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Introduction

The ability to discriminate between several highly similar protein targets is crucial
for modern precision and individualised medicine. Modern drugs are expected to
be laser-focused on disease-related protein variants, which are specific to a
particular tumour, tissue, cell type or the specific patient genotype while having no
adverse off-target effects.

In order to achieve the goal of ultra-selectivity to similar protein variants, we created
a unique technology of selectivity prediction for the candidate compounds. It is
based on molecular dynamics simulations of the target of interest (on-target) and
its off-targets; the algorithm for selecting “selective” frames of the on-target
trajectory (it finds most dissimilar ones based on comparing pharmacophores and
shape of on/off-binding pockets; diffusion model for Al-docking of compounds and
Al-rescoring model for estimation of binding poses (it was trained using
compounds with known biological activities).

This stack of technologies is incorporated into the Receptor.Al drug discovery
platform and is available for any protein for which target and off-target variants
could be determined.

Our platform is able to design ultra-selective small molecules for active and
allosteric sites alike and operates even for the most challenging targets which lack
known ligands or have poorly resolved structures.

In order to test our platform we selected a subset of highly similar proteins from a
popular family of drug targets: Janus tyrosine kinases (JAKs). These proteins are
involved in a multitude of diseases, from cancer to cardiovascular diseases,
inflammmation and metabolic disorders. There is a large amount of known ligands
with reliable activity data for these proteins, which allows us to perform
comprehensive and unbiased benchmarking of our technologies.

General scheme of pipeline

1.  The workflow starts with defining the target protein and any number of
explicit similar off-target proteins.

2. The target and all off-targets are subject to all-atom MD simulations in their
native environment.

o The MD trajectories are processed by the proprietary clustering
algorithm, which extracts the sets of representative protein



conformations which account for overall protein flexibility and the
local dynamics of the binding pocket of interest.

o For each protein, the ensemble of the most relevant conformations is
formed.

3. For each conformation of the target and off-target proteins, the
pharmacophore model of the binding pocket is generated. These models are
then aligned and analysed by our proprietary feature detection algorithm,
which emphasises the pharmacophore bits that are unique and specific to
the target protein.

o The resulting model is called a differential pharmacophore and
represents both structural and dynamical distinctive features of the
binding pocket in the target protein.

o The differential pharmacophore is then used in a diffusion-based Al
model.

4,  The diffusion-based Al model is trained to predict 3D ligand conformers that
match the binding pocket.

o The model starts from the random distribution of the ligand poses
and estimates the best matching pose by modelling the process of
inverted diffusion.

o The model works in the same manner as image-generating Al that
“emerges” the picture from the random pixels.

o Diffusion-based model is trained on ~900M molecules from the Zinc
database. For each molecule, ~100 3D conformers are generated, and
for each conformer, an artificial binding pocket is simulated.

5. This model is used for the high-throughput screening of the virtual chemical
space. For each compound, the model “emerges” the conformer with the
best fit to the binding pocket.

6. Finally, the results of screening with a diffusion-based model rescore using
the set of custom Al scoring functions, and a set of active and selective
compounds is returned along with the best binding pose for each of them.



Figure 1. The scheme of the pipeline used in this studly.

General characteristics of the pipeline

Length of molecular dynamics simulation of on/off-target: ~500 ns.

Number of frames in the equilibrated parts of trajectories. ~1000 per
trajectory.

Number of frames after initial clustering: ~200 per trajectory.

Number of frames after pharmacophore and shape comparison and
secondary clustering: ~7 “selective” frames subject to ensembled docking
using the diffusion-based model.

Chemical space: stock compounds ~5M (~2.5M after basic ADMET filtering).
Docking runs with Al-rescoring: ~5M

Visual inspection ~2000 compounds per frame (~14000 altogether).



e Final compounds for biological testing: ~500.

Benchmarks

Target characterisation

The selectivity of compounds was determined against JAKs - JAK], JAK2, JAK3,
TYK2 (kinase domains, JH1).

The overall sequence identity between the family members is rather small in the
case of JAKs (50-60%)(Fig. 2).
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Figure. 2. Sequence identity matrices of JAK proteins used in the study.

Despite these differences, the family could be characterised as highly similar
proteins when comparing their functional binding pockets.

The active site of JAKs contains 18 functionally important residues, but only 2 of
them are variable, while the rest is either identical or highly conservative. These

residues are shown in Fig. 3 and 4.
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Figure 3. Sequence alignment of JAKs used in this study.



Figure 4. Structural alignment of JAKs used in this study. Sidechains of the variable
residues are shown.

Our selectivity prediction technigue emphasises the differences in a few variable
residues automatically based on sequence and structural similarity between target
and off-target proteins.

Binding sites prediction
For binding site prediction, we used several algorithms:

e PUResNet - predicting protein-ligand binding sites using deep convolutional
neural networks.

e pyvKVFinder - Python package for biomolecular cavity detection and
characterisation.

e fpocket - protein pocket detection algorithm based on Voronoi tessellation.

e mdpocket - the extension of fpocket to analyse conformational ensembles of
proteins in MD trajectories.
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Compounds with known activities to JAKs, which are available in the public
databases interact with ATP-binding sites of kinases only. That's why in this study
we used ATP-binding sites predicted using PUResNet that coincide with the
ATP-binding pocket (Fig. 5).

JAKI JAK?2

JAK3 TYK2

Figure 5. ATP-binding sites of JAKs used in this study. The volume of the predicted
binding pocket is shown by spheres.

In addition to this, we also demonstrated that used techniques of pocket prediction
are able to detect the allosteric binding sites for subsequent rational design of



compounds which bind to them. However, due to the lack of publicly available data
about allosteric kinase binders we didn't use allosteric sites for benchmarking.

Figure 6. Predicted allosteric binding sites of JAK2. The Pseudokinase domain is
shown in dark red, the kinase domain is blue, SH2 and FERM domains are grey. The
allosteric site in the pseudokinase domain is shown.

Amino acid residues of all binding pockets are detailed in Table 1.

Table 1. Amino acid residues of all selected JAKs binding pockets.

Pocket Residues

S 881 882 884 885 887 889 906 908 925 938 956 957 958 959 960
962 963 966 1003 1007 1008 1010 1020 1021 1023 1024

A 855 856 858 859 861 863 880 882 898 911 929 930 931 932 933 935
936 939 976 980 981 983 993 994 996 997

JAK2 . 671672 673 674 675 677 678 703 704 707 711 712 714 715 716 718 719

(allosteric 1)

JAK2 529 530 531 532 535 592 593 596 597 600 669 670 671 672 700 701

(allosteric 2) | 702 703 704 705 706 730
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ks 828 829 831 832 834 836 853 855 871 884 902 903 904 905 906
908 909 912 949 953 954 956 966 967 969 970

ko 903 904 906 907 909 911 928 930 947 960 978 979 980 981 982 984
985 988 1023 1027 1028 1030 1040 1041 1043 1044

Chemical space

6830 compounds with known activity against the JAKs family were taken from the
ChEMBL database. All these compounds have activity against at least two kinases
from the family, which allows us to assess their selectivity.

The number of selective/non-selective compounds for each kinase according to this
criterion in available experimental data is shown in Table 2.

Table 2. The number of selective/non-selective compounds for each target kinase.

On-/Off-target
JAKI 1866 / 2321
JAK2 780 / 4147
JAK3 432 /2329
TYK2 102 /1242

It is clearly seen that the dataset is significantly skewed. The largest number of
compounds is found for JAK]1, which is the most commonly used as a primary drug
target in its family.

In order to establish a reliable measure of compound selectivity, we plotted the
ratio of the number of selective to non-selective compounds as a function of their
experimental activity ratio (Figure 7).

n
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Figure 7. The plot Selective / Non-selective versus Activity ratio for JAKs.

An activity ratio of ~5 is a good threshold for establishing the compound’s selectivity
for JAKs.

Main experiment

Molecular dynamics simulation

All-atom molecular dynamics simulations were performed in GROMACS 2023 with
CHARMMZ36 force field. A rigorous equilibration procedure with four stages of
gradually reducing position restraints was utilised to keep the structure from
undesirable conformational changes in the first stages of dynamics. Data was
collected from at least ~400 ns of the equiilibrated parts of trajectories.

Analysis of obtained trajectories

The equilibrated part of each trajectory was initially clustered by RMSD of selected
amino acids (Table 1) forming the ATP-binding site using the agglomerative
clustering while keeping only the cluster centres which are at least 0.1 nm apart.
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In-house tools based on Pteros molecular modelling library were used. Table 3
summarises information about the clustering.

Table 3. Statistics of MD trajectories and their clusterisation.

Number of Number of atoms | Number of
clusters residues
JAKI 155 4630 287
JAK?2 138 4889 297
JAK3 89 4617 290
TYK2 168 4685 291

The Elbow method was used for selecting the optimal number of clusters for an

agglomerative clustering algorithm. During this process, KMeans clustering is
performed first with different parameter K. The point at which the sum of all

distances between the cluster centres stops decreasing rapidly is the optimal
number of clusters (Figure 8, the approach is described in detail here). The optimal
number of clusters are: JAK] - 4, JAK2, JAK3 and TYK2 - 5.

13
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Figure 8. The plots for choosing the optimal number of clusters using the Elbow
method. * - sum of squared distances of samples to their closest cluster centre.

Results of agglomerative clustering are shown in Figure 9 as projections on the first
two principal components computed from the covariance matrices of the residues
used for clustering.
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Figure 9. Results of clustering of JAKs trajectories. Each point on the plots
corresponds to one initial cluster while the colours denote the final clusters
obtained by the Elbow method.

Generation and comparison of the binding pockets
pharmacophores

We performed 4 separate experiments for each of the JAKs where the other three
kinases were considered as off-targets. For each experiment, the amino acid
residues of the on-target and off-target binding sites in each frame were converted
to custom 3D pharmacophores. In addition, two types of shape fingerprints were
computed.

3D pharmacophore fingerprint

3D pharmacophore fingerprints encode seven types of features (Donor, Acceptor,
Aromatic, Hydrophobic, Halogen, Basic, and Acidic) and the distances between
them. All possible triangles and quartets of detected features are enumerated
(Figure 10) and encoded into a bit vector (Figure 11).

15



Figure 10. Example of forming triangles of features (only one of the possible
combinations for molecules with 3-6 features is demonstrated).
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Figure 11. General principles of encoding of 3D pharmacophore fingerprints.
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Shape fingerprints

Shape fingerprints of the binding pockets are encoded by a 3D vesicle model. The
first fingerprint is used to describe the volume mismatch between the molecules,
while the second - to describe their volume overlap.

Tanimoto similarities between fingerprints

After the calculation of fingerprints, pairwise Tanimoto similarity scores (between all
selected conformations of on-target and off-targets) were calculated for each of the
kinases. Three similarity matrices were obtained (one per fingerprint), which were
averaged into the general similarity matrix.

Clustering of similarity matrix and choosing “selective” frames

Obtained similarity matrices for JAKs frames were clustered with a proprietary
algorithm to choose the clusters of “selective” frames that differentiate target and
off-targets the best. Those frames are the most distinct from all the off-target
frames. An example of such clustering (for JAK1 as an on-target) is shown in Figure
12.
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Figure 12. Results of similarity matrix clustering between JAK1 as an on-target and
JAK2, LAK3 and TYK2 as off-targets. Green rectangles show the clusters of the most
“selective” conformations.

From 5to 6 “selective” conformations were obtained for each of the studied
kinases, which were subject to the virtual screening.

Virtual screening using a diffusion-based Al model

Obtained “selective” conformations were used for docking of test compounds using
the diffusion-based generative Al model, which is called ArtiDock. It was trained to
fit a molecule into a defined binding pocket as a drop-in replacement of
conventional docking. During the training phase, the position of each input ligand
in a complex undergoes modifications caused by translational, rotational, and
torsional noise, which can be referred to as “forward diffusion” (Figure 13). The
model then learns how to reverse the diffusion process and reconstruct the ideal
ligand pose from its random orientation and conformation. This method enables
the generation of numerous alternative ligand poses throughout the inference
process. The best pose is chosen based on the custom scoring function, which
takes into account favourable non-covalent interactions and unfavourable contacts
within the formed complex.
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Figure 13. The reverse diffusion from a random ligand pose (top-left) to the final
predicted ligand pose (bottom-right). The pocket carbon atoms are in pale red, and
the ligand carbon atoms are in green.

Protein-ligand complexes that had been experimentally determined as well as the
simulated conformer-specific “synthetic” binding pockets were included in the
training dataset. The generation of synthetic data is performed with our proprietary
SynProt algorithm, which mimics the statistical distribution of non-covalent
interactions in real complexes protein-ligand complexes. The inclusion of the
simulated complexes improved the model performance. For the PoseBuster
dataset (10.48550/arXiv.2308.05777), the ArtiDock outperforms all the best modern
Al docking techniques, including DiffDock and AlphaFold-latest and conventional
docking such as Glide, as shown in Figure 14.

Figure 14. Performmance comparison of classical and deep-learning-based docking
techniques for the PoseBuster dataset.

20



Figure 15 shows the comparison of individual PoseBuster structural metrics for
ArtiDock, DiffDock and AlphaFold-latest - the newly announced AlphaFold version,
which is capable of predicting the protein-ligand complexes. It is clearly seen that
ArtiDock significantly outperforms DiffDock for all the metrics, which are not
predicted with 100% accuracy. ArtiDock even outperforms AlphaFold-latest for
tetrahedral chirality.

Figure 15. Comparison of individual PoseBuster metrics for ArtiDock, DiffDock and
the AlphaFold-latest.

It is worth emphasizing that although AlphaFold-latest provides the best overall
prediction quality, this precision comes at the cost of extremely slow inference
speed.

Figure 16 shows the inference speeds of all studied techniques. ArtiDock is
somewhat slower than some of the "quick and dirty" Al techniques but is still 2
orders of magnitude faster than DiffDock, Vina and Gold while being superior to
them in quality. The AlphaFold-latest is expectedly the worst performed here. It is
three orders of magnitude slower than ArtiDock, which makes it unusable for the
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virtual screening - the area where the technology of Receptor.Al shines.

Figure 16. Comparison of the inference speed of classical and deep-learning-based
docking techniques.

Al model benchmarking

A series of pairwise comparisons were performed when each kinase in a family was
set as a target and all the rest as off-targets. A compound that is >5 times more
active on the target kinase than on the off-target one was considered selective to
the target.

The scores of all compounds were computed using the algorithm, setting each
kinase consecutively as a target and the other one's pair as off-targets. The pairwise
differences between scores were evaluated. If the difference is greater than the
established cutoff, it indicates that the compound is selective and vice versa. This is
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a classical binary classification task, and accordingly, it is evaluated by the standard
metrics for such problems. The main metrics are the Matthews correlation and the
F1 score, but a number of secondary statistical metrics were also computed. The
metrics were computed for each pair separately. Then the metrics for all pairs were
averaged, and the cumulative plots were built for each family.

Results

The main performance metrics of selectivity prediction are shown in Table 4. The
Receiver Operator Characteristic curves for the selectivity prediction (averaged for

all kinases) are shown in Figure 17.

Table 4. Main performance metrics of selectivity prediction for JAKs.

Targets MCC

JAKI 0.74
JAK2 0.63
JAK3 0.69
TYK2 0.76
Avera-

0.71
ge

F1-
score

0.83

0.8

0.75

0.8

0.8

ROC-
AUC

0.86

0.81

0.83

0.89

0.85

Accu-
racy

0.88

0.81

0.9

0.93

0.88

Re-
call

0.78

0.75

0.71

0.83

0.77

Preci-
sion

0.89

0.85

0.79

0.78

0.83

Speci-
ficity

0.94

0.87

0.95

0.95

0.93

NPV

0.87

0.78

0.93

0.97

0.89

PR-
AUC

0.88

0.86

0.78

0.82

0.83
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Figure 17. The Receiver Operator Characteristic (ROC) curve for the selectivity
prediction (averaged for all kinases).

Conclusions

e Our selectivity prediction workflow shows excellent overall performance and
a good balance between false positives and false negatives rate.

e The technique is able to successfully recognise and prioritise the most
selective JAK ligands, which are present in the public chemical databases.

e Our technology allows leveraging very minor differences between the
proteins (2-3 amino acids in the functionally important pocket).

e Explicit accounting for the protein conformational mobility eliminates the
bias of the non-native crystal structures and embraces the transient
dynamics of the binding pockets, which contributes significantly to
selectivity.
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Appendix: Performance metrics cheat sheet

Condition types

Condition positive (P): the number of real positive cases in the data.

Condition negative (N): the number of real negative cases in the data.

Result types

True positive (TP): A test result that correctly indicates the presence of a condition or
characteristic.

True negative (TN): A test result that correctly indicates the absence of a condition or
characteristic.

False positive (FP): A test result which wrongly indicates that a particular condition or
attribute is present.

False negative (FN): A test result which wrongly indicates that a particular condition or
attribute is absent.

Metrics' description
Accuracy (ACC):

TP+TN TP +TN

ACC = —5 3 = ThiTN+FPTEN

Accuracy is how close a given set of measurements (observations or readings) are
to their true value.

Precision or positive predictive value (PPV):

TP

PPV = <75

Precision is how close the measurements are to each other.

Recall or true positive rate (TPR):

TP TP
TPR = P~ TP+FN

True positive rate is the probability of a positive test result, conditioned on the
individual truly being positive.
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Fl-score:

F =2 PPVXTPR 2TP
1 PPV+TPR = 2TP+FP+FN

F-score is a measure of a test's accuracy. It is calculated from the precision and
recall of the test, where the precision is the number of true positive results divided
by the number of all positive results, including those not identified correctly, and

the recall is the number of true positive results divided by the number of

all

samples that should have been identified as positive. The F1 score is the harmonic
mean of precision and recall. It thus symmmetrically represents both precision and

recall in one metric.

Matthews correlation coefficient (MCC):

MCC = TPXTN—FPXFN
\(TN+FP)x(TP+FN)X(TN+FP)x(TN+FN)

MCC is used as a measure of the quality of binary (two-class) classifications. The MCC
takes values between -1 and 1. A score of 1indicates perfect agreement.

Specificity or true negative rate (TNR):

TN TN
I'NR = N ~—  TN+FP

Specificity (true negative rate) is the probability of a negative test result,
conditioned on the individual truly being negative.

NPV:

TN

NPV == i

The positive and negative predictive values (PPV and NPV respectively) are the
proportions of positive and negative results in statistics and diagnostic tests that
are true positive and true negative results, respectively.
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