
State of Dependency
Management

Open Source - Here, There and Everywhere!

The software industry is in turmoil. Vulnerabilities in widely used open source
components continue making headlines, and so do an increasing number of software
supply chain attacks, where adversaries try to sneak malicious code both onto
developer and end-user systems. Remarkable incidents include the now infamous
Log4Shell vulnerability disclosed in December 2021, and protestware published in March
2022, where open source maintainers weaponize their own project to express a political
opinion.

One key reason for this excitement is non-technical, and not driven by specific attacks
on or vulnerabilities in a given piece of software. It is the increased attention of
government and regulatory bodies on the subject of software supply chain security.
Starting in 2020, we see a number of regulatory efforts aiming to guide how software
development organizations consume open source and 3rd party software.

The assurance level of the candidate EU Cybersecurity Certification Scheme for
Cloud Services, for instance, requires that cloud service providers “

” The next assurance level expects service providers to develop and implement
policies around, for instance, component age or updates. And on this side of the pond,
following the White House Executive Orders from February and May 2021, we’re seeing a
wealth of guidance coming from the NIST, DoC and NTIA around topics such as software
bills of material (SBOM) and supply chain security in general.

This attention is overdue and will hopefully lead to a situation comparable to the
manufacturing industry, such that we as a society have visibility into the quality,
security, safety and provenance of software components that are of critical importance
in our daily lives, spanning everything from critical infrastructures to autonomous
vehicles.

basic
shall maintain a list of

dependencies to hardware and software products used in the development of its cloud
service. [1]

Of course, the industry cannot simply offload security requirements on the backs of
spare-time open source maintainers. Thankfully, a number of non-profit organizations
like the OpenSSF or OWASP set out to support critical open source ecosystems,
supported by major players in the software industry.

So what does this mean for institutional development organizations from the private or
public sector? First, that they need to prepare for emerging regulations, which requires
digging deep into the dependency relationships of open source packages, also referred
to as ‘dependency hell’ . Non-compliance can result in direct negative impacts to
businesses, even without a breach ever taking place; for example, when companies fail
to produce software bills of material of sufficient quality for the public sector.

And in addition to security concerns, they’ll also need to tackle operational risks
resulting from the consumption of 3rd party and open source components. This requires
monitoring non-functional properties, e.g., the liveliness of open source projects, during
the entire dependency lifecycle, starting from the initial selection and inclusion of a
dependency and throughout its entire lifetime.

With this report, the first but certainly not the last of its kind from Endor Labs, we’d like
to share insights on the intricacies of modern, open source-based software
development, and provide guidance on what matters most for software developers.

[2]

community event regulatory event Incident

Jun 2020

OWASP Software Component
Verification Standard

Dec 2020

Disclosure of SolarWinds

Dec 2020

Candidate EU Cybersecurity Certification
Scheme for Cloud Services

Feb 2021

President Bidens
Executive order 14028

May 2021

President Bidens 2nd
Executive order 14028

Jun 2021

OpenSSF SLSA

Jul 2020

ENISA Threat Landscape
for Supply Chain Attacks

NTIA Releases Minimum
Elements for a Software
Bill of Materials

Jul 2020

Dec 2021

Log4Shell

Jan 2021

Faker and
colors

Feb 2022

OpenSSF Alpha & Omega

Mar 2021

Protestware Node-ipc, styled-
components, es5-ext

Sep 2022

Securing Open Source
Software Act of 2022

Oct 2022

Vulnerability in Apache
Commons Text

Selected supply chain security events
(June 2020 - now)

Methodology

Addressing above-described supply chain security risks requires an understanding of
the state of dependency management in modern application development. To this end,
we chose the Census II report as a starting point, a data set meant to contain “the
most widely used FOSS deployed within applications by private and public
organizations”. Published in March 2022 by the Linux Foundation and Laboratory for
Innovation Science at Harvard, it’s been created on the basis of scan data provided by
several commercial Software Composition Analysis (SCA) vendors.

The initial data set – a total of 1833 distinct packages mentioned in Census II appendices
A-H (excluding ecosystems represented with less than 10 packages, cf. chart 1) – is
further enriched by several other data sources and tools. Libraries.io provided the
location of the source code repository for a subset of 1413 packages, 1377 of which
could be called successfully via HTTP , which is required to query Coreinfrastructure.org
(for OpenSSF Best-Practices Badges), to run the tools developed by the OpenSSF
projects Security Scorecards and Criticality (current scores and ratings), and to query
Google BigQuery (historical scores and ratings).

To dig deeper into the dependency graphs of 375 distinct Java packages, we used
Maven and Maven Central (to determine dependencies, recent releases and release
dates), as well as OSV and NVD (to find vulnerabilities, CVSS ratings and vulnerability
disclosure dates). In the end, we obtained release information for 356 Maven packages,
and dependency graphs for 351 of them.

The enriched Census II data set as well as the dependency and vulnerability information
for Maven packages is available for download on our GitHub so that others can
replicate, update and extend our analyses.

[3]

[4]

Chart 1 Distribution of the 1883 Census II packages used for this report
(excluding ecosystemswith <10 packages)

rubygems

pypi

nuget

npm

maven

go

cargo

0 100 200 300 400 500 600 700 800

26

180

249

770

375

216

17

i
Box plots will be used at several places in the document to show statistical properties of numerical data. They visualize data through a box and so-called whiskers. The box is defined
through the quartiles Q1, Q2 (also called median) and Q3, which split the data values into four equally-sized groups such that 25% of the values are below quartile Q1, another 25%
between Q1 and Q2, etc. The whiskers show the smallest and the greatest value respectively. Finally, the average or mean of the values is illustrated using a green triangle.

https://github.com/endorlabs/StateOfDependencyManagement

The community starts securing critical projects…

Do they cover the ones important for you?

As consumers and maintainers of open source software realized the risks associated with its
use, several initiatives started identifying critical projects so they could receive adequate
support – support that reflects their importance to the software industry.

The Census II report is one such example, based on actual scan data of production
applications. Another is the OpenSSF Criticality Score , which computes a score for any Git
repository hosted on GitLab or GitHub, solely on the basis of publicly available information
such as age or the number of contributors.

Comparing those initiatives, however, reveals that
 Many projects highlighted

by Census II receive relatively low criticality scores (cf. chart 2), suggesting that the

[5]

it is anything but straightforward to
develop an algorithm that determines general project criticality:

Chart 4

Criticality

score

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

25%
 <0.26

of the package
have a score

50%
 <0.47

have a
score

75%
 <0.64

have a
score

Chart 2
Is it critical? 75% of Census II packages have a relatively low criticality
score - under 0.64

parameters and weights require further fine-tuning to better capture projects used by
applications developed and operated by private and public organizations.

This observation is confirmed by the little overlap between the Census II projects and the
Top-200 GitHub projects of the respective programming languages (cf. charts 3 and 4 for
Java and JavaScript).

The Alpha-Omega project considers both Census II and OpenSSF Criticality Score - which will
help to provide coverage to many projects.

[6]

[7]

Initiatives such as those from the OpenSSF go a
long way to determine which OSS projects are “critical”, but OSS consumers keep overall
responsibility and need to address security risks according to their specific circumstances,
e.g., deployment model, legal and contractual obligations or risk appetite.

Distinct GitHub repos
of 695 npm packages

in Census II

556 180

Top-200 JavaScript
repos from OpenSSF

Criticality

Small overlap between Census II and
OpenSSF criticality Top 200 - MavenChart 3

Distinct GitHub repos
of 264 Maven

packages in Census II

149 180

Top-200 Java repos
from OpenSSF

Criticality

20 20

Small overlap between Census II and
OpenSSF criticality Top 200 - JS

The OpenSSF provides tools and guidance to help strengthen the security of major OSS projects. However, organizations consuming OSS are
responsible for addressing security risks according to their specific circumstances, and must evaluate for themselves - what is critical.

Open source security - A Partnership

In the early days of cloud adoption, the concept of the “shared responsibility model” for cloud security emerged. According to this model, the Cloud Service Provider (CSP) owns the security
of the underlying infrastructure on which customer workloads run, and customers own the security of the workloads themselves. So while the CSP owns security for the physical servers,
networks, hypervisors etc., the customer owns the security of their code, data, images, and anything they run on the services provided by the CSP.

In the world of open source software, the model would be a different. When an organization chooses to rely on an open source project, they take responsibility for how that code might
affect their security posture. While many maintainers hold their own projects to high security standards, they have no obligation to do so as per the license terms. Many of them freely
contribute their time and skills to build projects that help thousands of companies across the world. Fortunately, open source foundations like the OpenSSF, CNCF or OWASP, just to name a
few major players, step up to secure the way today's software is built, e.g., by advocating security best-practices or developing security tooling.

So now, effectively, the version of the “shared responsibility model” in open source security is a trust-based partnership between the organizations that rely on OSS, and initiatives such as
the OpenSSF, CNCF and OWASP - who strive to improve the overall security posture of major open source projects. And as always, organizations need to be respectful and remember we are
walking on the shoulders of giants, many of the most used open source projects are thanklessly maintained by individuals. Tools like Scorecard, and the upcoming Alpha & Omega go a long
way in identifying critical open source projects and improving their security posture. It is now up to the organizations consuming open source to participate in these projects, and
understand how the projects they use impact their overall security posture.

Risk Indicators - The road so far

Anybody who has ever selected a commercial or open source component to be included in a
production application most likely had to check certain properties beforehand. Functional
properties and license compliance aside, open source components should meet several
quality criteria in order to reduce the operational, quality, and security risks resulting from
their inclusion. This need and common selection criteria have been described by academia
and industry , and such criteria, of course, need to be monitored throughout the
entire dependency lifecycle.

Shortly after the Heartbleed vulnerability in 2014, the Core Infrastructure Initiative (CII)
acknowledged these needs and initiated the Best Practices Badge program . Open source
maintainers can self-assess projects in terms of quality, security and other factors, and
receive passing, silver or gold badges. A more recent effort dedicated to security, the
OpenSSF Security Scorecards, does not rely on self-assessments but rather on the
automated evaluation of Git repositories to assess their security posture.

Because of the prevalent need to evaluate the security of upstream open source, ideally in a
quantifiable way, we found it worthwhile to study the presence and evolution of badges and
security ratings of packages that are part of Census II, both of which are very visible in and
sponsored by the open source security community.

Unfortunately, the adoption of best practice badges did not improve. From the perspective
of developers with hundreds of dependencies, only a small fraction are covered by the badge
program (47 participate, 12 with passing badge). A probable reason for the low adoption is
that maintainers need to proactively provide a self-assessment – ideally on a regular basis,
which is a tough requirement to place on voluntary ‘spare-time’ contributors. Despite their
best intentions, the workload associated with project maintenance and development often
surpasses the time they can spend, all of which speaks in favor of automated ratings à la
scorecards.

The good news is that the scorecard ratings improved between Sep 2021 (up until which
historical data is available), and today (cf. charts). The average scorecard rating went up from
4.3 to 5.3, the minimum from 1.6 to 3.3, and the maximum from 8.1 (go-genproto) to 9.2
(urllib3).

[8] [9] [10]

[11]

Chart 5

Chart 6

Historical OpenSSF Scorecard ratings of Census II packages

Current OpenSSF Scorecard ratings of Census II packages - improvement over time!

Score

Score

0 2 4 6 8 10

0 2 4 6 8 10

The automated method of evaluating the security of open source
packages has won, and scores have improved over time!

Risk Indicators - The road so far

Monitoring such metrics is essential to implement current and upcoming guidance, e.g., the recommendations to
check for outdated or end-of-life components and projects , but can hardly be done manually, without tool
support.

The broader the scope of such metrics, the better consumers can take risk-based decisions whether or not to
consume a given open source project. For example, now that some ecosystems have started to enforce 2FA for
maintainers of critical components, it seems natural to extend the scores accordingly, and thereby cover one of
the attack vectors that is prominently used for supply chain attacks on legitimate projects.

Metrics can also support the detection and mitigation of name confusion attacks - the infamous typo-
squatting, brand-jacking and a number of comparable techniques, used by attackers to confuse or trick
developers into installing a malicious package rather than the intended one. To this end, attackers commonly
create new projects and packages with similar names than legitimate ones (e.g., mumpy instead of numpy). But
apart from the name, they differ significantly in other regards, e.g., age, number of contributors, commits or
releases, which can be discovered in an automated fashion using metrics that look at project activity or
popularity.

However, as important as they are, such risk indicators will not be able to protect against all of the recent supply
chain attacks. The dependency confusion attack* , for instance, exploits weaknesses in the dependency
resolution process of end-users’ package managers or internal repositories, which is out of scope of quality
indicators for open source projects. Unfortunately, dependency confusion attacks were among the most widely
used attack vectors, including massive campaigns with hundreds of malicious packages being deployed in some
automated fashion .

* Where consumers believe consuming trustworthy internal projects, while a vulnerable resolution process picks
malicious ones from public repos.

[12] [13]

[14] [15]

[16]

[17] [18]

[19]

Dependencies are more complex than you think

Chart 8 Explaining direct and transitive dependencies

Transitive app dependencies

Direct app

Dependency

254 Java packages in Census II, Appx. B and F Have in average a total of 14
dependencies

App P1 P2 P3

Dependency relationships between open source packages are intricate – this has been
shown in numerous academic studies , and is no different for the Java packages
mentioned in the Census II report. A component depends directly on another component
if there’s an edge between their corresponding nodes in the dependency graph (solid
edges in chart 8). In the case of transitive or indirect dependencies, two components
are only connected through other ones, e.g., application App transitively depends on P2,
thanks to the direct dependencies of App on P1 and P1 on P2 (dotted edges).

The 254 distinct Maven packages mentioned in Census II Appendices B and F are all
direct dependencies of applications developed by public or private organizations,
comparable to P1. All of their dependencies are transitive dependencies from the
perspective of the application developer - considered “internal affairs” of P1, many of
them pulled automatically into the application development project by Maven or other
package managers.

[20][21]

The latest versions of the 254 packages analyzed have an average number of 14
dependencies (direct and transitive), which is less than what has been reported for
other ecosystems , esp. npm , whose inflated dependency trees are due to the
phenomenon of micro-packages . However, considering that a typical application
declares several direct dependencies, they easily end up with a total of dozens if not
hundreds of dependencies . The average depth of those dependency trees is 2, just
like the distance of P1 and P3 in the example, and the maximum depth is 7.

who would have thought before Log4Shell that logging comes with
such complexity?

[22] [23] [24]

[25]

[26]

Six outliers stand out with more than 100 dependencies each. Among those are aws-
java-sdk v1.12.327 from Oct 24, 2022 with a total of 331 dependencies and log4j-core
v2.19.0 from Sep 13, 2022 with 141 dependencies. Even though the majority of those is
used for testing -

The lastest versions of 254
Maven packages had 14

dependencies on average, with
outliers like:

aws-java-sdk v1.12.327 with 331
dependencies

log4j-core v2.19.0 with 141
dependencies

Dependencies are more complex than you think

When it comes to assessing vulnerabilities in any of those packages, it is important to
know which ones will be deployed together with the application and which not.
Dependencies only used for testing, for instance, will not end-up in production, hence,
any vulnerabilities affecting those can be deprioritized. SCA tools that miss this context
cause hundreds of wasted hours patching non-critical vulnerabilities.

13 out of 356 most-used Census II Maven packages have a latest release identifier
starting with 0, e.g., perfmark-api v0.25.0 from Feb 25, 2022. According to semantic
versioning (semver), a widely-used versioning scheme, such pre-releases are to be
considered in “initial development, where anything may change at any time”. This
observation is inline with others suggesting that developers do not strictly follow
semver, both in regards to the (unexpected) stability of pre-releases and the
(expected) backward compatibility of minor releases .

It is also interesting to know whether those 241 packages are still actively maintained.

, potentially exploitable in the context of
downstream applications. Chart 9 shows that more than 50% of the Census II packages
have a latest release in 2022. Whether those are used is another question though… and
even if they are relatively fresh, it still does not mean they are free of vulnerabilities.

[27]

[28]

[29] Using program analysis
techniques more thoroughly, e.g., for update recommendations, will reduce update
regressions, no matter the release identifier or versioning scheme used.

Software ages like milk, not like wine, as packages without recent releases risk
containing many vulnerable dependencies

Chart 9 Census II packages and year of their latest release

Pe
rc

en
ta

ge
 o

f
pr

oj
ec

ts

0%

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20%

40%

Year of latest release

60%

50% of the most used Census II packages didn’t have a release in 2022,
and 30% had their latest release before 2018 - these can cause serious
security and operational issues in the future.

Software is like milk - It gets sour quick

In the Java world, this phenomenon is likely due to the fact that
. Unless all

components on the path use version ranges (which is uncommon in Java) or consumers override a version by adding a direct
dependency (which jeopardizes the original idea of automated dependency management). Those work-arounds aside, if P3 in
Chart 8 had a vulnerability, P2 and P1 had to produce new versions as well so the application could benefit from a fix. To
support consumers in fixing vulnerable transitive dependencies SCA tools should not content themselves to recommend
“update x to y”, but .

In total, roughly (level 1 or
greater in the bar chart), which makes it very difficult for application developers to assess whether a given vulnerability in
such transitive dependency is indeed reachable and exploitable in their application context. Such assessments are required
for the simple reason that not all of the code contained in the many components pulled into a development project is
actually executed and needed in a given application. The recent vulnerability discovered in Apache Commons Text , for
instance, only matters for an application if the vulnerable class StringSubstitutor is used (by the application itself or in any of
its dependencies).

, and help implementing recommendations to remove unused dependencies .

all components on the path from a user to the vulnerable
component need to update the version identifier in order to have the user consume a fixed, non-vulnerable version

find the closest possible fix in the application’s specific dependency path

95% of the vulnerable dependencies are transitive ones from the perspective of the application

But how could a developer ever know whether that is the case for hundreds of dependencies? Again,
program analysis can come to the rescue

[33]

[34]

One result of our analysis is that even though many Census II
Maven packages have a latest release from 2022, many of
those have one or more vulnerable dependencies (cf. pie
chart), which is inline with other studies . If you pick the
latest release of any of the Maven packages in Census II,

. Among the
outliers is archaius-core v0.7.7, released on Sep 5, 2019, with 49
vulnerabilities in its dependencies. Archaius is still maintained,
however, the current version 2.3.17 is deployed using a
different name (archaius2-core), and the migration of users to
this 2.x release will be hindered by its backward
incompatibility .

[30] [31]

[32]

there’s a 32% chance it will have one or more known
vulnerabilities hidden in its dependency tree

Again, this is an opportunity for program
analysis techniques to detect and remediate code-level
incompatibilities.

Chart 10 25% of 179 packages that have a release in 2022, still
have between 1-18 vulnerable dependencies!

75%

non-vulnerable

25%

vulnerable

95% of vulnerable
dependencies are

transitive, and when
you update, there’s a
32% chance you will

still have
vulnerabilities.

Pe
rc

en
ta

g
e

of
 p

ac
ka

g
es

Depth of vulnerable dependency

1 2 3 4 5 6

Chart 11 Where in the dependency tree are vulnerable dependencies

20%

30%

40%

50%

60%

10%

0%
0

How to prioritize vulnerabilities?

Another criterion used for prioritization are CVSS scores, which

consider different metrics such as the attack complexity or the

potential impact in order to estimate the severity of a given

vulnerability. Additional metrics can be used to reflect the

availability of exploits, the presence and maturity of fixes, or

environment-specific properties to adjust the overall severity. But

the crux with CVSS scores is two-fold: Vulnerabilities with CVSS

scores greater than 7 (high and critical in bar chart 13), a threshold

often triggering urgent mitigation, represent the majority of

findings. But more importantly,

.

vulnerabilities with high CVSS

scores are not necessarily the ones being actively exploited[36] [37]

One criterion we recommend for prioritization is the reachability of

the vulnerable code. As discussed in the context of

CVE-2022-42889 , the vulnerability affecting Apache Commons

Text, what matters is whether the vulnerable code can be reached

in the context of a given application.

, and early studies of the

phenomenon of software bloat in Java applications indicate that

. Continuing the example

introduced before, vulnerable methods in P2 and P3, highlighted in

red, can be fixed with lower priority if they cannot be reached from

the application code.

[38]

[39]

[53] [54]

Reaching vulnerable code is a

prerequisite for exploitability

a

significant share of code pulled into a project is not used at all in its

context, sometimes entire packages

New vulnerabilities are disclosed almost on a daily basis - This

makes prioritization crucial. One criterion is the type of the

dependency. Test dependencies, for example, are only employed

during unit or integration tests. Being excluded from the productive

application, vulnerabilities therein can largely be ignored. According

to one study, “

” . However,

. In other words, the latest release of every fifth

package in the Census II report still brings in vulnerable

dependencies (see pie chart 12).

about 20% of the dependencies affected by a known

vulnerability are not deployed even when ignoring

test dependencies altogether, the share of packages whose latest

release contains one or more vulnerable dependencies only drops

from 32% to 20%

[35]

Chart 12 Do the latest releases of 351 packages have
vulnerable dependencies (exluding test scope)?

80%

0 vulnerabilities

20%

1-49 vulnerabilities

Chart 14 Understanding reachability

App

P1

P2

P3

Chart 13 Criticality of vulnerabilities in the dependencies of
latest versions of 351 Census II Maven packages

critical

high

medium

low

unknown

0 20 40 60 80 100 120 140

The latest release of 32% of packages (across all
years) have vulnerable dependencies, ignoring "test"
dependencies only takes it down to 20%.

Using CVSS scores, most of the vulnerabilities are
ranked high or above - so not much help prioritizing.

Understanding reachability: The red boxes are
vulnerable methods within dependencies, if they are
not invoked - they should be deprioritized.

So, do we just update?

It is well-known that to prevent systems from being exploited. One
study showed that 37% of 11,079 public exploits in Exploit Database were available before (0-
days) or within one week after a patch was released, and 80% of those were available before
the corresponding CVEs were published . Another observed that “

” . CVE-2017-5638, a severe vulnerability in Apache Struts that led
to the Equifax data breach, is another example demonstrating that public vulnerability
disclosure and large-scale, automated exploit attempts happen within a range of a few hours
only . One possible explanation for fast exploit availability may be that attackers monitor
open source code repositories to discover security fixes (and with that, also the
vulnerabilities), which happen often before the actual patch is available for download or the
vulnerability is publicly disclosed .

Let’s start by assuming that a patch, thus, a non-vulnerable version of the affected package
is available, thus, a developer could update from version X to Y. But

, does it have the very same API so that the application code
can remain as-is? And if it has, does it also behave in the same way? According to the
semantic versioning scheme, only major version updates are backward-incompatible, whereas
minor and patch updates remain compatible.

Chart 15 shows the version updates necessary to fix vulnerabilities in the latest versions of
the Census II Java packages. About 9% of the updates require a change of the major version,
which are per semver definition backward-incompatible, thus, require changes of the
application code. This typically happens if projects remain on old and unmaintained releases,
which is why developers should try staying on supported releases, to avoid risky updates
during urgent security response processes.

Many updates, roughly 44%, require a change of the minor version, which indicates semver
compatibility. However, a study of the Maven ecosystem found that there’s no difference in
the number of breaking changes introduced by major and minor releases . A more recent
study finds that 20% of non-major releases are breaking .

timely patches are key

75% of exploit code is
observed within 28 days

is that new version
compatible with the old version

Static software analysis can
support developers in such cases through the automated analysis of application
programming interfaces, and suggesting those versions that come with the smallest
likelihood of regressions.

[38]

[39]

[40]

[41]

[42]

[43]

Be careful with updates: 9% of vulnerability fixes will require a major
update, which by definition will add a breaking change. 44% will require
a minor change, but studies show that since not everyone follows
semver very closely, these updates are just as likely to cause issues.

Chart 15 How many dependency updates require changes of the major, minor, etc.?
(computed over 2912 vulnerability updates)

Pe
rc

en
ta

ge
 o

f
up

da
te

s

Semver level requiring update (0=major, 1=minor, etc.)

0%

0 1 2 3

10%

20%

30%

40%

So, do we just update?

A particular case of updates are the so-called semantic updates: those are not API
incompatible but modify the updated code’s contract, for example, by fixing bugs that
change the results returned for the same input. While, in theory, tests should be able to
catch those changes, a recent study of 500 OSS Java projects found that tests only
cover around 50% percent of calls in direct dependencies and only 20% of the calls in
transitive ones. The same study advocates

, raising the number of detected semantic updates to 70% on
average.

But what if no patch is available yet? Chart 16 shows how many weeks lie between CVE
vulnerability publication and the release of a corresponding patch (knowing that “NVD,

”). Numbers highlighted in red indicate vulnerabilities that were
published in the different weeks before the patch was available, those in green were
published in the weeks after patch release. The observation that a non-negligible
number of patches are released after vulnerability publication is inline with a recent
study of the npm, Maven and Nuget ecosystems .

Spot checks show that some of the delayed patches are due to maintainers not
agreeing on the reported finding being a real vulnerability, or considering the severity
exaggerated (e.g., CVE-2016-1000031 or CVE-2022-38752). Ideally, such conflicts
are resolved prior to findings being disclosed, which either exposes users (in case of real
vulnerabilities without patch) or wastes developer time (to chase after non-vulnerable
findings reported by SCA tools).

static analysis as a way to mitigate the issue
of semantic updates

as an aggregator, typically publishes CVEs after advisories have been announced at
other platforms [44]

[45]

[46] [47]

Chart 16 Were vulnerabilites disclosed before or after a patch was available?

Fr
eq

ue
nc

y
of

 v
ul

ne
ra

bi
lit

ie
s

Weeks before/after the patch release

0%

10%

20%

30%

40%

-1 1 2 3 4 5 6 7 or

more

-2-3-4-5-6-7 or

more

50%

60%

70%

Pa
tc

h
re

le
as

e

Just updating to the latest version may introduce unexpected
comparability problems, and isn’t always an option. Static analysis can
help determine the best course of action.

Supply chain attacks -

As if vulnerabilities were not enough

Known vulnerabilities in upstream open source
dependencies is not the only worry of application
developers. After early research on typosquatting in 2016
and occasional typosquatting attacks in the years to
follow, the frequency of supply chain attacks keeps on
increasing.

In other words, attackers discovered that the industry’s
widespread consumption of open source components
comes with a considerable attack surface. A recently
published taxonomy of attack vectors counts a total of

, each representing a possible
means to distribute malicious code to downstream
consumers, application developers and end-users alike.

A study published in 2020 showed that typo-squatting
(and comparable techniques) as well as account hijacking
are among the most prominent attack vectors . The
former is still widely used in large attack campaigns
comprising dozens and hundreds of malicious packages.
Good news is typo-squatting attacks are quickly detected
by now, also thanks to activity and popularity metrics, and
account hijacking will diminish the more maintainers adopt
2FA.

[48]

[49] [50]

[51]

107
unique attack vectors

While known vulnerabilities primarily matter for components that get
deployed into production, it is important to note that

 with
access to critical project resources. Malicious test dependencies, for
instance, may be able to change a package’s content prior to its release
- depending on the particular project setup and CI/CD pipeline.

Interestingly, controls useful for mitigating known-vulnerable
dependencies, e.g., semver version ranges to facilitate the use of latest
non-vulnerable releases, can be counterproductive in regards to supply
chain attacks. Here, it is rather recommended to specify the exact
version (so-called version pinning) to prevent the automated download
of new, potentially compromised, releases.

Taking a look into the crystal ball,
 undiminished - it is just too

easy to run large, automated attack campaigns. But we are more afraid
of the ,
which is more difficult to spot during merge request reviews than
“active” malicious code used to, e.g., download and execute crypto
miners. Last, we also believe that -
as in case of the trojan source and dependency confusion attacks
described in 2021.

 safeguards
against supply chain attacks need to cover all dependencies

we expect typo-squatting and
dependency confusion attacks to continue

injection of intentional vulnerabilities into legitimitate packages

new attack vectors will be discovered
[52]

Program Analysis meets Dependency Lifecycle

This report is a result of long weeks of research. Rather than (only) looking for attention-grabbing headlines, we wanted to understand what’s driving the biggest

challenges for development and security teams today, and how those challenges can be mitigated. The most significant emerging challenges can be broken down into

three main categories:

Our conclusions on how to mitigate these issues are the same as the one that drove the core technology behind Endor Labs - Program analysis is required throughout

the dependency management lifecycle. Program analysis can grant security and development teams a deep understanding of how code is actually being used. Without

that understanding, teams will continue to struggle with the selection, security, prioritization, and maintenance of dependencies.

21 3

Security noise Next-gen supply chain
attacks

Maintenance is a nightmare

Today, the industry is focused on known
vulnerabilities (CVEs) as an indicator of security.
This has led software composition analysis (SCA)
tools to drown developers in an endless stream
of security alerts. After getting these alerts from
security teams, developers must evaluate
whether or not vulnerable code is actually
reachable, or if the vulnerability is actually
impactful. This slows down development
considerably, as developers spend much of their
time investigating and fixing vulnerabilities, and
not writing value-adding code.

Most of the major supply chain attacks that have
used OSS as their vector, or target, would not
have been caught by looking at CVEs. Attacks like
Typosquatting and Dependency Confusion
target the maintainer, or the method in which
OSS packages are consumed. In these cases, the
focus on known vulnerabilities, while important,
is not helping to enhance security.

80% of code in modern applications is open
source code, and as the report finds - 95% of
vulnerabilities are found in transitive
dependencies. Most security threats, including
known vulnerabilities, lurk within the sea of
transitive dependencies. The challenge is that
developers rarely have visibility into their
dependency tree, or how deep it goes.

Program Analysis meets Dependency Lifecycle

Below, we’ve outlined some of crucial building blocks that must be put in place to make life easier for security and development teams, and scale the use of open source at the enterprise:

Complete software inventory across the enterprise,
supporting emerging standards like CycloneDX, and
compliant with upcoming regulations

Risk-based dependency selection to reduce future
operational and security risks

Monitoring of quality and security metrics, specifically end-
of-life packages (or package versions), which are not
supported by the community any longer, thus, may receive
security fixes at later points in time than supported ones… or
never

Detection of known vulnerabilities in direct or transitive
project dependencies, followed by context-sensitive

prioritization, which keeps into account whether vulnerable
code can be reached in the context of a given application

Update recommendations that keep current API use into account in
order to reduce the likelihood of regressions and developer effort

Identification of bloated dependencies, which can be
safely removed in order to reduce build times,

management overhead and the overall attack surface

Detection and prevention of supply chain attacks, e.g.,
the accidental use of typo-squatting packages or

insecure CI/CD configurations, including the possibility
to report on standards like NIST C-SRM or SLSA

Increase

productivity

& maximize

software reuse

References

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

 - https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme

 - https://en.wikipedia.org/wiki/Dependency_hell

 - https://www.linuxfoundation.org/research/census-ii-of-free-and-open-source-software-application-libraries

 - https://github.com/endorlabs/StateOfDependencyManagement2022

 - https://github.com/ossf/criticality_score

 - https://commondatastorage.googleapis.com/ossf-criticality-score/index.html

 - https://openssf.org/community/alpha-omega/

 - https://dl.acm.org/doi/10.1145/3368089.3409711

 - https://chaoss.community/

 - https://dl.acm.org/doi/10.1145/3239235.3240501

 - https://bestpractices.coreinfrastructure.org

 - https://owasp-scvs.gitbook.io/scvs/v5-component-analysis

 - https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

 - https://riskexplorer.endorlabs.com/#/attack-tree?av=AV-602

 - https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2

 - https://riskexplorer.endorlabs.com/#/attack-tree?av=AV-200

 - https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

 - https://azure.microsoft.com/en-us/resources/3-ways-to-mitigate-risk-using-private-package-feeds/

 - https://checkmarx.com/blog/a-beautiful-factory-for-malicious-packages/

 - https://www.usenix.org/system/files/sec19-zimmermann.pdf

 - https://ieeexplore.ieee.org/abstract/document/7962360

 - https://link.springer.com/article/10.1007/s10664-017-9589-y

 - https://www.usenix.org/system/files/sec19-zimmermann.pdf

 - https://ieeexplore.ieee.org/abstract/document/7962360

 - https://www.linuxfoundation.org/research/census-ii-of-free-and-open-source-software-application-libraries

 - https://ieeexplore.ieee.org/document/9506931

 - https://semver.org/#spec-item-4

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

 - https://ieeexplore.ieee.org/document/8721084

 - https://ieeexplore.ieee.org/abstract/document/6975655

 - https://dl.acm.org/doi/10.1145/3472811

 - https://dl.acm.org/doi/abs/10.1145/3196398.3196401

 - https://github.com/Netflix/archaius/tree/2.x

 - https://commons.apache.org/proper/commons-text/security.html

 - https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

 - https://dl.acm.org/doi/10.1145/3239235.3268920

 - https://dl.acm.org/doi/abs/10.1145/2630069

 - https://www.usenix.org/conference/usenixsecurity22/presentation/suciu

 - https://unit42.paloaltonetworks.com/state-of-exploit-development/

 - https://www.usenix.org/conference/cset20/presentation/householder

 - https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

 - https://dl.acm.org/doi/pdf/10.1145/3133956.3134072

 - https://ieeexplore.ieee.org/document/6975655/

 - https://arxiv.org/pdf/2110.07889.pdf

 - https://link.springer.com/chapter/10.1007/978-3-030-68887-5_2

 - https://dl.acm.org/doi/10.1145/3472811

 - https://nvd.nist.gov/vuln/detail/CVE-2016-1000031

 - https://bitbucket.org/snakeyaml/snakeyaml/issues/531/stackoverflow-oss-fuzz-47081

 - https://incolumitas.com/data/thesis.pdf

 - https://www.computer.org/csdl/proceedings-article/sp/2023/933600a167/1He7XSTyRKE

 - https://riskexplorer.endorlabs.com/

 - https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2

 - https://arxiv.org/pdf/2111.00169

 - https://link.springer.com/article/10.1007/s10664-020-09914-8

 - https://dl.acm.org/doi/abs/10.1145/3468264.3468589

 - https://ieeexplore.ieee.org/abstract/document/6975655

 - https://dl.acm.org/doi/10.1145/3472811

 - https://dl.acm.org/doi/abs/10.1145/3196398.3196401

 - https://github.com/Netflix/archaius/tree/2.x

 - https://commons.apache.org/proper/commons-text/security.html

 - https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

 - https://dl.acm.org/doi/10.1145/3239235.3268920

 - https://dl.acm.org/doi/abs/10.1145/2630069

 - https://www.usenix.org/conference/usenixsecurity22/presentation/suciu

 - https://unit42.paloaltonetworks.com/state-of-exploit-development/

 - https://www.usenix.org/conference/cset20/presentation/householder

 - https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

 - https://dl.acm.org/doi/pdf/10.1145/3133956.3134072

 - https://ieeexplore.ieee.org/document/6975655/

 - https://arxiv.org/pdf/2110.07889.pdf

 - https://link.springer.com/chapter/10.1007/978-3-030-68887-5_2

 - https://dl.acm.org/doi/10.1145/3472811

 - https://nvd.nist.gov/vuln/detail/CVE-2016-1000031

 - https://bitbucket.org/snakeyaml/snakeyaml/issues/531/stackoverflow-oss-fuzz-47081

 - https://incolumitas.com/data/thesis.pdf

 - https://www.computer.org/csdl/proceedings-article/sp/2023/933600a167/1He7XSTyRKE

 - https://riskexplorer.endorlabs.com/

 - https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2

 - https://arxiv.org/pdf/2111.00169

https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://en.wikipedia.org/wiki/Dependency_hell
https://www.linuxfoundation.org/research/census-ii-of-free-and-open-source-software-application-libraries
https://github.com/endorlabs/StateOfDependencyManagement2022
https://github.com/ossf/criticality_score
https://commondatastorage.googleapis.com/ossf-criticality-score/index.html
https://openssf.org/community/alpha-omega/
https://dl.acm.org/doi/10.1145/3368089.3409711

https://chaoss.community/
https://dl.acm.org/doi/10.1145/3239235.3240501
https://bestpractices.coreinfrastructure.org
https://owasp-scvs.gitbook.io/scvs/v5-component-analysis

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://riskexplorer.endorlabs.com/#/attack-tree?av=AV-602
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://riskexplorer.endorlabs.com/#/attack-tree?av=AV-200
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://azure.microsoft.com/en-us/resources/3-ways-to-mitigate-risk-using-private-package-feeds/
https://checkmarx.com/blog/a-beautiful-factory-for-malicious-packages/
https://www.usenix.org/system/files/sec19-zimmermann.pdf
https://ieeexplore.ieee.org/abstract/document/7962360
https://link.springer.com/article/10.1007/s10664-017-9589-y
https://www.usenix.org/system/files/sec19-zimmermann.pdf
https://ieeexplore.ieee.org/abstract/document/7962360
https://www.linuxfoundation.org/research/census-ii-of-free-and-open-source-software-application-libraries
https://ieeexplore.ieee.org/document/9506931
https://semver.org/#spec-item-4
https://ieeexplore.ieee.org/document/8721084
https://ieeexplore.ieee.org/abstract/document/6975655
https://dl.acm.org/doi/10.1145/3472811
https://dl.acm.org/doi/abs/10.1145/3196398.3196401
https://github.com/Netflix/archaius/tree/2.x
https://commons.apache.org/proper/commons-text/security.html
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/abs/10.1145/2630069?casa_token=7I3d1kkCtnEAAAAA:Y7gM7NyRqaD4oazXONpynOQkkk8D2mpP6DeMklmI0uVwV74pM0w0Up-ZnfgGn006qpHOvPTfQii_
https://www.usenix.org/conference/usenixsecurity22/presentation/suciu
https://unit42.paloaltonetworks.com/state-of-exploit-development/
https://www.usenix.org/conference/cset20/presentation/householder
https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf
https://dl.acm.org/doi/pdf/10.1145/3133956.3134072
https://ieeexplore.ieee.org/document/6975655/
https://arxiv.org/pdf/2110.07889.pdf
https://link.springer.com/chapter/10.1007/978-3-030-68887-5_2
https://dl.acm.org/doi/10.1145/3472811
https://nvd.nist.gov/vuln/detail/CVE-2016-1000031
https://bitbucket.org/snakeyaml/snakeyaml/issues/531/stackoverflow-oss-fuzz-47081
https://incolumitas.com/data/thesis.pdf
https://www.computer.org/csdl/proceedings-article/sp/2023/933600a167/1He7XSTyRKE
https://riskexplorer.endorlabs.com/
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://arxiv.org/pdf/2111.00169
https://link.springer.com/article/10.1007/s10664-020-09914-8
https://link.springer.com/article/10.1007/s10664-020-09914-8
https://dl.acm.org/doi/abs/10.1145/3468264.3468589
https://ieeexplore.ieee.org/abstract/document/6975655
https://dl.acm.org/doi/10.1145/3472811
https://dl.acm.org/doi/abs/10.1145/3196398.3196401
https://github.com/Netflix/archaius/tree/2.x
https://commons.apache.org/proper/commons-text/security.html
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/abs/10.1145/2630069?casa_token=7I3d1kkCtnEAAAAA:Y7gM7NyRqaD4oazXONpynOQkkk8D2mpP6DeMklmI0uVwV74pM0w0Up-ZnfgGn006qpHOvPTfQii_
https://www.usenix.org/conference/usenixsecurity22/presentation/suciu
https://unit42.paloaltonetworks.com/state-of-exploit-development/
https://www.usenix.org/conference/cset20/presentation/householder
https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf
https://dl.acm.org/doi/pdf/10.1145/3133956.3134072
https://ieeexplore.ieee.org/document/6975655/
https://arxiv.org/pdf/2110.07889.pdf
https://link.springer.com/chapter/10.1007/978-3-030-68887-5_2
https://dl.acm.org/doi/10.1145/3472811
https://nvd.nist.gov/vuln/detail/CVE-2016-1000031
https://bitbucket.org/snakeyaml/snakeyaml/issues/531/stackoverflow-oss-fuzz-47081
https://incolumitas.com/data/thesis.pdf
https://www.computer.org/csdl/proceedings-article/sp/2023/933600a167/1He7XSTyRKE
https://riskexplorer.endorlabs.com/
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2
https://arxiv.org/pdf/2111.00169

