changed over time.

This paper addresses these gaps in our knowledge using newly available national 
data on PM2.5 exposure from 2000 to 2015. Advances in remote sensing technol-
ogy combined with machine learning prediction tools have allowed researchers to 
combine data from satellite imagery, pollution monitors, land use characteristics and 
chemical air transport models to generate fine-grained (one kilometer grid) mea-
sures of ambient air pollution levels for the entire United States (Di et al. 2016a, b; 
van Donkelaar et al. 2016). We merge these granular pollution data to individual 
survey responses from restricted versions of the 2000 census and the 2001–2015 
American Community Survey (ACS) at the census block level.

The paper proceeds in four parts. We first use these data to document gaps in 
ambient exposure to PM2.5 between African Americans and non-Hispanic Whites 
and to show how these gaps changed over time from 2000 to 2015. Next, we explore 
whether these cross-sectional gaps in pollution exposure can be explained by differ-
ences in individual and/or neighborhood characteristics, as reported in the census 
or ACS. Third, we explore the extent to which changes in relative mobility versus 
relative improvements in neighborhood air quality have contributed to the changes 
in gaps in pollution exposure over this time period. Lastly, we use quantile regres-
sion methods proposed by Firpo, Fortin, and Lemieux (2009) to explore the extent 
to which the spatially targeted nature of the CAA, and associated introduction of the 
PM2.5 National Ambient Air Quality Standards (NAAQS), has affected different 
parts of the national pollution distribution and, in turn, the observed Black-White 
pollution gap in the United States.

The analysis confirms that African Americans tend to live in the most polluted 
areas nationally. However, this Black-White gap in mean pollution exposure has 
closed substantially since the turn of the century. The mean gap in pollution exposure 

2 Similarly, Hsiang, Oliva, and Walker (2019) point out that out of 3,144 counties, only 1,289 have monitors for 
any “criteria” air pollutant (i.e., pollutants regulated under the CAA) at any point between 1990 and 2015. 

3 For example, several case studies on residential proximity to polluting industrial facilities find that racial 
and ethnicity minority groups and/or lower socioeconomic status groups experienced closer average proximity 
to industrial facilities compared with other groups, and that this pattern persists over time, e.g., Abel and White 
(2011) who study Seattle, 1990 to 2007; Hipp and Lakon (2010) who study southern California, 1990 to 2000; Pais, 
Crowder, and Downey (2013) who examine a national cohort from 1990 to 2007. There are challenges to drawing 
causal inferences from this literature ranging from ecological fallacy (Depro, Timmins, and O’Neil 2015; Hsiang, 
Oliva, and Walker 2019) to problems associated with assuming that people in geographic areas that do not contain 
hazards are not exposed to pollutants, even when the hazards in question may lie close to geographic boundaries 
(Banzhaf, Ma, and Timmins 2019; Mohai and Saha 2006; Mohai, Pellow, and Roberts 2009). Currie (2011) looks 
at all births in five large states between 1989 and 2003 and shows that pregnant Black women are about 50 percent 
more likely to live within 2,000 meters of a toxic release inventory site and 100 percent more likely to live within 
2,000 meters of a superfund site than pregnant White women.
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has converged from 1.5 micrograms per cubic meter (μg per m3 ) in 2000 to only 
0.5 μg/​m​​ 3​ in 2015. This convergence alone could potentially account for almost 
5 percent of the improvement in relative life expectancy between Black and White 
Americans over this time period.4 We then explore the underlying cross-sectional 
correlates of the observed pollution gaps by leveraging the individual microdata in 
the census and ACS. We begin by comparing the unconditional mean gap in pol-
lution exposure between African Americans and non-Hispanic Whites to the con-
ditional mean pollution gap after controlling for individual characteristics (e.g., 
income, education, household structure).5 We also examine whether individual 
characteristics are able to explain gaps in exposure at other quantiles of the pollu-
tion distribution, in the spirit of DiNardo, Fortin, and Lemieux (1996). We find that 
virtually none of the racial difference in exposure can be explained by differences 
in individual or household-level characteristics such as income, suggesting that only 
a small portion of the observed convergence in pollution levels can be explained by 
relative changes in these characteristics over time.

Mechanically, there are two remaining ways this narrowing of the pollution gap 
could have occurred: areas with relatively large shares of African Americans may 
have enjoyed larger pollution reductions than other areas, or relative population 
shares could have shifted in ways that benefited African Americans relative to the 
non-Hispanic White population. We use a simple decomposition to show that rela-
tive mobility differences or changes in Black-White population shares are not able 
to explain the observed convergence in pollution exposure. While the White popu-
lation has been gradually shifting to more urban and hence more polluted areas, this 
phenomenon explains very little of the observed Black-White convergence in pollu-
tion exposure when compared to the large and significant air quality improvements 
in the average Black neighborhood over this time period.

The convergence in the racial gap in pollution exposure between 2000 and 2015 
can be entirely accounted for by the fact that areas with larger shares of African 
American residents showed the greatest improvement in air quality over this time 
period. Why is this the case? We show that much of this improvement is driven by 
the introduction of the PM2.5 NAAQS, which greatly improved air quality in newly 
regulated areas—areas with higher concentrations of African Americans. More specif-
ically, we use unconditional quantile regression (Firpo, Fortin, and Lemieux 2009) in 
a difference-in-difference setting to show how the introduction of the PM2.5 NAAQS 
affected different quantiles of the national pollution distribution. We then combine 
these quantile regression estimates with the Black and White population shares in the 
respective pollution quantiles to calculate that over 60 percent of the observed conver-
gence in mean PM2.5 differences between Black and White Americans over this time 
period can be traced back to the spatially targeted nature of the CAA regulations.

This is the first paper, to our knowledge, that links nationally representative, 
individual-level survey data to a national surface grid of PM2.5 pollution measure-
ments to explore cross-sectional differences and trends in environmental inequality 

4 See Section I below for a more complete description of this calculation.
5 Throughout the paper, we use the term “conditional mean pollution gap” to reflect the difference left after 

adjusting (i.e., conditioning) for differences in covariates. Formally, these gaps measure the average of the condi-
tional differences that exist for each value of the covariates.
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between racial groups.6 Moreover, we are not aware of any papers that have 
explored the causal determinants of narrowing pollution gaps between racial groups 
over time.7 Our data not only have useful features from a measurement perspective, 
allowing for higher quality measurement of the distribution of pollution exposure 
than has been possible before, but they also allow us to answer questions that cannot 
be addressed with public-use census data. For example, the restricted versions of 
the census and ACS data (which provide block-level geographic information) allow 
us to distinguish between differences in pollution exposure that can be explained 
by differences in individual characteristics (e.g., income) or differences in neigh-
borhood characteristics (e.g., average years of schooling). While these findings are 
descriptive, we are able to explore, for the first time, how much variation in pollution 
exposure might plausibly be explained by individual endowments, and how much 
may instead be explained by aggregate, neighborhood-level characteristics. Lastly, 
the spatially continuous PM2.5 measurements allow us to create these statistics and 
perform these decompositions for the entire continental United States, as opposed 
to focusing on a single city or on communities that are proximate to a toxic plant or 
a pollution monitor.

The second contribution of this paper is to explore the distributional effects of 
environmental policy and the CAA more specifically. While a substantial literature 
examines the average effects of the CAA on pollution exposure and the harms that 
it causes (e.g., Chay and Greenstone 2003; Isen, Rossin-Slater, and Walker 2017), 
we know of no other work that explores the impact of the CAA on different empir-
ical moments of the nationwide pollution distribution. For example, we are able to 
address the question of how much the CAA NAAQS have compressed the national 
pollution distribution, and to ask which quantiles show the largest effects? The 
advent of unconditional quantile regression and related methods (Firpo, Fortin, and 
Lemieux 2009), combined with the new availability of spatially continuous PM2.5 
measurements, make such analysis possible.

In summary, our study uses high-resolution PM2.5 data and restricted-access 
census data to measure gaps in racial exposure to pollution for a nationally repre-
sentative sample of the US population. Our main innovation is to explore the rea-
sons why the racial gap has declined by asking what part of the decline can be 

6 A small but growing literature has begun using remote sensing data to measure the distribution of environ-
mental hazards (see e.g., Fowlie, Rubin, and Walker 2019 for a recent overview and application). A subset of this 
literature studies environmental inequality by merging remote-sensing data to census tract or census block group 
demographic data. For example, Clark, Millet, and Marshall (2014, 2017) examine racial differences in exposure to 
nitrogen oxide using 2006 census block-group nitrogen oxide measurements linked to the 2000 decennial census 
data, and Voorheis (2017) examines differences in exposure to nitrogen oxide and PM2.5 using satellite data com-
bined with tract-level aggregates from the ACS.

7 Relatively few US studies have explored temporal trends in racial gaps in ambient air pollution or 
transportation-related air pollution. Brajer and Hall (2005), studied ozone and coarse particulate matter in Southern 
California from 1990 to 1999, and found that on average, as air pollution decreased over time, Asians and Hispanics 
experienced larger reductions in ozone concentrations but smaller reductions in coarse particulate matter concen-
trations, compared with other groups. Kravitz-Wirtz et al. (2016) studied nitrogen dioxide and particulate matter 
exposures in the United States for a cohort of 9,000 families from 1990 to 2009, and found that though exposures 
decreased over time, they remained higher for Blacks and Hispanics than for Whites. Ard (2015) looks at racial 
trends in exposures to toxic releases from 1995 to 2004, using data on releases of 415 chemicals from 17,604 facil-
ities reporting in the Toxic Release Inventory. She finds that potential exposure to toxics declined for all, but that 
African Americans are still more exposed than Whites or Hispanics, even conditional on income and education. 
Voorheis (2017) uses administrative records and satellite data to compare within-person changes in pollution expo-
sure between Black and White Americans.
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attributed to convergence in the individual and household-level characteristics of 
African American and other households, how much can be explained by the rel-
ative mobility of different racial groups (e.g., Black peopple moving away from 
polluted areas), how much can be explained by more rapid clean-up of historically 
Black neighborhoods; and how much of the more rapid cleanup of historically Black 
neighborhoods that we observe is due to the spatially targeted enforcement of the 
CAA.

The rest of the paper proceeds as follows. Section I introduces the linked census 
and satellite derived pollution data and provides initial descriptive statistics on envi-
ronmental inequality between racial groups. Section II explores whether these mean 
and quantile differences can be explained by differences in individual characteristics 
and changes to those characteristics over time. Section III tests for how the spatially 
targeted nature of the CAA affects the national distribution of PM2.5 exposure, and 
how these quantile changes map into the observed Black-White gap in pollution 
exposure. Section IV concludes.

I.  Data and Descriptive Statistics on Racial Gaps in Pollution Exposure

Environmental science has seen a recent explosion of research combining 
spatially continuous satellite measurements of pollution correlates (e.g., aerosol 
optical depth) with other observable pollution correlates such as emissions invento-
ries, chemical transport models, land use characteristics, and weather patterns (see 
e.g., Di et al. 2016a,b; van Donkelaar et al. 2016). The basic idea is to build a predic-
tive model of a pollutant of interest (e.g., PM2.5) by correlating in situ EPA monitor 
data with the observable predictors of air pollution measures using modern model 
selection techniques (e.g., cross-validated neural nets). Researchers then use these 
models to predict air pollution “out of sample” for the large segments of the United 
States without existing pollution monitors but with satellite measurements. We use 
data from Di et al. (2016a,b), who produce daily PM2.5 concentrations at a 0.01 
degree by 0.01 degree resolution (one kilometer by one kilometer at the equator) for 
the contiguous United States from 2000 to 2015.8, 9 We spatially intersect this grid-
ded, raster data with census block boundary files from the 2000 and 2010 censuses, 
which we use to merge the pollution data to the individual survey responses from the 
2000 census and 2001–2015 ACS.

It is important to note that these pollution data are estimates of ground-level pol-
lution concentrations. These estimates perform well—on average, they match the 
“ground truth” as measured by EPA monitors, with very high, in-sample measures 
of fit. However, there is some evidence that these satellite-derived measures may 
deviate from the ground truth at the tails of the pollution exposure distribution. 
Fowlie, Rubin, and Walker (2019) show that two of the most commonly used mea-
sures, Di et al. (2016a,b) and van Donkelaar et al. (2016), are biased downward for 
high PM2.5 levels. It seems likely in our setting than these prediction errors will 

8 The published version of Di et al. (2016a,b) use data from 2000 to 2012. We received years 2013–2015 via 
direct correspondence with the authors.

9 We have replicated most of the results in this project using similar data from van Donkelaar et al. (2016), and 
the qualitative conclusions are very similar. 
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attenuate measured disparities since African Americans are more likely than Whites 
to be located in the most highly polluted places. We will proceed with our analyses 
treating the satellite data as if it were the truth, keeping in mind the caveat that our 
results may be a lower bound on true racial gaps in exposure.

We merge the pollution data with individual-level data from the 2000 census 
long form (one in six US households) (US Census Bureau 2010) and from the 
2001–2015 ACS (US Census Bureau 2015) using household census block locations. 
Our primary comparisons focus on the non-Hispanic White and African American 
populations. We focus on gaps between African Americans and non-Hispanic 
Whites because historically these have been the largest and most well-documented 
gaps. Additionally, there are potential measurement issues in studying differences 
between Hispanics and non-Hispanic Whites over time. For example, studies which 
have linked individual responses to the 2000 and 2010 decennial censuses find evi-
dence that Hispanic identity is more fluid over time than White or Black racial iden-
tities (Liebler et al. 2017).

Figure 1 plots mean pollution exposure for both the African American (dot-
ted red line) and non-Hispanic White population (solid blue line) from 2000 to 
2015. The observed Black-White gap in mean pollution exposure was 1.6 μg/m3  
in 2000, narrowing to 0.54 μg/m3 in 2015. Although African American exposure 
fell more, it was higher to begin with, so that the percentage reduction is similar 
for both Black and White people. However, since the level of pollution exposure 
is important, that is our main focus. One way to interpret the differences in levels 
is to translate the gaps into racial differences in life expectancy through the lens 
of a PM2.5 concentration-mortality response function. Pope, Ezzati, and Dockery 
(2009) estimate that life expectancy is reduced by 0.61 years for each 10 μg/m3 
increase in sustained exposure to PM2.5. Over this time period, the Black-White 
gap in life expectancy fell from about 5 years to 3.5 years (Arias, Xu, and Kochanek 
2019). Thus, the observed 1 μg/m3 improvement in the Black-White pollution gap 
could potentially explain 4 percent of this improvement in the Black-White mortal-
ity gap.10

Do these national gaps in pollution exposure exist at other geographic scales? 
The national gaps in pollution exposure reflect both differences in where Black 
and White people live and within-area gaps in pollution exposure. For example, 
the average, within-state differences in pollution exposure could be the same as 
the nationwide differences, or the within-state gaps in pollution exposure could be 
minimal indicating that African Americans simply live in more polluted states on 
average. Online Appendix Figure B1 explores average, within-area gaps in exposure 
at different geographic scales. We regress the pollution exposure of an individual 
on an indicator for whether or not that individual is African American, controlling 
for different sets of geographic fixed effects. The red, hollow squares represent 
the conditional mean difference in pollution exposure between African Americans 
and non-Hispanic White individuals after controlling for state fixed effects. These 
within-state differences in exposure are smaller than the national mean differences 

10 This is calculated as ​0.61 × (1/10)/1.5​ years. Note that Arias, Xu, and Kochanek (2019) only report 
Black-White gaps in life expectancy as far back as 2006. The 2000–2015 change in the Black-White life expectancy 
was likely larger than 1.5, reducing the percentage contribution of PM2.5 in explaining this improvement. 
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in exposure, and they exhibit a flatter downward trend. The average within-county 
differences are smaller, and the within-tract differences in exposure are essentially 
zero. For example, in 2000, the average within-tract gap was only 0.012 μg/m3. 
In 2000, the unconditional, nationwide gap was 1.5 μg/m3, suggesting that more than 
99 percent of the national gap (​1 − 0.012/1.542​) is driven by differences in the census 
tracts where White and Black people live rather than by White and Black differences 
in exposure within the average census tract. Online Appendix Table B1 shows the 
adjusted R2s from these regressions, indicating that almost all of the variation in indi-
vidual exposures is explained by census-tract fixed effects. Since the median census 
tract is five square kilometers, our one kilometer by one kilometer grid of pollution 
measures is arguably fine enough to detect within census-tract differences in exposure. 
However, the calculations in this section suggest that these differences are negligible.

While Figure 1 and online Appendix Figure B1 present the mean and conditional 
mean Black-White gap over time, the data also allow us to explore the entire distri-
bution of pollution exposure for each race group and how these distributions have 
changed over time. Figure 2 plots the pollution densities, separately for the African 
American and non-Hispanic White population in both 2000 and 2015.11 When com-
paring the x-axis of both the 2000 and 2015 figures, it becomes clear that PM2.5 
pollution levels have fallen dramatically for both groups. For example, in 2000, 
the bulk of both distributions lies above 10 μg/m3, while in 2015 the bulk of both 
distributions lies below that threshold. The other salient feature of these densities 
is that most of the improvements for Black people relative to Whites between 2000 
and 2015 come from compressing the upper portion of the pollution distribution, a 
point to which we will return.

11 Due to census disclosure avoidance review, we were forced to trim the upper ninety-seventh and lower third 
percentiles of each pollution distribution.

Figure 1.  Trends in Pollution Exposure by Race

Note: This figure plots mean PM2.5 exposure by year, separately for African Americans and the non-Hispanic 
White population.

Sources: US Census Bureau (2010, 2015) and Di et al. (2016a,b)
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II.  Decomposing Differences in Pollution Exposure

What explains the observed differences in pollution exposure? Perhaps lower 
income individuals live in more polluted places, and differences disappear or are 
greatly attenuated when we condition on income. Or perhaps differences in edu-
cation and/or knowledge about the potential harms of PM2.5 exposure lead to 
observed differences in pollution exposure? The census demographic data allow 
us to explore the cross-sectional and time-series differences in pollution exposure 
between racial groups. The demographic data also allow us to begin to explore the 
extent to which individual endowments can explain the observed differences and 
changes. Conditional on income differences, does the observed Black-White gap in 
pollution exposure remain? We focus on the following individual-level characteris-
tics measured in the census long form and ACS surveys: race, age, gender, income, 
education, number of children, and home ownership. We also explore the role of 
neighborhood characteristics in explaining pollution disparities, using census tract 
characteristics constructed from the underlying microdata, including mean public 
assistance income, the teen pregnancy rate, average years of schooling, the popula-
tion share living in single family residences, and the home ownership rate. Online 
Appendix Table B2 presents summary statistics of these variables, separately for 
non-Hispanic White and African American individuals in our sample.

A.  Conditional versus Unconditional Differences in Pollution Exposure

The data show a large gap in pollution exposure in 2000, which fell considerably 
over the next fifteen years. As a first step toward understanding the reasons for the 
declining gap, we start by asking whether cross-sectional differences in exposure 
in any given year can be explained by differences in individual characteristics from 

Figure 2.  Distributions of Pollution Exposure, 2000 and 2015

Notes: This figure plots the PM2.5 density, separately for African Americans and the non-Hispanic White pop-
ulation in both 2000 and 2015. Due to census disclosure avoidance review, we were forced to trim the upper 
ninety-seventh and lower third percentiles of each density.

Sources: US Census Bureau (2010, 2015) and Di et al. (2016a,b)
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the census and ACS. One natural way to do this is to compare the conditional mean 
differences in pollution exposure between racial groups to the unconditional mean 
differences using the following linear regression model:

(1)	​ ​P​i​​  =  γ 1​[​African American​i​​]​ + ​X ′ ​β + ​ϵ​i​​​,

where pollution for individual ​i​ is regressed on an indicator for whether or not the 
individual is African American, controlling for individual demographic character-
istics in the vector (​X​). Specifically, we control for individual income, age, educa-
tion, number of children, gender, and an indicator for homeownership. Regressions 
are weighted using survey weights, and inference is conducted with cluster-robust 
standard errors, clustering by commuting zone (CZ). Figure 3, panel A plots the 
coefficient ​γ​ and associated confidence intervals from 15 separate regressions, one 
per year, representing the conditional mean differences in Black-White pollution 
exposure over time. Figure 3, panel B compares these estimates to the unconditional 
mean differences in pollution exposure over time. The lines look almost identical. 
This similarity implies that differences in individual characteristics, such as income, 
explain almost none of the cross-sectional differences in pollution exposure between 
African Americans and non-Hispanic Whites. This fact is shown more formally in 
online Appendix Table B3. Online Appendix Table B3 also shows that including the 
covariates more flexibly adds little explanatory power.12 This conclusion is striking 
considering that African American households have mean household income more 
than $15,000 lower than non-Hispanic Whites (see online Appendix Table  B2). 
These differences in income and other characteristics explain almost none of the 
observed differences in pollution exposure. Online Appendix A.A1 formally decom-
poses these cross-sectional differences in mean pollution exposure using methods 
pioneered by Oaxaca (1973) and Blinder (1973). Observable differences in indi-
vidual and household characteristics are able to explain at most 8 percent of the 
gap in mean differences in any given year. Of these characteristics, differences in 
homeownership rates tend to matter most (accounting for between 4–6 percent of 
the total difference). On net, African Americans are more likely to be renters, and 
rental housing is disproportionately exposed to PM2.5.

Gaps in pollution exposure are also found at different points within the income 
distribution. Table 1 presents the results from ten separate estimates of ​γ​ from equa-
tion (1), where we stratify the data by income quintiles in both 2000 and 2015. At 
each quintile, the conditional gap remains similar to the unconditional gap in a given 
year. Differences in individual characteristics do little to explain the mean differ-
ences in pollution exposure within these income categories.

Equation  (1) and the Oaxaca-Blinder exercise in online Appendix A.A1 are 
well suited for decomposing differences in mean Black-White pollution exposure. 
However, Figure 2 suggests that there exist additional racial differences at differ-
ent quantiles of the pollution distribution. A natural question to ask is whether 
differences in individual or household characteristics are able to explain differ-
ences in pollution exposure at other parts of the pollution distribution. DiNardo, 

12 We have repeated all of our analyses using this more flexible set of controls and found that the estimates were 
the same to the third decimal point.
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Fortin, and Lemieux (1996) provide a straightforward semiparametric approach 
to answering this question. The basic idea is to estimate what the entire distribu-
tion of African American pollution exposure would look like if African Americans 
had the same observable characteristics as non-Hispanic Whites. In practice, this 
amounts to constructing a weighting function that is then used to reweight a ker-
nel density estimate of the African American pollution distribution to provide the 
relevant counterfactual distribution African Americans would have experienced 
given the same characteristics as non-Hispanic Whites. This weighting function 
boils down to estimating a conditional probability of being a non-Hispanic White 
individual based on observable, demographic characteristics via a probit regression. 
This conditional probability is then used, along with the unconditional probabilities 
of being White/Black in our sample to reweight the African American kernel den-
sity in a given year.

Figure 3.  Residual Black-White Pollution Gap: PM2.5

Notes: Panel A plots the regression coefficients from 15 separate estimates of equation (1), regressing pollution on 
an indicator for whether an individual is African American, controlling for individual and household characteristics. 
The coefficient estimates correspond to the conditional mean Black-White difference in air pollution, after adjusting 
for differences in observable individual and household characteristics. Dashed lines correspond to 95 percent con-
fidence intervals, where standard errors have been clustered by CZ. Regressions are weighted using census survey 
weights. Panel B compares the conditional mean coefficients to the unconditional mean differences by year. Panel C 
replicates panel A while also controlling for census tract or “neighborhood” characteristics. See text for details.

Sources: US Census Bureau (2010, 2015) and Di et al. (2016a,b)
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The results from this exercise are presented in online Appendix Figure B2. Online 
Appendix Figure B2a presents estimates of the counterfactual pollution distribution 
in 2000, and online Appendix Figure B2b presents estimates of the counterfactual 
pollution distribution in 2015. In both cases, the counterfactual density looks very 
similar to the actual density, again suggesting that individual characteristics are able 
to explain little of the observed pollution gap throughout the distribution. Online 
Appendix A.A2 and online Appendix Table  B5 use methods proposed by Firpo, 
Fortin, and Lemieux (2009) to formally decompose the tenth, fiftieth, and nine-
tieth percentiles of the pollution distribution into the parts that can be explained 
by observable covariates versus the part that remains unexplained. Once again, we 
find that little can be explained by observable individual-level characteristics from 
census data.

B.  Controlling for Neighborhood Characteristics

While individual and/or household characteristics explain little of the Black-White 
pollution gap, there is substantial racial segregation into different areas within and 
across communities. Are the differences in the socioeconomic characteristics of 
Black and White neighborhoods able to explain these gaps in exposure? Panel 2 of 
online Appendix Table B2 presents mean census tract characteristics, separately for 
non-Hispanic Whites and African Americans. African Americans not only have dif-
ferent individual- and household-level characteristics on average, but they also tend to 
be concentrated in census tracts with a higher percentage of relatively disadvantaged 
neighbors. Note that there is nothing mechanical about this—if neighborhoods were 
perfectly integrated in terms of race and socioeconomic status, then everyone would 
live in a similar census tract regardless of their own characteristics. Hence, we can 

Table 1—Residual Black-White Pollution Gap by Income Quintile: PM2.5

Income quintile

1 2 3 4 5

Panel A.  Year 2000
​1[African American]​ 1.535 1.603 1.616 1.590 1.396

(0.180) (0.190) (0.193) (0.195) (0.183)
Observations 1,791,000 1,967,000 2,397,000 2,277,000 2,204,000

Panel B.  Year 2015
​1[African American]​ 0.499 0.463 0.512 0.558 0.570

(0.097) (0.093) (0.096) (0.089) (0.099)
Observations 235,000 223,000 224,000 226,000 244,000

Notes: This table presents the regression coefficients from ten separate estimates of equa-
tion (1), five per panel. We regress pollution on an indicator for whether an individual is an 
African American, controlling for individual and household characteristics, and we stratify 
the data by income quintile. The coefficient estimates correspond to the conditional mean 
Black-White difference in air pollution, after adjusting for differences in observable individ-
ual and household characteristics. Panel A does this for the year 2000, and panel B repeats this 
exercise in 2015. Regressions are weighted using census survey weights, and standard errors 
are clustered by CZ. See text for details.

Sources: US Census Bureau (2010, 2015) and Di et al. (2016a,b)
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control for characteristics of neighborhoods or census tracts as well as characteris-
tics of individuals in equation (1) in order to explore whether Black-White differ-
ences in neighborhood characteristics (conditional on individual characteristics) are 
able to explain some of the observed differences in PM2.5 exposure.

Figure 3, panel C shows the results of adding neighborhood characteristics to 
equation (1), and online Appendix Table B6 presents the associated Oaxaca-Blinder 
decomposition. Specifically, we add census-tract level measures of mean public 
assistance income, the teen pregnancy rate, years of schooling, the share living 
in single family residences, the home ownership rate, miles of major highways, 
and total facility PM2.5 emissions to equation (1). Figure 3, panel C, which plots 
year-by-year estimates of ​γ​, looks quite similar to Figure 3, panel A. Namely, the 
conditional gap in pollution exposure between African Americans and non-Hispanic 
Whites is also not fully explained by mean differences in neighborhood character-
istics. Online Appendix Table B6 explores this result in greater detail. The table 
shows the fraction of the gap that is “explained” and “unexplained” by each variable 
separately, as well as the combined effect of these neighborhood characteristics. As 
one can see from the “explained” panel of online Appendix Table B6, Black-White 
differences in neighborhood characteristics explain 0.324 of the documented 1.617 
gap in PM2.5 exposure. Most notably, the tract home ownership rate explains the 
largest share of the difference. In both 2000 and 2015, mean differences in the tract 
home ownership rate explain about 20 percent of the difference in PM2.5 exposure. 
There are also substantial differences in the returns or responsiveness of individuals 
to differences in neighborhood characteristics (i.e., panel B); a one-year increase in 
the mean census tract education translates into substantially less pollution exposure 
for White people than it does for Black people in our sample, which is reflected in 
the relatively large difference in estimated “slopes” on the “tract years of schooling” 
variable in panel B.

The fact that African Americans live in different neighborhoods than non-Hispanic 
Whites explains some of the gap in pollution exposure but also raises further ques-
tions. Does the shrinking of the racial gap in pollution exposure come from improve-
ments in air quality in neighborhoods that have higher shares of African Americans, 
or is the improvement due to the relative movement of African Americans away from 
dirty neighborhoods toward cleaner ones? We next present an additional decomposi-
tion which attempts to shed light on these questions.

C.  People versus Places: Understanding How 
Relative Mobility Has Affected Pollution Disparities

One straightforward way to understand the role of mobility in contributing to 
the convergence in pollution exposure between Black and White Americans is to 
consider what the pollution gap in 2015 would have been if we fixed individu-
als in their 2000 locations but let pollution in their fixed census blocks change to 
its 2015 level. For this counterfactual exercise, we use the public-use 100 percent 
count population data from the 2000 decennial census at the census block level. 
We merge these data to the 2000 and 2015 Di et al. (2016a,b) data to calculate 
mean exposure gaps using block-level population counts for non-Hispanic Whites 
and African Americans. Table 2 presents results from this counterfactual exercise. 
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Columns 1 and 2 present the actual pollution levels experienced by Black and White 
Americans in 2000 and 2015, and the associated gap (row 3) and change in gap 
(row 4). Column 3 of Table 2 shows the results of a counterfactual exercise, where 
we simulate what the gap (and change in gap) would have been in 2015 if people’s 
locations had been held fixed. The last row of column 3 tells us that the change in 
the pollution gap would have been slightly smaller if individuals had been unable 
to move between 2000 and 2015. African Americans moved to relatively cleaner 
places between 2000 and 2015, and the opposite is true for non-Hispanic Whites.13 
If populations were fixed in their 2000 locations, the gain would have been 0.89 ​μ​
g/m3 versus the 1.02 ​μ​g/m3 actually experienced. Thus, only 12.7 percent of the 
improvement in the exposure gap stems from differences in the mobility patterns 
between African Americans and non-Hispanic Whites over this time period, leaving 
the rest to be explained by a greater improvement in pollution in predominantly 
African American areas.

Online Appendix A.A3 presents additional results that explore the year-by-year 
changes in Black-White population shares and pollution exposure in order to shed 
further light on the role of mobility in explaining pollution gaps. This analysis 
shows that the negative relationship between White population shares and pollution 
levels has weakened over time. Even so, the role of relative mobility differences in 
explaining the closure of the gap remains small (certainly less than 15 percent).

Whether and how the mobility of White and Black people is related to changes 
in air quality over this time period is a different question. Are non-Hispanic Whites 
moving into the cities that experienced the largest improvements in air quality? It 
is possible that non-Hispanic Whites moved to the cities that were cleaning up the 
most rapidly, but still increased their exposure to pollution. Suppose an individual 
moved from the relatively less polluted suburbs toward the city center in a city 

13 This pattern is consistent with recent findings in urban economics which show that, after decades of sub-
urbanization, the urban population became Whiter and more college educated in most large US cities after 2000 
(Baum-Snow and Hartley 2019; Couture and Handbury 2017), and similarly, suburbs have become more diverse. 
The shift in White population shares toward urban centers contributes to higher levels of average pollution exposure 
among Whites than they would have experienced had they remained in predominantly suburban locations.

Table 2—Counterfactual Pollution Levels and Gaps Holding Location Fixed

Actual 2000 Actual 2015 Counterfactual 2015
exposure exposure using 2000 locations

(1) (2) (3)

White PM2.5 ​μg/​m​​ 3​​ 12.96 8.25 8.22

Black PM2.5 ​μg/​m​​ 3​​ 14.52 8.79 8.89

Black-White difference 1.56 0.54 0.67

Change in Black-White difference 1.02 0.89

Notes: Rows 1 and 2 of columns  1 and  2 present mean pollution exposure separately for 
African American and non-Hispanic Whites in years 2000 and 2015. Row 3 presents the mean 
gap in pollution exposure in either each year. Row 4 presents the change in Black-White gap 
between 2000 and 2015. Column 3 presents a counterfactual exercise, whereby we ask what 
pollution levels would be and by how much the gap would have converged between 2000 and 
2015 if we fixed the population in their 2000 location and assigned the 2015 pollution levels 
for their respective census block.

Sources: US Census Bureau (2010, 2015) and Di et al. (2016a,b)
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where air quality has improved. While this individual is moving to an urban center 
that has cleaned up, their new air quality exposure may remain above their previous 
exposure. We explore these issues in more detail in subsequent sections.

III.  The CAA and Relative Changes in Pollution Exposure

Thus far, we have documented that (i) the Black-White gap in exposure to partic-
ulate matter has declined substantially since 2000, and (ii) neither individual charac-
teristics nor residential mobility of individuals appears to fully explain why this gap 
has declined. Rather, it appears that the Black-White gap in exposure has declined 
primarily because African American neighborhoods had greater improvements in air 
quality. But why did these particular neighborhoods experience improvements in air 
quality? We hypothesize that a major reason for the narrowing of the Black-White 
gap in air quality is that changes in the enforcement of the CAA between 2000–2015 
were more binding in predominantly Black neighborhoods. We formally investigate 
this hypothesis below.

The CAA was first implemented in 1963, but the original legislation provided 
limited federal oversight of state efforts and led to disappointing results. In response, 
Congress enacted the CAA Amendments of 1970 and established the EPA, which 
vastly increased federal power to address air pollution.14 The CAA initially focused 
on common, dangerous, air pollutants known as “criteria air pollutants.” Compliance 
was to be achieved through regulations governing both stationary sources (e.g., fac-
tories) and mobile sources (e.g., cars).

For stationary sources, the CAA created pollutant-specific NAAQS that specify 
maximum allowable concentrations of criterion air pollutants. NAAQS were initially 
established for sulfur dioxide, carbon monoxide, nitrogen dioxide, lead, particu-
lates, and eventually ozone. Stationary source regulations focus primarily on areas 
that are out of compliance with the NAAQS. Each year in July, the EPA determines 
the set of counties that are in violation or “nonattainment” of a particular NAAQS 
standard based on air pollution monitor measurements in those or nearby coun-
ties. The consequences of being a “nonattainment” area can be severe. State gov-
ernments must develop a pollutant-specific plan, known as a State Implementation 
Plan, describing how areas will improve air quality and come into compliance. The 
EPA reviews these state plans. If a state fails to act or develops an inadequate plan, 
the EPA can withhold federal funding for the state air pollution control program, 
highway construction, and the construction of sewage treatment plants. The EPA 
can also ban permits for construction of major new and/or modified sources of a 
pollutant in communities that are out of compliance with NAAQS. In addition, the 
EPA can impose its own federal plan if it deems a state’s plan inadequate. Thus, the 
CAA gives the EPA sweeping powers to take action to improve air quality, with or 
without state cooperation.

Since 1970, there have been two major amendments to the CAA, in 1977 and 1990, 
and hundreds of additional policies designed to respond to changing scientific con-
sensus about both the harms from pollution and feasible compliance technologies. 

14 Currie and Walker (2019) provide a more complete overview of the CAA and associated research by 
economists.
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In 1997, the EPA tightened the NAAQS pertaining to ozone and particles further, 
regulating fine particles less than 2.5 micrometers in diameter (PM2.5) for the first 
time. The new standards were extremely controversial and were challenged in the 
courts for years, but ultimately the EPA prevailed, and the new standards were 
implemented in April 2005. The EPA revised the PM2.5 (24 hour) standard again in 
2006, and the revision went into effect in 2009. However, since all counties which 
were in nonattainment of the annual PM2.5 standard in 2009 were also in nonattain-
ment of the 24 hour standard, the 2009 designations do not appear to have caused 
additional new areas to be subject to NAAQS nonattainment regulations. We focus 
on the effects of mandated reductions in annual PM2.5 under the 1997 standards 
which finally began to be implemented in 2005.

To what extent is the cleanup of predominantly African American areas a result 
of the implementation of these new standards? We have seen that African Americans 
lived in more polluted places on average in 2000, and the initial impact of the CAA 
was therefore likely to be greatest in these places. Figure 4, panel A shows the dis-
tribution of the African American and non-Hispanic White populations by vigintile 
of PM2.5 levels in 2000; the former were much more likely to live in the highest 
pollution deciles, while for Whites the situation is reversed. Figure 4, panel B shows 
that it was predominantly counties in the highest PM2.5 deciles that were impacted 
by the enforcement of the standards in 2005. Hence, unless the initial impact of 
stronger regulation was undone by re-sorting of population shares, we would expect 
the regulations to close gaps between Black and White Americans.

We begin by examining the effect of these new air quality standards on pollution 
exposure in a standard difference-in-difference, event-study design. To better mimic 
the way the regulations work in practice we adopt a slightly unconventional regres-
sion model when compared to the existing literature. Whenever a county exceeds 
the air quality standard based on a local monitoring station, the regulator decides 

Figure 4.  Racial Distribution of Population and Impact of CAA by Pollution Decile

Notes: Panel  A plots population shares by pollution decile, separately for African American and non-Hispanic 
Whites. Panel B shows the total number of counties subject to the CAA’s 1997 NAAQS PM2.5 standard, by pollu-
tion decile.

Sources: US Census Bureau (2010, 2015); EPA (2022b); and Di et al. (2016a,b)
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whether nearby or adjacent counties could also have contributed to this violation. 
Thus, these nonattainment designations apply to “air regions” or groups of counties 
in the same local market, typically not a single county. We approximate these air 
region definitions using county-aggregates in the form of CZs or local labor mar-
kets.15 Figure 5 shows a map of the 2000–2015 changes in PM2.5. We overlay this 
map with the outline of the 62 CZs, consisting of 250 counties in 20 states, that were 
designated as nonattainment areas in 2005. The figure illustrates that the largest 
reductions are concentrated the Eastern and Southeastern United States, areas with 
higher shares of African American residents relative to other parts of the United 
States that experienced less air quality improvement. The figure also suggests that 
the areas targeted by the new standards were among those that experienced the larg-
est improvements in air quality.

We estimate an event study model of the following form:

(2)	​ ​P​ict​​  = ​   ∑ 
t=2000

​ 
2015

  ​​ ​β​t​​​(1​[​Nonattain​c​​]​ × 1​[​year​t​​  =  t]​)​ + ​γ​c​​ + ​ρ​t​​ + ​ϵ​ict​​​,

15 There is no formal EPA definition of “air regions,” as they are decided on a case-by-case basis. Thus, air 
regions are only defined for nonattainment areas. Our use of CZ boundaries is meant to approximate air region 
boundaries in the attainment areas. In practice, our results are not sensitive to using either county or CZ boundaries 
to assign treatment/control, but we chose the latter to better mimic the regulatory variation while also accounting 
for potential spatial correlation in treatment.

Figure 5.  Spatial Distribution of PM2.5 Changes from 2000 to 2015, Overlaid with CZs 
in Nonattainment of the PM2.5 NAAQS

Notes: This figure plots the spatial distribution of 2000–2015 changes in PM2.5. We overlay this figure with the 
outlines of all the CZs containing at least one nonattainment county in 2005 for the CAA’s 1997 NAAQS PM2.5 
standard. While the PM2.5 NAAQS was initially proposed in 1997, the first year of regulatory enforcement began 
in 2005.

Sources: Di et al. (2016a,b); EPA (2022b)
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where pollution ​​P​ict​​​ for person ​i​ residing in CZ ​c​ in year ​t​ is regressed on a series 
of interaction terms for whether a CZ is newly designated as nonattainment for the 
PM2.5 standard ​(1​[Nonattain​c​​]  =  1)​ interacted with a dummy for each year before 
and after the regulations went into place. Equation (2) also controls for county fixed 
effects ​​γ​c​​​ and (state-)year fixed effects ​​ρ​t​​​. All regressions are weighted using census 
survey weights, and standard errors are clustered at the CZ level.

The coefficients of interest, ​​β​t​​​, compare the CZs that became newly regulated 
under the PM2.5 standard to areas that were in compliance with the standard, before 
and after the regulations went into place. The identifying assumption is that the 
newly regulated CZs would have trended similarly, in terms of pollution levels, to 
the unregulated CZs in the absence of the treatment. Alternatively, the identifying 
assumption relies on there being no common shock to the treated CZs in the years 
after the regulations went into place. While these assumptions are inherently untest-
able, the event study design affords us a useful indirect test; we can examine the 
event study coefficients and trends leading up to the regulation in pollution levels 
between the regulated and unregulated CZs and test whether the two groups were 
trending similarly in the years prior to the regulation going into place.

We also estimate a version of equation (2) with an additional, three-way inter-
action term between indicators for ever being in nonattainment status, year, and 
whether the individual is African American.16 This “triple-difference” regression 
equation allows the impact of the CAA to vary differentially by race (i.e., do Black 
neighborhoods clean up more or less in newly regulated CZs when compared to 
White neighborhoods?).

Figure 6 presents the estimated event-study coefficients ​​​β ˆ ​​t​​​ from a version of 
equation (2) where the dependent variable is the pollution level for an individual 
survey respondent in a given year. There are two main findings. First, in the years 
leading up to the implementation of the regulation, the trends in air quality between 
the newly regulated counties and the unregulated counties are not statistically dif-
ferent from zero. After 2005, when the policy was first enacted, pollution levels 
in newly regulated counties fall by about 8 percent and remain there through the 
end of our sample. Online Appendix Figure B4 estimates a version of equation (2), 
separately for non-Hispanic Whites and African Americans. There do not seem to 
be significant differences in treatment effects between racial groups, but we explore 
this potential heterogeneity further below.

Table 3 presents the difference-in-difference analog to Figure 6 and equation (2). 
In particular, we replace the ​1[year  =  t]​ variable in equation (2) with a single indi-
cator equal to one for ​year  ≥  2005​:

(3)	​ ​P​ict​​  =  β​(1​[​Nonattain​c​​]​ × 1​[​year​t​​  ≥  2005]​)​ + ​γ​c​​ + ​ρ​t​​ + ​X ′ ​η + ​ϵ​ict​​​.

16 Formally, we estimate the following equation:

	 ​​P​let​​  =  ​ ∑ 
t=2000

​ 
2015

 ​​ ​β​t​​​(1​[​Nonattain​c​​]​ × 1​[​year​t​​  =  t]​ × 1​[​African American​i​​]​)​ + ​Γ​ict​​ + ​γ​c​​ + ​ρ​t​​ + ​X ′ ​η + ​ϵ​ict​​​,

where the vector ​​Γ​ict​​​ includes the full set of two-way interaction terms to facilitate interpretation. 
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The regression coefficient of interest ​β​ from this more parsimonious model tells 
us the average difference in pollution levels in the years after, relative to before, 
comparing regulated counties to counties not subject to the regulation. Column 1 
suggests that PM2.5 levels fell by 1.23 μg/m3 in nonattainment counties in the years 
after the regulation went into place. Column 3 presents the same model except the 

Figure 6.  The Effect of the PM2.5 NAAQS on Newly Regulated CZs

Notes: This figure plots the event-time coefficient estimates from a version of equation (2), where the dependent 
variable consists of PM2.5 exposure (μg/m3 ) for a given individual-year. The regression model controls for county 
and year fixed effects. The dashed lines represent 95 percent confidence intervals. Regressions are weighted by cen-
sus survey weights and errors are clustered by CZ.

Sources: US Census Bureau (2010, 2015); EPA (2022b); Di et al. (2016a,b)
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Table 3—The Impact of the 2005 Implementation of PM2.5 Standards on PM2.5 Levels

PM2.5 PM2.5 ln(PM2.5) ln(PM2.5) PM2.5 PM2.5 ln(PM2.5) ln(PM2.5)
(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 nonattain 
  × post

−1.230 −1.237 −0.075 −0.076 −0.727 −0.726 −0.036 −0.036
(0.335) (0.334) (0.020) (0.020) (0.080) (0.082) (0.006) (0.006)

PM2.5 non 
  × black 
    × post

0.149 0.008 0.048 0.004
(0.088) (0.007) (0.091) (0.005)

Year FE X X X X
State-Year FE X X X X
County FE X X X X X X X X

Observations 32,360,000 32,360,000 32,360,000 32,360,000 32,360,000 32,360,000 32,360,000 32,360,000

Notes: This table presents regression coefficients from 8 separate versions of equation (3), one per column, where 
the dependent variable consists of PM2.5 or ln(PM2.5) for an individual in a given year. Columns 2, 4, 6, and 8 
add an additional interaction for African Americans to test for heterogeneity in regulatory impacts for African 
Americans. Regressions are weighted by census survey weights and errors are clustered by CZ. FE = fixed effects.

Sources: US Census Bureau (2010, 2015); EPA (2022b); Di et al. (2016a,b)
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dependent variable has been transformed via the natural log. As suggested by the 
figures, these estimates suggest that pollution levels in newly regulated counties 
improved by about 8 percent in the years after the policy went into place.

The even columns of Table 3 add a triple interaction between the county ever 
being in nonattainment status, a post-2005 time period, and an indicator for whether 
the individual is African American. Recall that African Americans and non-Hispanic 
Whites tend to live in different parts of the same counties, so there is scope for reg-
ulation at the county-level to have a differential impact on different communities 
within a county. These estimates suggest that the within-county improvements in 
air quality were slightly less for African Americans than for non-Hispanic Whites, 
though the differences are not statistically significant in any specification.

Columns 5 through 8 of Table 3 add state-by-year fixed effects to equation (3) to 
control for any unobserved, statewide changes to air quality that are common to all 
individuals in a given state-year. These controls substantially attenuate the coeffi-
cients from columns 1 through 4 by almost 50 percent. There are potentially many 
reasons for this attenuation, having to do with unobserved, time-varying correlated 
unobservables. From this point forward, we treat the estimates with state-by-year 
fixed effects as our preferred specification in order to flexibly control for this poten-
tial form of omitted variable bias.

Online Appendix Table  B8 presents a range of alternative estimates to those 
presented in Table  3. Columns  1 and  2 of online Appendix Table  B8 replicate 
the baseline estimates in Table  3. Columns  3 and  4 replicate our analysis using 
PM2.5 exposure estimates from the EPA’s existing monitoring network, instead of 
our satellite/remote-sensing PM2.5 estimates from Di et al. (2016a,b). Columns 5 
and 6 explore estimates that forgo the use of census survey weights. Lastly, col-
umns 7 and 8 explore the role of spatial spillovers in leading to bias in our existing 
estimates. Specifically, we show estimates from models that exclude any adjacent/
neighboring CZs that border a treated CZ in our analysis. These estimates are a little 
larger than the baseline results in Table 3, indicating that our main specification is 
conservative.

As Figure 2 shows, there have been large improvements over time in air quality 
for both African Americans and non-Hispanic Whites, much larger than the treat-
ment effects seen in Table 3. Partly this reflects differences in conditional versus 
unconditional changes; Table 3 includes either year or state × year fixed effects, 
which net out a lot of nationwide or regional improvements in air quality. In addi-
tion, these treatment effect estimates reflect a specific aspect of the CAA’s air quality 
regulations and apply primarily to stationary sources like factories. Mobile-source 
regulations, such as tailpipe emissions, are national in scope and have also led to 
significant national improvements in air quality over this time period.

While the estimates from Figure 6 and Table 3 tell us about the average effects 
in the treated counties, relative to the controls, they tell us little about other parts 
of the pollution distribution that might otherwise be affected by this increased 
regulatory stringency. To explore the distributional impacts of the PM2.5 NAAQS 
we turn to unconditional quantile regression estimates. We then combine our 
difference-in-difference estimator with quantile regression methods to estimate 
the counterfactual outcome distribution in the absence of the policy intervention. 
We compare this no-regulation, counterfactual distribution to the actual outcome 
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distribution when subject to the policy intervention. We then go further and calcu-
late the mean Black-White gap in pollution exposure in this counterfactual world, 
to better understand the role of the CAA in contributing to the convergence of 
Black-White pollution levels.

Recent advances in quantile regression allow us to estimate the causal effect of 
the CAA’s PM2.5 NAAQS on the unconditional pollution distribution (Firpo, Fortin, 
and Lemieux 2009). The basic idea is to transform the problem by considering a 
covariate’s influence on population shares rather than quantiles. By estimating how 
a covariate (e.g., nonattainment status) affects the share of the population below var-
ious pollution thresholds, the semielasticities show the effect of an increase in CAA 
regulatory stringency on the cumulative distribution function (CDF) of pollution 
(see e.g., Chernozhukov et al. 2013). We can then invert the impact of nonattain-
ment on the CDF of pollution to estimate the impact on a pollution quantile. The 
recentered influence function (RIF) regression approach proposed by Firpo, Fortin, 
and Lemieux (2009) performs this inversion using a local linear approximation to 
the counterfactual CDF, rescaling the marginal effect of the CAA on the population 
share above a pollution cutoff by the probability density of pollution at that cutoff.

The relevant property of a recentered influence function is that its expectation 
equals the distributional statistic of interest. Since the mean of the RIF is equal to 
the quantile, we can use the law of iterated expectations to go between conditional 
and unconditional partial effects. Firpo, Fortin, and Lemieux (2009) show that a 
regression of the RIF on covariates yields the approximate effect of the covariates on 
the distributional statistic of interest (applied to the unconditional distribution). This 
feature of RIF regressions allows researchers to estimate how treatment effects (e.g., 
the effects of the CAA PM2.5 regulations on county-year pollution levels) map into 
the unconditional distribution of pollution. Online Appendix A.A2 provides a more 
formal discussion.

In practice, this exercise entails first defining a series of pollution cutoffs cor-
responding to specified quantiles of the empirical pollution distribution, and then 
for each cutoff, estimating the effect of the CAA’s PM2.5 NAAQS policy on the 
probability of being above that cutoff. We begin by creating 19 RIF statistics, one 
for each pollution vigintile from the fifth to the ninetieth percentiles of the pollution 
distribution. We then replace the dependent variable in equation (2) with one of the 
RIF-quantile statistics. The event study coefficients for each RIF-quantile can be 
interpreted as the effect of the PM2.5 nonattainment designations on the qth quantile 
of the unconditional PM2.5 exposure distribution.

Figure 7 presents 19 separate regression estimates of ​β​ from equation (3), where 
the dependent variable is replaced with the RIF counterpart for each pollution quan-
tile.17 The figure visually summarizes the effect of the PM2.5 nonattainment des-
ignation on different quantiles of the unconditional PM2.5 pollution distribution. 
The estimates suggest that the most significant effects of the new standards were 
to improve air quality in areas between the fiftieth and ninetieth percentiles of the 
PM2.5 distribution. This result must be true almost by construction, as the PM2.5 
standards only bind at the upper quantiles of the pollution distribution. It may be 

17 These regressions use population weighted percentiles of pollution exposure. This is also done in Figure 8.



91CURRIE ET AL.: WHAT CAUSED DISPARITIES IN PM2.5 EXPOSURE TO FALL?VOL. 113 NO. 1

surprising to see that the estimated effect of the regulations is smaller at the ninetieth 
percentile of the pollution distribution than at the fiftieth to eightieth percentiles. 
This smaller effect may be partly due to the severe difficulties EPA and local regula-
tors may have faced in addressing air quality problems in the most severely polluted 
parts of the country (e.g., the San Joaquin Valley or parts of Southern California). 
Online Appendix Figure B5 presents the event study specification of these regres-
sions to better understand both the temporal dynamics of these treatment effects and 
also to assess common trends, when using different transformations of individual 
PM2.5 exposure.

Figure 8 presents RIF-quantile regression results that estimate each quantile spe-
cific RIF separately by race. This results in 38 versions of equation  (3), and the 
corresponding estimates are plotted in Figure 8. While the estimates from Table 3 
suggested there was little difference in the treatment effects of nonattainment 
between African Americans and non-Hispanic Whites on average (see e.g., col-
umn 6), the results in Figure 8 suggest that at the upper quantiles of the pollution 
distribution, African Americans have seen larger improvements in air quality rela-
tive to their non-Hispanic White counterparts. For visual clarity, we have omitted the 
associated confidence intervals, but they are shown in online Appendix Figure B6. 
For most quantiles, the race-specific confidence intervals overlap with one another, 
and thus it is difficult to reject the null that the treatment effects at each quantile are 
equal. That being said, it is unlikely that sampling variability alone could explain the 
fact that African Americans have larger treatment effects at every percentile above 
the sixtieth percentile of the pollution distribution.

Figure 7.  RIF-Quantile Treatment Effects of the 2005 CAA PM2.5 NAAQS Implementation

Notes: This figure plots the regression coefficient ​​β ˆ ​​ from 19 separate versions of equation (3), where the depen-
dent variable consists of the RIF-quantile transformation of the respective PM2.5 vigintile (indicated by the x-axis). 
The regression model controls for county fixed effects and state-by-year fixed effects. The solid red lines represent 
95 percent confidence intervals. Regressions are weighted by census survey weights and errors are clustered by CZ.

Sources: US Census Bureau (2010, 2015); EPA (2022b); Di et al. (2016a,b)
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A.  What Fraction of Black-White Convergence Is Attributable 
to the CAA Regulation of PM2.5?

We can use the RIF estimates from Figure 8, combined with population shares 
of African Americans and non-Hispanic Whites in each vigintile of the initial dis-
tribution of PM2.5, to compute counterfactual pollution levels in the absence of the 
implementation of the nonattainment designations. For the calculations in this exer-
cise, we use tract-level population shares by race from the public-use ACS five-year 
files. Table 4 walks through these calculations. Columns 1 and 2 of the top panel 
describe actual pollution levels within each quantile bin in 2005 and 2015, respec-
tively. Columns 3 and 4 use estimates from Figure 8 to calculate what pollution in 
each quantile would have been in 2015 in the absence of the CAA PM2.5 NAAQS 
implementation, separately for African Americans and non-Hispanic Whites.

The second panel of Table 4 considers the counterfactual gap that would have 
existed in 2015 in the absence of the CAA PM2.5 NAAQS. The actual gap in 2015 
was 0.61 μg/m3, whereas the counterfactual gap is 0.97 μg/m3. The actual change 
in the Black-White gap between 2005 and 2015 was 0.59 μg/m3, and the implied 
counterfactual change is a narrowing of 0.23 μg/m3. Since, we would have observed 
a 0.23 μg/m3 improvement in the Black-White gap in the absence of the policy, we 
conclude that the CAA can account for over 60 percent of the relative improvement 
in Black-White outcomes.18

18 This is calculated as ​​(0.59 − 0.23)​/0.59​. Note, that we can do the same counterfactual using the average pop-
ulation estimates from Table 3, weighting groups appropriately. The virtue of using the RIF estimates stems from a 

Figure 8.  Race-Specific RIF-Quantile Treatment Effects of the 2005 CAA PM2.5 NAAQS Implementation

Notes: This figure plots the regression coefficient ​​β ˆ ​​ from 38 separate versions of equation (3), 19 regressions for 
each race, where the dependent variable consists of the RIF-quantile transformation of the respective PM2.5 vigin-
tile (indicated by the x-axis). The regression model controls for county fixed effects and state-by-year fixed effects. 
Regressions are weighted by census survey weights and errors are clustered by CZ.

Sources: US Census Bureau (2010, 2015); EPA (2022b); Di et al. (2016a,b)
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B.  Mobility Responses to CAA-Induced Improvements in PM2.5 Air Quality

Previous sections suggest that relative mobility plays a limited role in explaining 
the convergence in PM2.5 exposure between African Americans and non-Hispanic 
Whites. However, it still may be the case, that populations shifted in response to 
the CAA-induced changes in air quality and that this may have implications for 
the Black-White gap in PM2.5 exposure. For example, it could be the case that the 
cities that cleaned up the most due to the CAA saw relatively larger increases in 
White population shares in subsequent years, unraveling some of the relative gains 
between racial groups had population shares remained constant.

more transparent analysis as to how the treatment effect heterogeneity disproportionately impacts places with high 
African American population shares.

Table 4—Calculating the Effect of CAA Regulations 
on the Black-White PM2.5 Gap

PM2.5
quantile

bin

Actual
PM2.5
in 2005

Actual
PM2.5
in 2015

White counterfac-
tual PM2.5 in 2015 

without CAA

Black counterfac-
tual PM2.5 in 2015 

without CAA
(1) (2) (3) (4) (5)

5 5.32 4.34 4.37 4.36
10 7.87 5.63 5.69 5.63
15 8.91 6.25 6.18 6.24
20 9.65 6.72 6.62 6.62
25 10.33 7.11 7.03 6.88
30 10.90 7.45 7.56 7.17
35 11.42 7.75 8.12 7.64
40 11.90 8.01 8.67 8.23
45 12.34 8.24 9.28 8.92
50 12.73 8.44 9.89 9.65
55 13.09 8.65 10.39 10.43
60 13.44 8.84 10.57 10.73
65 13.80 9.03 10.68 10.93
70 14.15 9.22 10.75 11.09
75 14.51 9.42 10.71 11.00
80 14.91 9.67 10.80 11.17
85 15.27 9.98 10.93 11.43
90 15.72 10.49 11.41 12.27
95 17.01 12.21 12.46 13.48

Main counterfactual: including 2005–2015 mobility responses
2005 actual Black-White gap: 1.20
2015 counterfactual Black-White gap: 0.97
Counterfactual change in Black-White gap: −0.23
Actual change in Black-White gap: −0.59
Percent of actual gap attributable to CAA: 61.20

Notes: This table presents calculations used to explore what fraction of the observed racial 
convergence in mean PM2.5 levels can be attributed to the regulatory variation embedded into 
the CAA’s 2005 PM2.5 NAAQS. The top panel describes actual pollution levels within each 
quantile bin in 2000 and 2015. Columns 4 and 5 use estimates from Figure 10 to calculate 
what pollution would be in 2015 in the absence of the CAA PM2.5 NAAQS implementation, 
separately for African Americans and non-Hispanic Whites. The second panel computes the 
counterfactual gap in 2015 in the absence of the CAA NAAQS and the implied 2005–2015 
change in the gap.

Sources: US Census Bureau (2010, 2015); EPA (2022b); Di et al. (2016a,b)
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Online Appendix Figure B7 explores this mobility response in more detail. Online 
Appendix Figure B7(a) plots the change in the Black population share between 2005 
and 2015, separately by pollution quantile; negative numbers imply a reduction in 
the Black share in the particular quantile bin over this time period. These changes 
in population are plotted against the RIF-quantile treatment effects for Blacks in the 
respective quantile (i.e., taken from Figure 8). We include a linear fit that suggests 
the areas that saw the largest treatment effects from the CAA’s nonattainment des-
ignation are also the areas where the share of African Americans declined the most. 
Online Appendix Figure B7(b) shows the opposite is true for non-Hispanic Whites. 
The quantiles which saw the largest improvements in air quality for non-Hispanic 
Whites saw the largest increases in White population shares over this time period. 
These relative shifts in mobility served to offset some of the CAA-induced conver-
gence over this time period.

How does one reconcile the results in online Appendix Figure B7 with the ear-
lier mobility results from Table 2 that suggested Whites have moved to relatively 
more polluted areas in 2015 versus where they were in 2000? These findings are 
not necessarily inconsistent with one another. While Whites were moving to urban 
areas which tended to be more polluted than the suburban areas they were leaving 
(i.e., Table 2), they also tended to move to the urban areas that had experienced the 
largest improvements in air quality between 2000 and 2015 (i.e., online Appendix 
Figure B7). Said differently, the CAA improved air quality in cities that had rela-
tively higher Black population shares, but as those cities became cleaner they also 
became more White.

Thus, while mobility seems to play a limited role in explaining the national 
convergence in exposure gaps between racial groups, there is some evidence that 
non-Hispanic Whites are moving to the set of urban areas that have experienced 
the largest improvements in air quality over this time period. These areas had rela-
tively high Black population shares before the improvements, and thus differential 
mobility has offset some of the relative gains in pollution exposure between these 
groups.

IV.  Conclusion

This paper shows that racial differences in ambient particulate exposure declined 
significantly between 2000 and 2015. We add to the small but growing literature 
using high-resolution, nationwide data on pollution to examine racial differences 
in potential pollution exposure. We focus on PM2.5 and show that the gap between 
African Americans and non-Hispanic Whites narrowed from −1.6 μg/m3 in 2000 to 
−0.5 μg/m3 by 2015. To our knowledge, this is the first paper to explore the under-
lying causal drivers that contributed to the narrowing of this gap. We find that very 
little of the decline in the gap in mean exposure levels can be accounted for by 
changes in mobility, individual-, or neighborhood-level characteristics. Similarly, 
we find that racial gaps in exposure have narrowed at each quantile of the PM2.5 
distribution, and that little of this narrowing can be explained by the demographic 
characteristics available in census data. Instead, we find that virtually all of the clo-
sure of the gap is due to falling pollution levels in the areas where African Americans 
are more likely to live. There is little evidence that movement of African Americans 
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to relatively cleaner neighborhoods or non-Hispanic Whites to relatively dirtier 
neighborhoods has played a significant role in the observed convergence.

Why then has pollution fallen more in areas that are home to greater numbers 
of African Americans? Since African Americans have historically been concen-
trated in areas with more polluted air, and because the CAA targets the dirtiest 
areas for cleanup, it is reasonable to expect that the CAA could have a larger impact 
on African Americans. However, set against this expectation are market forces that 
might cause African Americans in search of lower rents to move away from newly 
cleaner places. Our analysis shows that implementation of new PM2.5 standards in 
2005 sharply reduced pollution in a way that was sustained over time and is respon-
sible for much of the closure of the racial gap in PM2.5 exposure between 2000 and 
2015. We find some evidence, however, to suggest that changes in PM2.5 levels 
were associated with resorting of African Americans across areas in ways that undid 
some of these gains.

These findings suggest that the CAA has likely played a significant role in reduc-
ing racial gaps in exposure to air pollution, because the legislation systematically 
targeted the dirtiest areas for cleanup, and African Americans were more likely to 
live in areas with dirty air. Hence, although it was not their primary intent, the CAA 
has contributed to reductions in environmental inequality between racial groups in 
the United States.
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