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We present ArtiDock - the deep learning technique for predicting ligand poses in the protein
binding pockets (aka “AI docking”), which is based on augmenting inherently limited training
data with algorithmically generated artificial binding pockets and the ensembles of
representative conformations of the ligand-protein complexes obtained from MD simulations.
Performance of ArtiDock is compared systematically with other AI docking techniques and
conventional docking programs on the PoseBusters dataset, which is dedicated for
benchmarking the AI pose prediction algorithms. ArtiDock outperforms the best AI docking
techniques and the major conventional docking programs, being at least an order of
magnitude faster while providing superior accuracy in terms of RMSD and additional ligand
pose correctness metrics. The influence of data augmentation on the model performance is
evaluated and the perspectives of further development are discussed.

1. Introduction
Classical docking is one of the foundational tools in computational drug discovery for more
than two decades. During this extended period of time the docking technology has witnessed
an impressive scaling up and a universal adoption in academia and industry, while remaining
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remarkably unchanged in terms of used algorithms. Indeed, all the major docking scoring
functions were established decades ago and did not evolve much since then. Their
fundamental limitations, such as poor handling of the metal atoms, coordination bonds,
polarization, charge transfer and entropic contribution from water also persist with no clear
trend for improvement. There is currently an implicit consensus in the community that
classical docking has reached the practical plateau of accuracy and no significant progress
could be made without a paradigm change 1,2.

Such a change has emerged in recent years with the appearance of the Machine Learning
(ML) techniques for ligand pose prediction, often colloquially called an “AI docking”. In
contrast to the classical docking, which is based on minimization of some physics-based
scoring function, these techniques leverage a completely data-centric approach by learning
from experimentally determined protein-ligand complexes.

The first generation of the ML docking techniques used simple and lightweight model
architectures and demonstrated results that were subpar to conventional docking, while
being much faster 3,4. The issue with their accuracy was attributed to insufficiently
sophisticated internals, which missed some important hidden correlations between the
optimal ligand pose and the structures of the ligand and the target protein. This resulted in
the appearance of the second generation of ML docking models based on the Deep
Learning (DL) approach. This shift was largely inspired by the phenomenal success of the
AlphaFold 5,6 and the overall rise of generative AI based on transformers architecture. The
DL docking models like DiffDock 7, UniMol 8 and AlphaFold-latest 9 have shown an
impressive boost of accuracy that comes, however, at the expense of very complex
architectures, large model sizes and slow training and inference.

Currently the most “heavyweight” ML models (such as AlphaFold-latest) are more accurate
than classical docking while being several orders of magnitude slower. The “midweight”
models (such as DiffDock) are on par in terms of speed but have some issues with accuracy.
The “lightweight” models (such as TankBind) are very fast but very inaccurate. As a result,
ML docking is unable to replace the classical one in the practical high-throughput screening
tasks because of an unfavorable accuracy-to-speed ratio. In other words, we still did not
reach the much anticipated docking paradigm shift.

In this paper we introduce ArtiDock - the novel ML docking technique, which overcomes
these limitations. At the time of writing ArtiDock outperformed all tested classical and
ML-based docking techniques in terms of speed to accuracy ratio on the PoseBusters
dataset thus pretending to be a method of choice in the real-world high-throughput virtual
screening applications.

The main idea of ArtiDock is to utilize multiple data augmentation modalities to overcome the
inherently limited number of available experimentally resolved protein-ligand complexes,
while keeping the model architecture simple and lightweight by means of careful feature
selection.

ArtiDock used two sources of augmented data:

● Algorithmic generation of artificial “binding pockets” for a diverse set of small
molecule ligands (including those, not present in any experimental structures), which
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closely follow statistical distributions of the protein-ligand non-bond interactions
deduced from experimentally resolved complexes 10.

● Ensembles of representative conformations obtained from a massive Molecular
Dynamics (MD) Simulations of about 17,000 protein-ligand complexes from a PDB
data bank.

Our approach could be considered as opposite to those used by AlphaFold-latest and
DiffDock. Instead of complicating the model architecture in an attempt to deal with limited
data, we augment the data to provide a much larger and better balanced training set for a
simple and fast model.

In this paper we describe the ArtiDock architecture and data augmentation techniques,
provide comprehensive performance comparison with a number of classical docking and
ML-docking techniques and discuss the future directions.

2. Methods
2.1. Preprocessing of proteins and ligands
The Python API of the RDKit v.2022.9.1 and Open Babel 11 v.3.1.0 were utilized for loading,
processing, and feature generation of small molecules. Before feature extraction, all the
explicit hydrogen atoms were removed.

A custom protein processing module was developed to extract protein data from the PDB
files and generate the necessary features for model training. This module utilizes the PDB
atom names to obtain atom-level graph features, rather than relying on third-party software
to infer them. This approach decreases the exclusion rate for processed proteins due to
inevitable inconsistencies in the PDB files. For the model training and inference, we
extracted protein binding pockets from the protein-ligand complexes defined as all the
residues within 6Å of any heavy ligand atom. Subsequently, only the binding pocket was
used for feature extraction.

2.2. Training data

2.2.1. Inclusion criteria for protein-ligand complexes

We filtered out experimentally determined protein-ligand complexes with at least one of the
following conditions:

- More than one ligand molecule in the binding pocket;
- Ligand containing less than 5 or more than 100 heavy atoms;
- Ligand containing more than 50 rotatable bonds;
- Protein binding pocket containing less than 5 residues;
- Protein-ligand steric clashes;
- Complex with a significant fraction of ligand atoms too far away from any protein

atom.
The filtering conditions were selected to avoid low-quality complexes or non-drug-like ligands
while keeping as much experimental data as possible.
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2.2.2. PDBbind database

The PDBbind database 12,13 (v.2020) provides a collection of biomolecular complexes from
the PDB with experimentally measured binding affinity data. The database contains 19,443
protein-ligand complexes. We used a preprocessed version of the complexes published
previously with EquiBind 4 and additionally filtered as described above.

2.2.3. Binding MOAD database

The Binding MOAD database 14–16 (v.2020) provides a subset of the PDB, containing all
high-quality ligand-protein complexes irrespective of availability of the binding affinity data.
The database includes 41,409 PDB structures with one or more ligands. We extracted all the
combinations of PDB IDs and ligand Chemical IDs annotated by the database as “valid” and
filtered them as described above.

It is important to note that the “PDB ID - ligand ID” pairs might be represented by more than
one binding pocket and the corresponding ligand pose. This is caused by the existence of
multiple protein chains in a single PDB file; multiple identical ligands in a single PDB file;
different biological units/assemblies 17 provided by the Binding MOAD for a single PDB
identifier. All of them were used for model training.

2.2.4. Data from molecular dynamics simulations

We performed massive MD simulations of about ~17,000 protein-ligand complexes extracted
from PDBbind v.2020. The ligand topologies and charges were taken from the curated
MISATO dataset 18 whenever possible. The rest of the ligands were curated and processed
using the workflow similar to one implemented in MISATO to ensure compatibility. The
protein structures were processed using the proprietary structure preparation module of
Receptor.AI platform in order to reconstruct partially resolved residues, remove
crystallographic agents, properly split the co-crystallized complexes with antibodies and
engineered chimeric protein chains. All complexes were simulated with an amber03 force
field as implemented in Gromacs 19. Gromacs 2023.4 20 was used with the recommended
simulation parameters for the Amber force field. Simulations were run for a fixed amount of
wall time for all complexes, which resulted in different simulation times depending on the
system size. The distribution of the reached simulation times is shown in Fig. 1.
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Figure 1. Distribution of the simulation times for massive MD simulations of ~17,000 protein
ligand complexes.

Obtained trajectories were analyzed using custom scripts written with Pteros 2.5 molecular
modeling library 21. For each complex the probability map of amino acid residues to be in
contact with the ligand was computed. Those residues, which are in contact with the ligand
for more than 5% of time were considered to constitute the binding pocket. Then the binding
pockets were aligned and clustered using the RMSD of their heavy atoms using k-means
agglomerative clustering with ward linkage. The clusters which are at least 0.1 nm apart from
each other were kept and the trajectory frames, which are the closest to cluster centroids,
were determined. Resulting ensembles of pocket conformations were processed as
described above and up to 10 frames were selected randomly among them as alternative
pocket-ligand conformations for the training set augmentation.

2.2.5. Training data summary

Table 1 shows the number of data points in the training dataset obtained from different
sources.

Table 1. Model training data sources.

Dataset Unique PDB IDs Unique Chemical IDs*
Unique PDB ID -
Chemical ID pairs

Training
samples

PDBbind 16,906 11,856 16,906 16,906

Binding MOAD 38,119 16,798 45,839 92,337

MD 13,955 10,353 13,955 130,962
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* The oligomeric ligands annotated by multiple Chemical IDs are not accounted for in the column.

The intersection of entities from different data sources is shown in Figure 2.

Figure 2. The intersection of PDB IDs and ligand Chemical IDs in the experimental and MD
data sources.

2.2.6. Artificial binding pockets

In this study, we used an evolution of PocketCFDM approach 10 of augmenting the training
set of the protein-ligand complexes with artificial data, which mimics real protein binding
pockets in terms of statistical distributions of the non-bond interactions. This method allows
generating artificial binding pockets for arbitrary small molecule conformers and was
previously proven to produce high-quality augmentation data.

We used the “In-Stock” subset of the ZINC20 database of commercially available chemicals
widely used for virtual screening 22 as a small molecule base for artificial pocket generation.
The final dataset consisted of 960,000 compounds with 8 to 55 heavy atoms. To reduce the
model bias towards the most frequent molecule sizes (the median is around 25 heavy atoms
for both PDB and ZINC data), we enforced a uniform small molecule size distribution for the
artificial data. Repetitions are possible in the training set if there are not enough compounds
in a particular size range in ZINC to obtain a uniform distribution.

Additionally, we used the same compounds with 32-55 heavy atoms to generate an artificial
pocket and then keep only a randomly chosen fragment of the ligand as an input. We
assume that such fragment sampling enhances the model's ability to dock smaller ligands
into the subpockets of extended binding pockets.

2.2.7. Data split

We employed the same train-validation-test split as used previously in EquiBind 4 and
DiffDock 7, which makes the results of our model directly comparable with these two
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reference techniques. The split consisted of 968 validation and 363 test PDB entries from
PDBbind v.2020. After the low-quality complexes filtering, 915 validation complexes were
retained. We removed from the training set all experimental and MD samples intersecting
with validation or test PDB IDs.

2.3. Performance metrics
Traditionally, the primary metric for the docking techniques is RMSD between experimentally
determined and predicted ligand poses in the given protein binding pocket. However, despite
providing decent results in terms of RMSD, many ML-based approaches tend to output
physically and chemically implausible ligand poses. Recently the PoseBusters approach was
introduced to perform quality checks of a predicted ligand pose including chirality and
stereochemistry preservation, bond length validity, internal energy, and intramolecular and
intermolecular steric clashes 23.

The PoseBusters 23 dataset and the corresponding Python package was used for model
performance benchmarking. Versions 1 and 3 of the PoseBusters were used in parallel
because not all of the docking techniques, which we would like to include into comparison,
are currently benchmarked against the latest PoseBusters version 3.

Thus, the following main performance metrics were used in this paper:

- a fraction of the predicted ligand poses with RMSD < 2Å from experimental crystal
structures;

- a fraction of the predicted ligand poses with RMSD < 2Å that pass all the
PoseBusters quality checks.

In order to check the influence of RMSD cutoff on the model performance the cutoffs from
2Å to 5Å were used for ArtiDock and several selected competing techniques.

2.4. Feature extraction
The ligands were represented as the atom-level molecular graphs. The node features
included one-hot encoded atom symbol, number of covalently bound heavy atoms and
hydrogens, valence, charge, hybridization, and aromaticity. The graph edges represented
covalent bonds between heavy atoms and the one-hot encoded covalent bond type.

Protein node features were extracted for each heavy atom and included scalar (one-hot
encoded residue and atom names) and vector (distance from a pocket centroid to an atom)
components. The graph edges were formed between a node and its 30 closest neighbors.
The edge scalar features represented positional embedding calculated by the distance radial
basis function 24. The vectors between the nodes connected by edges were considered edge
vector features.
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2.5. Model architecture, training, and validation
ArtiDock is based on a proprietary model architecture inspired by the lightweight
Trigonometry-Aware Neural Networks 3. The model was built with an open-source machine
learning framework PyTorch 25 v.2.0.0.
The training objective was based on the minimization of the difference between predicted
and reference pocket-ligand intermolecular distance matrices. We trained the model for 500
epochs on an NVIDIA GeForce RTX 4090 GPUs using the MSE loss and Adam optimizer. A
batch size of 2 was used. Subsequently, the Exponential Moving Average (EMA) technique
was applied to smooth the noise in the training process and to improve the generalization of
the model.

At each epoch, the model was trained on:

- PDBbind training split (15,646 samples);
- Binding MOAD training split (44,888 samples, one per unique PDB ID - ligand ID

pair);
- MD training split (13,046 samples, one per unique PDB ID);
- artificial pockets generated for randomly sampled 10,000 small molecules;
- artificial pockets generated for randomly sampled 5,000 small molecules split into the

segments.

The model training, which is a GPU-intensive task, and pocket generation, which is a
CPU-intensive task, were separated into distinct parallel workflows. On average, the
generated data (10,000 pocket-ligand complexes and 5,000 pocket-ligand fragment
complexes) was fully updated by newly generated samples each 3 model training epochs.

After each epoch, we tracked median model loss on the 915 experimental complexes from
the validation data split and selected the best model checkpoint based on the validation
performance.

2.6. Model inference

The model outputs the pocket-ligand intermolecular distance matrix for any arbitrary𝐷𝑀𝑝𝑐

pocket and small molecule. Thus, an additional distance matrix-to-pose algorithm is needed
to convert the matrix into ligand atom coordinates (the actual binding pose). ArtiDock utilizes
an algorithm that first infers a 3D point cloud from the distance matrix and then aligns a
ligand conformer to the generated cloud.

For the point cloud generation we combined and improved the ligand pose generation

approaches from TankBind 3,26,27 and Uni-Mol 28. Given the model predicted , we𝐷𝑀𝑝𝑐

randomly initialized the 3D point cloud , where c - number of ligand atoms, and𝐶' ∈ ℝ𝑐×3

applied back-propagation to optimize the by Adam optimizer. The optimization stopped as𝐶'
soon as the loss reached a plateau. The loss function was calculated as the weighted sum of
intramolecular and intermolecular distance and steric clash contributions.

Despite accounting for interatomic distance constraints during the distance matrix to point
cloud transformation, the resulting point cloud is still subject to artifacts and violations of𝐶'
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geometric quality criteria. These issues are well known and were reported for the majority of
ML-based docking methods 23.

We addressed the problem by applying the custom distance matrix-to-pose algorithm, which
is based on differential evolution (DE) technique with additional enforced penalization of
steric clashes. The DE is a stochastic approach that does not use gradient methods to find
the minimum and can search large areas of the conformational space 29. We utilized a
customly modified version of DE for the ligand position optimization 30. Given a point cloud

and a random input ligand conformer, we set the DE objective of RMSD minimization𝐶'
between and the conformer coordinates by modifying conformer rotatable bonds and𝐶'
aligning it to the . As a result we obtain an optimized ligand conformer with atomic𝐶'
coordinates close to , which has significantly improved tetrahedral chirality, double bond𝐶'
stereochemistry, covalent bond lengths and angles, aromatic ring planarity, and double
bound planarity.

To address the issue with steric clashes, we included additional adjustable contributions to
the DE objective function accounting for inter- and intramolecular clashes. The conformer
coordinates are used instead of for defining the clashes. The amount of these extra𝐶'
constraints is adjusted empirically to achieve an optimal balance between the accuracy in
terms of RMSD and the amount of remaining clashes.

2.6.1 Parameters tuning

The inference point cloud generation and DE objective function weights together with DE
parameters were tuned using the PoseBusters 23 quality checks on 915 experimental
complexes from the validation data split. The tuning was performed for 200 trials with the
help of parameters optimization software Optuna 31 v.3.5.0 using the tree-structured Parzen
estimator algorithm. The best parameters were selected based on the highest fraction of the
predicted ligand poses with RMSD < 2Å and passing all the PoseBusters quality checks.

2.7. Benchmarking

2.7.1 Testing data

We used the PoseBusters Benchmark set 23 that consists of 308 crystal complexes from the
PDB each representing a unique protein and ligand. All the complexes have been released
since 2021. Since all the experimental and MD data used for training is based on the
database versions of the year 2020, the PoseBusters Benchmark set can be safely used as
the time-split test dataset for the model performance assessment.

2.7.2. Comparison to other docking techniques

We compared the performance of our model to other docking approaches reported in
PoseBusters publication 23, namely AutoDock Vina 32, Gold 33, DiffDock 7, Uni-Mol 28,
TankBind 3, EquiBind 4, DeepDock 30. We recalculated Uni-Mol results on the more recent
version (source code accessed 2023-12-06). Also, Glide 34 v10.1 was included into
comparison with default preprocessing and docking parameters except the docking box size,
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which was set to 25Å to be the same as in other classical docking methods in PoseBusters.
The AutoDock Vina, Gold, and Glide represent well-established classical docking
approaches. The rest of the techniques are ML-based methods performing either blind
docking (DiffDock, TankBind, EquiBind) or docking into a predetermined protein binding
pocket (Uni-Mol, DeepDock, ArtiDock).

We have also included AlphaFold-latest into the comparison although it is formally a
protein-ligand co-folding method rather than a ligand pose prediction one. It is by far the
most architecturally advanced and heavyweight ML model, which is expected to show the
best accuracy among all other techniques, which do not use data augmentation. Although
the AlphaFold-latest performance is only reported for PoseBusters v1 we still decided to
include it into comparison with a necessary caution because of the importance of this model
for the community.

We performed all the benchmarking using a workstation with NVIDIA GeForce RTX 3060
GPU and AMD Ryzen 5 5600X 6-Core CPU.

2.7.3. Tested ArtiDock versions

In this work we compared four ArtiDock versions, which differ by the training dataset and the
post-processing of predicted ligand-protein distance matrices. All versions share the same
general architecture with minor improvements in the later ones.

● ArtiDock v1.0 is trained on the PBDbind dataset only.
● ArtiDock v1.5 is trained on the PBDbind dataset and the augmented data from

artificial binding pockets.
● ArtiDock v1.8 is trained on the PBDbind and the Binding MOAD datasets with

addition of augmented data from artificial binding pockets and MD simulations.
● ArtiDock v2.0 additionally uses enforced penalization of the steric clashes in

differential evolution algorithm for transforming the ligand-protein distance matrix to
the ligand coordinates.

3. Results
It is clearly seen that the expansion of the training dataset leads to notable improvement of
the ArtiDock performance. Augmentation with artificial binding pockets leads to the increase
of accuracy by ~3% (v1.5 vs v1.0). Further inclusion of the Binding MOAD data and
augmentation from MD simulations leads to a much more pronounced increase of accuracy
by ~10-12% (v1.5 vs v1.8).

The RMSD evaluation and PoseBusters quality checks reveal the superior performance of
ArtiDock v1.8 over all other techniques included in comparison (Fig. 3). ArtiDock 1.8 predicts
78% of ligand binding poses within 2Å RMSD from experimental ones outperforming the
closest rival by 14%. It demonstrates good generalization of the DL model over experimental
training data and its ability to predict intramolecular distance matrix with high precision. Due
to the good performance in terms of RMSD, the fraction of samples passing both RMSD and
all PoseBusters checks is also the highest.
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Figure 3. Performance of the docking methods on the PoseBusters v3 dataset (N=308). For
AlphaFold-latest only RMSD is reported in the literature without additional PoseBusters
metrics and the PoseBusters v1 is used (N=428), so the comparison should be treated with
caution.

It is evident that all ML docking techniques, including ArtiDock up to v2.0, demonstrate a
significant gap between RMSD of all predicted poses and RMSD of the PoseBusters-valid
poses. For ArtiDock v1.8 this gap is ~17%, which is substantially less than for UniMol
(~32%) and DiffDock (~26%), but still a lot more than for classical docking methods (2-3%
for Gold, Vina and Glide). This indicates that a considerable fraction of predicted ligand
poses in ML docking techniques is still inferior in terms of the structural quality metrics.

The main quality concerns are minimal interatomic distance violations and the van der Waals
volume overlap as shown in Figure 4. About 25% of the protein-ligand complexes are
predicted with minor protein-ligand steric clashes. Additionally, 4% of predicted ligand
conformations have high energies as calculated using the Universal force field 35.

This issue could be mitigated by improving the distance matrix-to-pose transformation
algorithm. In the ArtiDock v2.0 we introduced additional penalization of the steric clashes in
the differential evolution algorithm for transforming the ligand-protein distance matrix to the
ligand coordinates. This results in the drastic decrease of the RMSD gap from 17% in v1.8 to
3% in v2.0 (Fig. 3). The minimal interatomic distance violations decrease impressively from
~23% in v1.8 to ~5% in v2.0 and the volume overlap with protein and the violation of
distances with organic cofactors almost vanishes in v2.0 (Fig.4).
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This impressive improvement of the ligand poses quality comes at the cost of decreased
overall precision in terms of RMSD<2.0Å from ~78% in v1.8 to ~72% in v2.0. However, the
percentage of correctly predicted poses with RMSD<2.0Å that are simultaneously
PoseBusters-valid increases from 61% to 69%. We believe that the drastic increase of the
overall ligand pose quality and RMSD of the valid subset of poses is more important than
getting higher accuracy in terms of RMSD only, thus we consider ArtiDock v2.0 as the best
model for practical applications.

It is important to note that we didn’t account explicitly for the non-protein cofactors in the
binding pockets in the current version of ArtiDock, thus the presence of steric clashes with
organic and inorganic cofactors is an expected behavior. Even though the cofactor-related
PoseBusters metrics are already surprisingly good (especially in ArtiDock v2.0), they could
be further improved by including the cofactors into the training data.

Figure 4. PoseBusters quality metrics of the predicted ligand poses using PoseBusters v3
dataset (N=308). The percentage of failures is reported (the lower the better).
AlphaFold-latest results are only reported in the literature for the PoseBusters v1 (N=428),
so the comparison should be treated with caution.
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Figure 5 demonstrates the performance of ArtiDock at different RMSD cut-offs. Expectibly,
the number of poses that pass all PoseBuster quality checks increases with the increase of
RMSD cut-off. The ArtiDock v2.0 performs significantly better than v1.8 in the whole range of
cut-offs and reaches an impressive 93% of correct ligand poses without RMSD constraints.
For the most practically used range of cut-offs from 1.5Å to 5Å ArtiDock v2.0 outperforms
Vina, Gold and Glide significantly, which makes it the method of choice in those applications
where the ligand pose quality is a priority.

Figure 4. Performance of ArtiDock and classical docking methods on the PoseBusters v3
Benchmark set (N=308) at different RMSD thresholds.
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One of the key aspects of ArtiDock in terms of its practical applicability is the fast inference.
On average, it takes around 1.5 seconds to retrieve a single docked ligand conformer with
the ArtiDock on our testing workstation (Figure 5). The inference speed is the same for all
ArtiDock versions within the measurement error, thus a single value is reported. The
classical docking methods are one or more orders of magnitude slower than our approach,
which makes ArtiDock the most efficient when performing virtual screening of the big
chemical libraries.

Figure 5. Approximate binding pose inference time of the docking methods. Note the log
scale of the vertical axis.

4. Discussion
The ML approaches to protein-ligand docking are severely hampered by the inherently
limited amount of high quality training data. The set of protein-ligand complexes in PDB is
growing too slowly to keep up with the demands of rapidly advancing ML techniques.
Following the enormous success of AlphaFold, recent development in the field of ML
docking was biased toward more complex architectures and larger model sizes, which could,
to some extent, balance limited amounts of data.

In this work we demonstrate that the opposite approach, with providing a deliberately simple
and fast model with large amounts of augmented data, results in better prediction accuracy
without compromising the inference speed. ArtiDock, which follows this approach,
significantly outperforms not only all competing ML docking techniques but also conventional
docking methods including the industry-standard Glide, Gold and the most widely used open
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source Vina. This superior performance comes with no inference speed trade-off - ArtiDock
is at least one order of magnitude faster than its closest competitors.

One of the most important limitations of existing ML docking models is the inferior quality of
the ligand poses in comparison with conventional physics-based docking techniques. Due to
the absence of explicit protein-ligand interactions it is challenging to ML models to avoid
minor steric clashes and subtle but physically relevant distortions of the ligands’ structure.

This issue is clearly visible in Fig. 3 as a performance gap between RMSD of all predicted
poses and RMSD of the PoseBusters-valid poses, which is evident for all ML techniques and
absent for conventional docking. For ArtiDock 1.8 this gap is already 1.5-2 times smaller
than for two most recent ML docking models (UniMol and DiffDock), which indicates that
larger and more diverse augmented training set helps to reduce the amount of steric clashes
and structural imperfections. However, ArtiDock 2.0 decreases this gap to the values, which
are observed for conventional docking, by introducing an additional penalization of the steric
clashes at the stage of inferring the ligand coordinates from the predicted protein-ligand
distance matrix.

Fig. 3 clearly shows that the steric clashes (minimal ligand-protein distances) remain the
most challenging for all compared ML techniques. However, ArtiDock v2.0 manages to get
rid of most of them, performing even better than the much more sophisticated
AlphaFold-latest model and approaching the range of accuracy of conventional docking
techniques. The rest of PoseBusters metrics are predicted with nearly perfect accuracy,
which is indistinguishable from the conventional docking.

The ArtiDock 2.0 is at least one order of magnitude faster than conventional docking
programs, at least two orders of magnitude faster than DiffDock and three orders of
magnitude faster than AlphaFold-latest. Combined with RMSD superior to and the ligand
pose quality approaching one of the conventional docking, this makes our technique an
attractive choice for high-throughput applications in drug discovery.

4.1. Limitations
ArtiDock shares some common limitations with other ML docking techniques. Since there is
no scoring function, which is assessed during the pose prediction, ArtiDock is not suitable for
ranking alternative poses of the same ligand or comparing different ligands in terms of the
binding strength, like the conventional docking techniques do. The poses generated by
ArtiDock are optimal for the given ligand and given conformation of the binding pocket, but
their scoring should be performed externally by either algorithmic scoring functions or ML
scoring models. The latter is advantageous because such models allow attributing binding
poses not only to the binding affinity, but also to the biological activity of compounds.
Development and benchmarking of such rescoring models is out of scope of the current
work.

ArtiDock is designed to perform docking into the predefined binding pocket, thus it is neither
directly competitive nor apples-to-apples comparable to the blind docking techniques. In
principle, the concept of multimodal data augmentation, which is used in ArtiDock, could be
transferred to the blind docking ML techniques. However, while the data of MD simulations is
straightforward to use in the blind docking scenario, the artificial pocket generation requires
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significant rethinking since the binding pocket is not known in advance. The model itself is
also likely to become larger and significantly slower due to the necessity to encode the
whole protein structure. Development of the blind pocket-agnostic version of ArtiDock is an
interesting future direction of research.

4.2. Future directions
There are clear directions of improvement which should eliminate remaining accuracy issues
of ArtiDock, which are common for ML-based docking in general. First, data augmentation
with artificial binding pockets allows easy model tuning towards better representations of
structures with optimal ligand-protein distances by careful generation of pockets with desired
ranges of distances. Second, remaining minor steric clashes could be removed by further
optimization of the post-processing stage and including additional terms directly in the loss
function. Last, but not least, organic and inorganic cofactors could be included explicitly into
the model training. The latter is especially promising because it could give ML models an
additional advantage over conventional docking, which traditionally struggles with metals
and ions.

This work shows that inclusion of dynamic data from MD simulations leads to a large boost
of model accuracy and robustness. Although the majority of used MD trajectories do not
exceed 20-30 ns in length, they contribute to up to 15% performance difference between
ArtiDock versions 1.5 and 2.0. Longer MD simulations and/or the usage of enhanced
sampling is expected to provide an even larger performance boost.

5. Conclusions
ArtiDock is the ML docking model, which represents a new generation of the ligand pose
prediction tools. It is based on the approach of utilizing lightweight and fast model
architecture in conjunction with the training dataset augmented with artificial protein binding
pockets and ensembles of representative conformations from massive MD simulations of
existing protein-ligand complexes. This allows the model to achieve accuracy, which is
superior to all major ML docking techniques and conventional docking programs on
PoseBusters v3 dataset, while being from one to three orders of magnitude faster. Thus
ArtiDock is an appealing solution for high throughput ligand-protein docking at the time of
writing. ArtiDock v2.0 is currently integrated into the production virtual screening pipeline of
the Receptor.AI drug discovery platform. It is also being prepared to be deployed on the
Nvidia BioNeMo cloud platform for drug development.
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RZ participated in developing strategies for efficient model training and tuning. IK, PH, and
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