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 Introduction 
 The  ability  to  discriminate  between  several  highly  similar  protein  targets  is  crucial 
 for  modern  precision  and  individualised  medicine.  Modern  drugs  are  expected  to 
 be  laser-focused  on  disease-related  protein  variants,  which  are  specific  to  a 
 particular  tumour,  tissue,  cell  type  or  the  specific  patient  genotype  while  having  no 
 adverse off-target effects. 

 In  order  to  achieve  the  goal  of  ultra-selectivity  to  similar  protein  variants,  we  created 
 a  unique  technology  of  selectivity  prediction  for  the  candidate  compounds.  It  is 
 based  on  molecular  dynamics  simulations  of  the  target  of  interest  (on-target)  and 
 its  off-targets;  the  algorithm  for  selecting  “selective”  frames  of  the  on-target 
 trajectory  (it  finds  most  dissimilar  ones  based  on  comparing  pharmacophores  and 
 shape  of  on/off-binding  pockets;  diffusion  model  for  AI-docking  of  compounds  and 
 AI-rescoring  model  for  estimation  of  binding  poses  (it  was  trained  using 
 compounds with known biological activities). 

 This  stack  of  technologies  is  incorporated  into  the  Receptor.AI  drug  discovery 
 platform  and  is  available  for  any  protein  for  which  target  and  off-target  variants 
 could be determined. 

 Our  platform  is  able  to  design  ultra-selective  small  molecules  for  active  and 
 allosteric  sites  alike  and  operates  even  for  the  most  challenging  targets  which  lack 
 known ligands or have poorly resolved structures. 

 In  order  to  test  our  platform  we  selected  a  subset  of  highly  similar  proteins  from  a 
 popular  family  of  drug  targets:  Janus  tyrosine  kinases  (JAKs).  These  proteins  are 
 involved  in  a  multitude  of  diseases,  from  cancer  to  cardiovascular  diseases, 
 inflammation  and  metabolic  disorders.  There  is  a  large  amount  of  known  ligands 
 with  reliable  activity  data  for  these  proteins,  which  allows  us  to  perform 
 comprehensive and unbiased benchmarking of our technologies. 

 General scheme of pipeline 
 1.  The  workflow  starts  with  defining  the  target  protein  and  any  number  of 

 explicit similar off-target proteins. 

 2.  The  target  and  all  off-targets  are  subject  to  all-atom  MD  simulations  in  their 
 native environment. 

 ○  The  MD  trajectories  are  processed  by  the  proprietary  clustering 
 algorithm,  which  extracts  the  sets  of  representative  protein 
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 conformations  which  account  for  overall  protein  flexibility  and  the 
 local dynamics of the binding pocket of interest. 

 ○  For  each  protein,  the  ensemble  of  the  most  relevant  conformations  is 
 formed. 

 3.  For  each  conformation  of  the  target  and  off-target  proteins,  the 
 pharmacophore  model  of  the  binding  pocket  is  generated.  These  models  are 
 then  aligned  and  analysed  by  our  proprietary  feature  detection  algorithm, 
 which  emphasises  the  pharmacophore  bits  that  are  unique  and  specific  to 
 the target protein. 

 ○  The  resulting  model  is  called  a  differential  pharmacophore  and 
 represents  both  structural  and  dynamical  distinctive  features  of  the 
 binding pocket in the target protein. 

 ○  The  differential  pharmacophore  is  then  used  in  a  diffusion-based  AI 
 model. 

 4.  The  diffusion-based  AI  model  is  trained  to  predict  3D  ligand  conformers  that 
 match the binding pocket. 

 ○  The  model  starts  from  the  random  distribution  of  the  ligand  poses 
 and  estimates  the  best  matching  pose  by  modelling  the  process  of 
 inverted diffusion. 

 ○  The  model  works  in  the  same  manner  as  image-generating  AI  that 
 “emerges” the picture from the random pixels. 

 ○  Diffusion-based  model  is  trained  on  ~900M  molecules  from  the  Zinc 
 database.  For  each  molecule,  ~100  3D  conformers  are  generated,  and 
 for each conformer, an artificial binding pocket is simulated. 

 5.  This  model  is  used  for  the  high-throughput  screening  of  the  virtual  chemical 
 space.  For  each  compound,  the  model  “emerges”  the  conformer  with  the 
 best fit to the binding pocket. 

 6.  Finally,  the  results  of  screening  with  a  diffusion-based  model  rescore  using 
 the  set  of  custom  AI  scoring  functions,  and  a  set  of  active  and  selective 
 compounds is returned along with the best binding pose for each of them. 
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 Figure 1.  The scheme of the pipeline used in this  study. 

 General characteristics of the pipeline 
 ●  Length of molecular dynamics simulation of on/off-target: ~500 ns. 

 ●  Number  of  frames  in  the  equilibrated  parts  of  trajectories:  ~1000  per 
 trajectory. 

 ●  Number of frames after initial clustering: ~200 per trajectory. 

 ●  Number  of  frames  after  pharmacophore  and  shape  comparison  and 
 secondary  clustering:  ~7  “selective”  frames  subject  to  ensembled  docking 
 using the diffusion-based model. 

 ●  Chemical space: stock compounds ~5M (~2.5M after basic ADMET filtering). 

 ●  Docking runs with AI-rescoring: ~5M 

 ●  Visual inspection ~2000 compounds per frame (~14000 altogether). 
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 ●  Final compounds for biological testing: ~500. 

 Benchmarks 

 Target characterisation 

 The selectivity of compounds was determined against JAKs - JAK1, JAK2,  JAK3, 
 TYK2 (kinase domains, JH1). 

 The overall sequence identity between the family members is rather small in the 
 case of JAKs (50-60%)(Fig. 2). 

 Figure. 2.  Sequence identity matrices of JAK proteins  used in the study. 

 Despite  these  differences,  the  family  could  be  characterised  as  highly  similar 
 proteins when comparing their functional binding pockets. 

 The  active  site  of  JAKs  contains  18  functionally  important  residues,  but  only  2  of 
 them  are  variable,  while  the  rest  is  either  identical  or  highly  conservative.  These 
 residues are shown in Fig. 3 and 4. 
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 Figure 3.  Sequence alignment of JAKs used in this  study. 
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 Figure 4.  Structural alignment of JAKs used in this  study. Sidechains of the variable 
 residues are shown. 

 Our  selectivity  prediction  technique  emphasises  the  differences  in  a  few  variable 
 residues  automatically  based  on  sequence  and  structural  similarity  between  target 
 and off-target proteins. 

 Binding sites prediction 
 For binding site prediction, we used several algorithms: 

 ●  PUResNet  -  predicting  protein-ligand  binding  sites  using  deep  convolutional 
 neural networks. 

 ●  pyKVFinder  -  Python  package  for  biomolecular  cavity  detection  and 
 characterisation. 

 ●  fpocket  - protein pocket detection algorithm based  on Voronoi tessellation. 

 ●  mdpocket  -  the  extension  of  fpocket  to  analyse  conformational  ensembles  of 
 proteins in MD trajectories. 
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 Compounds  with  known  activities  to  JAKs,  which  are  available  in  the  public 
 databases  interact  with  ATP-binding  sites  of  kinases  only.  That's  why  in  this  study 
 we  used  ATP-binding  sites  predicted  using  PUResNet  that  coincide  with  the 
 ATP-binding pocket (Fig. 5). 

 JAK1                                                                       JAK2 

 JAK3                                                                        TYK2 

 Figure 5.  ATP-binding sites of JAKs used in this study.  The volume of the predicted 
 binding pocket is shown by spheres. 

 In addition to this, we also demonstrated that used techniques of pocket prediction 
 are able to detect the allosteric binding sites for subsequent rational design of 
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 compounds which bind to them. However, due to the lack of publicly available data 
 about allosteric kinase binders we didn’t use allosteric sites for benchmarking. 

 Figure 6.  Predicted allosteric binding sites of JAK2.  The Pseudokinase domain is 
 shown in dark red, the kinase domain is blue, SH2 and FERM domains are grey. The 
 allosteric site in the pseudokinase domain is shown. 

 Amino acid residues of all binding pockets are detailed in Table 1. 

 Table 1.  Amino acid residues of all selected JAKs  binding pockets. 

 Pocket  Residues 

 JAK1 
 881  882  884  885  887  889  906  908  925  938  956  957  958  959  960 
 962 963 966 1003 1007 1008 1010 1020 1021 1023 1024 

 JAK2 
 855  856  858  859  861  863  880  882  898  911  929  930  931  932  933  935 
 936 939 976 980 981 983 993 994 996 997 

 JAK2 
 (allosteric 1) 

 671 672 673 674 675 677 678 703 704 707 711 712 714 715 716 718 719 

 JAK2 
 (allosteric 2) 

 529  530  531  532  535  592  593  596  597  600  669  670  671  672  700  701 
 702 703 704 705 706 730 
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 JAK3 
 828  829  831  832  834  836  853  855  871  884  902  903  904  905  906 
 908 909 912 949 953 954 956 966 967 969 970 

 TYK2 
 903  904  906  907  909  911  928  930  947  960  978  979  980  981  982  984 
 985 988 1023 1027 1028 1030 1040 1041 1043 1044 

 Chemical space 
 6830  compounds  with  known  activity  against  the  JAKs  family  were  taken  from  the 
 ChEMBL  database.  All  these  compounds  have  activity  against  at  least  two  kinases 
 from the family, which allows us to assess their selectivity. 

 The  number  of  selective/non-selective  compounds  for  each  kinase  according  to  this 
 criterion in available experimental data is shown in Table 2. 

 Table 2.  The number of selective/non-selective compounds  for each target kinase. 

 On-/Off-target 

 JAK1  1866 / 2321 

 JAK2  780 / 4147 

 JAK3  432 / 2329 

 TYK2  102 / 1242 

 It  is  clearly  seen  that  the  dataset  is  significantly  skewed.  The  largest  number  of 
 compounds  is  found  for  JAK1,  which  is  the  most  commonly  used  as  a  primary  drug 
 target in its family. 

 In  order  to  establish  a  reliable  measure  of  compound  selectivity,  we  plotted  the 
 ratio  of  the  number  of  selective  to  non-selective  compounds  as  a  function  of  their 
 experimental activity ratio (Figure 7). 
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 Figure 7.  The plot Selective / Non-selective versus  Activity ratio for JAKs. 

 An  activity  ratio  of  ~5  is  a  good  threshold  for  establishing  the  compound’s  selectivity 
 for JAKs. 

 Main experiment 

 Molecular dynamics simulation 

 All-atom  molecular  dynamics  simulations  were  performed  in  GROMACS  2023  with 
 CHARMM36  force  field.  A  rigorous  equilibration  procedure  with  four  stages  of 
 gradually  reducing  position  restraints  was  utilised  to  keep  the  structure  from 
 undesirable  conformational  changes  in  the  first  stages  of  dynamics.  Data  was 
 collected from at least ~400 ns of the equilibrated parts of trajectories. 

 Analysis of obtained trajectories 

 The equilibrated part of each trajectory was initially clustered by RMSD of selected 
 amino acids (Table 1) forming the ATP-binding site using the agglomerative 
 clustering while keeping only the cluster centres which are at least 0.1 nm apart. 
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 In-house tools based on Pteros molecular modelling library were used. Table 3 
 summarises information about the clustering. 

 Table 3.  Statistics of MD trajectories and their clusterisation. 

 Number of 
 clusters 

 Number of atoms  Number of 
 residues 

 JAK1  155  4630  287 

 JAK2  138  4889  297 

 JAK3  89  4617  290 

 TYK2  168  4685  291 

 The  Elbow method  was used for selecting the optimal  number of clusters for an 
 agglomerative clustering algorithm. During this process, KMeans clustering is 
 performed first with different parameter K. The point at which the sum of all 
 distances between the cluster centres stops decreasing rapidly is the optimal 
 number of clusters (Figure 8, the approach is described in detail  here  ).  The optimal 
 number of clusters are: JAK1 - 4, JAK2, JAK3 and TYK2 - 5. 
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 Figure 8.  The plots for choosing the optimal number  of clusters using the Elbow 
 method. * - sum of squared distances of samples to their closest cluster centre. 

 Results of agglomerative clustering are shown in Figure 9 as projections on the first 
 two principal components computed from the covariance matrices of the residues 
 used for clustering. 
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 Figure 9.  Results of clustering of JAKs trajectories.  Each point on the plots 
 corresponds to one initial cluster while the colours denote the final clusters 
 obtained by the Elbow method. 

 Generation  and  comparison  of  the  binding  pockets 
 pharmacophores 

 We performed 4 separate experiments for each of the JAKs where the other three 
 kinases were considered as off-targets. For each experiment, the amino acid 
 residues of the on-target and off-target binding sites in each frame were converted 
 to custom 3D pharmacophores. In addition, two types of shape fingerprints were 
 computed. 

 3D pharmacophore fingerprint 

 3D pharmacophore fingerprints encode seven types of features (Donor, Acceptor, 
 Aromatic, Hydrophobic, Halogen, Basic, and Acidic) and the distances between 
 them. All possible triangles and quartets of detected features are enumerated 
 (Figure 10) and encoded into a bit vector (Figure 11). 
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 Figure 10.  Example of forming triangles of features  (only one of the possible 
 combinations for molecules with 3-6 features is demonstrated). 
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 Figure 11.  General principles of encoding of 3D pharmacophore  fingerprints. 
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 Shape fingerprints 

 Shape fingerprints of the binding pockets are encoded by a 3D vesicle model. The 
 first fingerprint is used to describe the volume mismatch between the molecules, 
 while the second - to describe their volume overlap. 

 Tanimoto similarities between fingerprints 

 After the calculation of fingerprints, pairwise Tanimoto similarity scores (between all 
 selected conformations of on-target and off-targets) were calculated for each of the 
 kinases. Three similarity matrices were obtained (one per fingerprint), which were 
 averaged into the general similarity matrix. 

 Clustering of similarity matrix and choosing “selective” frames 

 Obtained similarity matrices for JAKs frames were clustered with a proprietary 
 algorithm to choose the clusters of “selective” frames that differentiate target and 
 off-targets the best. Those frames are the most distinct from all the off-target 
 frames. An example of such clustering (for JAK1 as an on-target) is shown in Figure 
 12. 
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 Figure 12.  Results of similarity matrix clustering between JAK1 as an on-target and 
 JAK2, LAK3 and TYK2 as off-targets. Green rectangles show the clusters of the most 
 “selective” conformations. 

 From 5 to 6  “selective” conformations were obtained for each of the studied 
 kinases, which were subject to the virtual screening. 

 Virtual screening using a diffusion-based AI model 

 Obtained  “selective”  conformations  were  used  for  docking  of  test  compounds  using 
 the  diffusion-based  generative  AI  model,  which  is  called  ArtiDock.  It  was  trained  to 
 fit  a  molecule  into  a  defined  binding  pocket  as  a  drop-in  replacement  of 
 conventional  docking.  During  the  training  phase,  the  position  of  each  input  ligand 
 in  a  complex  undergoes  modifications  caused  by  translational,  rotational,  and 
 torsional  noise,  which  can  be  referred  to  as  “forward  diffusion”  (Figure  13).  The 
 model  then  learns  how  to  reverse  the  diffusion  process  and  reconstruct  the  ideal 
 ligand  pose  from  its  random  orientation  and  conformation.  This  method  enables 
 the  generation  of  numerous  alternative  ligand  poses  throughout  the  inference 
 process.  The  best  pose  is  chosen  based  on  the  custom  scoring  function,  which 
 takes  into  account  favourable  non-covalent  interactions  and  unfavourable  contacts 
 within the formed complex. 
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 Figure  13  .  The  reverse  diffusion  from  a  random  ligand  pose  (top-left)  to  the  final 
 predicted  ligand  pose  (bottom-right).  The  pocket  carbon  atoms  are  in  pale  red,  and 
 the ligand carbon atoms are in green. 

 Protein-ligand  complexes  that  had  been  experimentally  determined  as  well  as  the 
 simulated  conformer-specific  “synthetic”  binding  pockets  were  included  in  the 
 training  dataset.  The  generation  of  synthetic  data  is  performed  with  our  proprietary 
 SynProt  algorithm,  which  mimics  the  statistical  distribution  of  non-covalent 
 interactions  in  real  complexes  protein-ligand  complexes.  The  inclusion  of  the 
 simulated  complexes  improved  the  model  performance.  For  the  PoseBuster 
 dataset  (  10.48550/arXiv.2308.05777)  ,  the  ArtiDock  outperforms  all  the  best  modern 
 AI  docking  techniques,  including  DiffDock  and  AlphaFold-latest  and  conventional 
 docking such as Glide, as shown in Figure 14. 

 Figure 14.  Performance comparison of classical and deep-learning-based docking 
 techniques for the PoseBuster dataset. 
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 Figure  15  shows  the  comparison  of  individual  PoseBuster  structural  metrics  for 
 ArtiDock,  DiffDock  and  AlphaFold-latest  -  the  newly  announced  AlphaFold  version, 
 which  is  capable  of  predicting  the  protein-ligand  complexes.  It  is  clearly  seen  that 
 ArtiDock  significantly  outperforms  DiffDock  for  all  the  metrics,  which  are  not 
 predicted  with  100%  accuracy.  ArtiDock  even  outperforms  AlphaFold-latest  for 
 tetrahedral chirality. 

 Figure 15.  Comparison of individual PoseBuster metrics  for ArtiDock, DiffDock and 
 the AlphaFold-latest. 

 It  is  worth  emphasizing  that  although  AlphaFold-latest  provides  the  best  overall 
 prediction  quality,  this  precision  comes  at  the  cost  of  extremely  slow  inference 
 speed. 

 Figure  16  shows  the  inference  speeds  of  all  studied  techniques.  ArtiDock  is 
 somewhat  slower  than  some  of  the  "quick  and  dirty"  AI  techniques  but  is  still  2 
 orders  of  magnitude  faster  than  DiffDock,  Vina  and  Gold  while  being  superior  to 
 them  in  quality.  The  AlphaFold-latest  is  expectedly  the  worst  performed  here.  It  is 
 three  orders  of  magnitude  slower  than  ArtiDock,  which  makes  it  unusable  for  the 
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 virtual screening - the area where the technology of Receptor.AI shines. 

 Figure 16.  Comparison of the inference speed of classical and deep-learning-based 
 docking techniques. 

 AI model benchmarking 

 A  series  of  pairwise  comparisons  were  performed  when  each  kinase  in  a  family  was 
 set  as  a  target  and  all  the  rest  as  off-targets.  A  compound  that  is  >5  times  more 
 active  on  the  target  kinase  than  on  the  off-target  one  was  considered  selective  to 
 the target. 

 The  scores  of  all  compounds  were  computed  using  the  algorithm,  setting  each 
 kinase  consecutively  as  a  target  and  the  other  one's  pair  as  off-targets.  The  pairwise 
 differences  between  scores  were  evaluated.  If  the  difference  is  greater  than  the 
 established  cutoff,  it  indicates  that  the  compound  is  selective  and  vice  versa.  This  is 
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 a  classical  binary  classification  task,  and  accordingly,  it  is  evaluated  by  the  standard 
 metrics  for  such  problems.  The  main  metrics  are  the  Matthews  correlation  and  the 
 F1  score,  but  a  number  of  secondary  statistical  metrics  were  also  computed.  The 
 metrics  were  computed  for  each  pair  separately.  Then  the  metrics  for  all  pairs  were 
 averaged, and the cumulative plots were built for each family. 

 Results 
 The  main  performance  metrics  of  selectivity  prediction  are  shown  in  Table  4.  The 
 Receiver  Operator  Characteristic  curves  for  the  selectivity  prediction  (averaged  for 
 all kinases) are shown in Figure 17. 

 Table 4.  Main performance metrics of selectivity prediction for JAKs. 

 Targets  MCC 
 F1- 
 score 

 ROC- 
 AUC 

 Accu- 
 racy 

 Re- 
 call 

 Preci- 
 sion 

 Speci- 
 ficity 

 NPV 
 PR- 
 AUC 

 JAK1  0.74  0.83  0.86  0.88  0.78  0.89  0.94  0.87  0.88 

 JAK2  0.63  0.8  0.81  0.81  0.75  0.85  0.87  0.78  0.86 

 JAK3  0.69  0.75  0.83  0.9  0.71  0.79  0.95  0.93  0.78 

 TYK2  0.76  0.8  0.89  0.93  0.83  0.78  0.95  0.97  0.82 

 Avera- 
 ge  0.71  0.8  0.85  0.88  0.77  0.83  0.93  0.89  0.83 
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 Figure 17.  The  Receiver Operator Characteristic (ROC)  curve  for the selectivity 
 prediction (averaged for all kinases). 

 Conclusions 
 ●  Our  selectivity  prediction  workflow  shows  excellent  overall  performance  and 

 a good balance between false positives and false negatives rate. 

 ●  The  technique  is  able  to  successfully  recognise  and  prioritise  the  most 
 selective JAK ligands, which are present in the public chemical databases. 

 ●  Our  technology  allows  leveraging  very  minor  differences  between  the 
 proteins (2-3 amino acids in the functionally important pocket). 

 ●  Explicit  accounting  for  the  protein  conformational  mobility  eliminates  the 
 bias  of  the  non-native  crystal  structures  and  embraces  the  transient 
 dynamics  of  the  binding  pockets,  which  contributes  significantly  to 
 selectivity. 
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 Appendix: Performance metrics cheat sheet 

 Condition types 
 Condition positive (P):  the number of real positive  cases in the data. 

 Condition negative (N):  the number of real negative  cases in the data. 

 Result types 
 True positive (TP):  A test result that correctly indicates  the presence of a condition or 
 characteristic. 

 True negative (TN):  A test result that correctly indicates  the absence of a condition or 
 characteristic. 

 False positive (FP):  A test result which wrongly indicates  that a particular condition or 
 attribute is present. 

 False negative (FN):  A test result which wrongly indicates  that a particular condition or 
 attribute is absent. 

 Metrics’ description 
 Accuracy (ACC): 

 𝐴𝐶𝐶 =  𝑇𝑃 + 𝑇𝑁 
 𝑃 + 𝑁 =  𝑇𝑃    + 𝑇𝑁 

 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 Accuracy is how close a given set of measurements (observations or readings) are 
 to their true value. 

 Precision or positive predictive value (PPV): 

 𝑃𝑃𝑉 =  𝑇𝑃 
 𝑇𝑃 + 𝐹𝑃 

 Precision is how close the measurements are to each other. 

 Recall or true positive rate (TPR): 

 𝑇𝑃𝑅 =  𝑇𝑃 
 𝑃 =  𝑇𝑃 

 𝑇𝑃 + 𝐹𝑁 

 True positive rate is the probability of a positive test result, conditioned on the 
 individual truly being positive. 
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 F1-score: 

 𝐹 
 1 

=  2 ×  𝑃𝑃𝑉 × 𝑇𝑃𝑅 
 𝑃𝑃𝑉 + 𝑇𝑃𝑅 =  2  𝑇𝑃 

 2  𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

 F-score  is  a  measure  of  a  test's  accuracy.  It  is  calculated  from  the  precision  and 
 recall  of  the  test,  where  the  precision  is  the  number  of  true  positive  results  divided 
 by  the  number  of  all  positive  results,  including  those  not  identified  correctly,  and 
 the  recall  is  the  number  of  true  positive  results  divided  by  the  number  of  all 
 samples  that  should  have  been  identified  as  positive.  The  F1  score  is  the  harmonic 
 mean  of  precision  and  recall.  It  thus  symmetrically  represents  both  precision  and 
 recall in one metric. 

 Matthews correlation coefficient (MCC): 

 𝑀𝐶𝐶 =  𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁 
( 𝑇𝑁 + 𝐹𝑃 )×( 𝑇𝑃 + 𝐹𝑁 )×( 𝑇𝑁 + 𝐹𝑃 )×( 𝑇𝑁 + 𝐹𝑁 )

 MCC is used as a measure of the quality of binary (two-class) classifications. The MCC 
 takes values between -1 and 1. A score of 1 indicates perfect agreement. 

 Specificity or true negative rate (TNR): 

 𝑇𝑁𝑅 =  𝑇𝑁 
 𝑁 =  𝑇𝑁 

 𝑇𝑁 + 𝐹𝑃 

 Specificity (true negative rate) is the probability of a negative test result, 
 conditioned on the individual truly being negative. 

 NPV: 

 𝑁𝑃𝑉 =  𝑇𝑁 
 𝑇𝑁 + 𝐹𝑁 

 The positive and negative predictive values (PPV and NPV respectively) are the 
 proportions of positive and negative results in statistics and diagnostic tests that 
 are true positive and true negative results, respectively. 
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