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Summary

The mechanisms linking sensation and action during learning are poorly understood. Layer 2/3 

neurons in the motor cortex might participate in sensorimotor integration and learning; they 

receive input from sensory cortex, and excite deep layer neurons, which control movement. Here 

we imaged activity in the same set of layer 2/3 neurons in the motor cortex over weeks, while 

mice learned to detect objects with their whiskers and report detection with licking. Spatially 

intermingled neurons represented sensory (touch) and motor behaviors (whisking, licking). With 

learning, the population-level representation of task-related licking strengthened. In trained mice, 

population-level representations were redundant and stable, despite dynamism of single-neuron 

representations. The activity of a subpopulation of neurons was consistent with driving licking 

triggered by touch. Our results suggest that ensembles of motor cortex neurons couple sensory 

input to multiple, related motor programs during learning.

Introduction

Animals move their sensors to collect information, and movements in turn are guided by 

sensory input. Interactions between movement and sensation underlie motor control 1 and 

complex learned behaviors, where action sequences are required to achieve success in novel 

tasks 2. The motor cortex plays important roles in learning motor skills 3–6, but its function 

in learning sensorimotor associations is unknown.

The neural circuits underlying sensorimotor integration are beginning to be mapped. 

Different motor cortex layers harbor excitatory neurons with distinct inputs and 
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projections 7–10. Outputs to motor centers in the brain stem and spinal cord arise from 

pyramidal tract (PT)-type neurons in layer (L) 5B. Within motor cortex, excitation descends 

from L2/3 to L5 9–11. Input from somatosensory cortex selectively impinges onto L2/3 

neurons 8,12. L2/3 neurons therefore link somatosensation and control of movements.

L2/3 neurons also participate in learning-related plasticity. Synapses from the 

somatosensory cortex to L2/3 neurons are critical for learning new motor skills 13 and 

support long-term potentiation 14. Learning causes plasticity in networks of L2/3 cells 5,15. 

L2/3 neurons are thus poised to organize learned movements and the underlying 

sensorimotor associations.

To define their roles in learning we imaged large L2/3 neuron populations in the vibrissal 

motor cortex (vM1), while mice learned a sensorimotor task involving whisking and object 

detection, followed by licking for a water reward. vM1 is the subdivision of the primary 

motor cortex where low intensity stimulation evokes whisker movements 8,16–18. PT-type 

neurons in vM1 project to the brainstem to control whisking 19,20 and rhythmic licking 5,21. 

Activity in the vibrissal somatosensory cortex (vS1, barrel cortex), activated by touch, 

propagates to vM1 18,22,23 to excite L2/3 neurons 8,12. L2/3 cells in vM1 thus might directly 

mediate the stimulus-response (touch-lick) association learned in the object detection task.

Tracking neuronal populations during learning is challenging because only a small fraction 

of neurons can be recorded stably over days using electrophysiological methods 24. Instead 

we imaged activity in large populations of neurons 5,25,26 over weeks while monitoring 

multiple sensory and motor variables 27,28, allowing us to relate population activity to 

behavior during learning. Activity in L2/3 cells correlated with licking, whisking and touch-

related forces. Representations of individual neurons changed with learning, but in a 

restricted manner so that licking neurons rarely changed into whisking neurons and vice 

versa. This indicates that motor cortex neurons default to represent specific behavioral 

features. In expert mice, the representation at the level of neuronal populations was stable, 

despite continuing changes at the level of individual neurons. A subpopulation of neurons 

appeared to trigger licking in response to whisker touch, suggesting that L2/3 cells in the 

motor cortex learn to link task-related sensory inputs and actions.

Results

Learning under the microscope

We trained head-fixed mice in a vibrissa-based object detection task 27, while imaging 

populations of neurons (Fig. 1a) 28. Following a sound, a pole moved to one of several target 

positions within reach of the whiskers (the “Go stimulus”) or to an out-of-reach position (the 

“No Go stimulus”)(Fig. 1b). In each trial, the pole was at one location. Target and out-of-

reach locations were arranged along the anterior-posterior axis; the out-of reach position was 

most anterior (Fig. 1a). Mice searched for the pole with one whisker row (the C row) and 

reported the pole as ‘present’ by licking, or ‘not present’ by withholding licking. Licking on 

Go trials (Hits) was rewarded with water, whereas licking on No Go trials (False Alarms) 

was punished with a time-out. Trials without licking (No Go, Correct Rejection; Go, Miss) 

were not rewarded or punished. All mice showed learning within the first 2–3 sessions (d′ > 
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0.8, one-tailed bootstrap test, p<0.001) (Fig. 1c). Performance reached expert levels after 3–

6 training sessions (d′ > 1.75, approximately 80 % correct trials, p<0.001).

We used videography and automated whisker tracking (Fig. 1a) 27 to determine the mouse’s 

whisker movements and somatosensory input. Rhythmic whisking (10 – 20 Hz) was 

superposed on slower changes in setpoint (Fig. 1d, e). Whisking was thus decomposed into 

setpoint (< 6 Hz) and amplitude (6 – 60 Hz; Methods) 29(Fig. 1d). As a measure of sensory 

input, we extracted touch-induced changes in whisker curvature, which are proportional to 

the pressure activating mechanoreceptors in the follicle 30,31.

Improved performance in the object detection task correlated with changes in motor 

behavior. Naïve mice whisked occasionally, in a manner unrelated to the trial structure (Fig. 

1e), likely reflecting the mouse’s uncertainty about the stimulus-response relationship. In 

contrast, expert mice protracted their whiskers through a large angle to search for the pole 

soon (~ 350ms) after it became available (auditory cue, Fig. 1d, e) 27. The repeatability of 

whisking across trials (ρ=0.57, p<0.001, Pearson’s correlation coefficient, Supplementary 

Fig. 1a; Methods) and the amplitude of whisker protraction during the sampling period 

(ρ=0.54, p<0.001, Supplementary Fig. 1b) increased with performance.

Licking consisted of rythmic bouts of 7.2 ± 0.45 Hz 5,21 (Fig. 1f). The timing of lick bouts 

with respect to touch became stereotyped with learning. Naïve mice licked with variable 

latencies (on Hit trials); licking even sometimes preceded touch, indicating that the mice 

were guessing. Expert mice licked shortly after first touch, and the temporal jitter of the first 

lick in a bout decreased with performance (ρ = −0.50, p < 0.001, Supplementary Fig. 1c).

Object detection thus relies on a sequence of actions, linked by sensory cues. An auditory 

cue triggers whisking during the sampling period. Contact between whisker and object 

causes licking during a response period for a water reward. Silencing vM1 indicates that this 

task requires the motor cortex. With vM1 silenced, task-dependent whisking persisted, but 

was reduced in amplitude and repeatability (Supplementary Fig. 1, 2). Task performance 

dropped, (p<0.001, permutation test, Fig. 1g, Supplementary Fig. 1e). Similar experiments 

revealed that vS1 is also critical for the object detection task (Supplementary Fig. 1f) 27,32. 

These observations imply a critical role for vM1 and vS1 in linking sensation and 

movement.

Imaging population activity across trials and behavioral sessions

L2/3 cells in vM1 could directly mediate the learned association between whisking, touch 

and licking. We thus imaged activity of layer 2/3 neurons during learning (Fig. 2). To target 

vM1 for imaging we injected AAV virus expressing tdTomato 33 into the C2 column of vS1 

and visualized red axonal fluorescence in vM1 (Fig. 2a–d) (Methods). We infected vM1 

with the genetically encoded calcium indicator GCaMP3 34. Long-term expression of 

GCaMP3 did not cause detectable damage in vivo, nor did it inhibit long-term potentiation in 

brain slices (Supplementary Fig. 3, 4).

We imaged GCaMP3-expressing neurons through an imaging window 35 in fields of view 

overlapping with the red axons (Fig. 2c–e). Images (approximately 250 neurons; 
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Supplementary Table 1), were acquired continuously (4 Hz) over sessions lasting one hour 

(280 trials; range 141 – 424). Regions of interest were drawn around individual cells to 

extract fluorescence dynamics caused by neural activity (Fig. 2e; Supplementary Fig. 5). A 

deconvolution algorithm was used to detect fluorescence events 36, corresponding to small 

bursts of action potentials (> 2)34 (Supplementary Fig. 5; Methods). Events were detected in 

10.6 % of neurons per session (Methods, Supplementary Table 1) (Fig. 2f). 43 % of all 

neurons showed activity in at least one session. All subsequent analyses were based on these 

‘events’ (286 unique neurons; > 10 events per session; 5 animals, 6 sessions per animal). 

Time series of events were aligned with recordings of behavior, such as whisking, licking, 

and touch and grouped by trial type (Hit, Correct Rejection, Miss, False Alarm) (Fig. 2g).

Intermingled representations in the motor cortex

L2/3 cells in vM1 receive strong input from vS1. What behaviors are represented by L2/3 

cells during active somatosensation? We quantified how well specific behavioral variables 

could be decoded from neural activity 37. We used Random Forests 38, a generalized form of 

regression (Methods), to decode behavior based on all neurons (Fig. 3). Each behavioral 

session was treated separately. The behavioral features measured touch (whisker curvature 

changes; Fig. 1d) and movements (whisking setpoint, whisking amplitude, licking; 

Methods; Fig. 1d, f). The algorithm used the activity of populations of neurons to fit 

individual behavioral features, taking into account dynamics within and across trials (Fig. 3). 

The explained variance (Ri
2, for the ith behavioral feature) was used to measure the quality 

of decoding.

Population activity typically accounted for the recorded behavioral features with high 

fidelity. The model captured the timing of contact between whisker and object (Fig. 3a) 

(range of R2, 0.03–0.55; for individual mice and sessions see Fig. 6a). Coding of touch in 

the motor cortex 18,22 is consistent with direct input from vS1 to the imaged neurons 8. The 

model also predicted motor behaviors (Fig. 3b–e) (whisking amplitude, range of R2, 0.22–

0.60; whisker setpoint, range of R2, 0.22–0.66; lick-rate, range of R2, 0.13–0.75). Accurate 

decoding of whisking amplitude, whisking set-point, and lick-rate suggests that vM1 

controls these slowly varying parameters, as expected from previous motor 

mapping 5,8,16,18,29,39 and neurophysiological experiments 5,29,39. The low sampling rate of 

imaging may have missed rapid modulation in neural activity 29.

We also quantified decoding as a function of the number of neurons (Supplementary Fig. 6). 

Each behavioral feature required only a tiny number (1.5 – 5.5) to reach saturating decoding. 

This suggests that the representations underlying object localization are redundant.

How do individual neurons contribute to the population representation? Correlations 

between activity of individual neurons and specific behaviors were apparent in the raw 

traces. For example, some neurons were active coincident with whisking during the 

sampling period, independent of trial type (Cell A, Fig. 2g), while other neurons were active 

only during licking (Cell B, Fig. 2g) or during other phases of the task (Supplementary Fig. 

7–13).
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To quantify neuronal representations we again used Random Forests, but here we fit 

behavioral features using single neurons. The explained variance (Ri
2, for the ith behavioral 

feature) was used to measure the quality of decoding by single neurons. Almost one half of 

the active neurons (42 %) decoded one or more of the measured behavioral features (mean 

Ri
2 for best feature, 0.22) (Supplementary Fig. 7), with varying degrees of reliability 

(Supplementary Fig. 14a–k). Shuffling trial labels dropped the quality of the fit (Ri
2 > 

Ri, shuffled
2, p < 0.05 for 351/358 neurons; 1000 shuffles; average z-score, 31; Supplementary 

Fig. 14l,m), indicating that the Random Forest algorithm captured the covariance of activity 

and behavior within trials as well as across trials.

We classified neurons into categories (‘touch’, ‘whisking’, ‘licking’), mainly based on the 

largest correlation coefficient (maximum Ri
2) (Supplementary Fig. 7). However, one of the 

trial types was sometimes more informative than for other trial types and caused the largest 

overall correlation coefficient to be overruled (Methods) (Supplementary Fig. 7–13). For 

example, the relationship between neuronal activity and whisking was only evaluated in 

trials without touch and licking (Correct Rejections). In addition, we considered correlations 

between activity and sensory variables (object location or forces acting on the whisker, 

Supplementary Fig. 10, 13, 15). For example, in Hit trials some licking neurons showed 

activity levels that varied with object location, a signature of sensory input (Supplementary 

Fig. 8, 11, 13, 15). Such neurons, which correlated with multiple behavioral features, were 

classified as ‘mixed’ neurons (see Supplementary Fig. 7 and Methods for a full explanation 

of the classification rules).

The other active neurons remained unclassified based on the measured behavioral features 

(mean Ri
2 for best feature, 0.03). However, these neurons still showed interpretable task-

related activity (Supplementary Fig. 7). Some neurons became active during errors and 

others while withholding licking 5. Together the unclassified neurons might play roles in 

cognitive processes; alternatively, they might relate to motor or sensory variables that were 

not tracked in our study. Overall, only a small fraction of active vM1 neurons expressed any 

one representation (3 % touch, 26 % whisking, 9 % licking, 4 % mixed), suggesting sparse 

coding of multiple behavioral features in vM1.

Dynamics of representations with learning

How do individual neurons change with learning? We used the classification of individual 

neurons to track changes in representations over learning (6 sessions, corresponding to 6–14 

days; Methods, Supplementary Fig. 5). Single neurons were dynamic (Fig. 4, Supplementary 

Fig. 16): cells that decoded a given feature during one session often did not contribute 

during other sessions, and vice versa. However, when a neuron was classified in different 

sessions it decoded similar behavioral features (Supplementary Table 2) so that most 

neurons were classified as part of at most one representation throughout learning (Fig. 4a, c). 

In particular, whisking neurons rarely became licking neurons and vice versa.

All response categories were detected in all animals (Fig. 4a, b; Supplementary Fig. 7) and 

the representations were spatially intermingled (Supplementary Fig. 16); nearby neurons 

were equally likely to be part of any of the representations (spatial clustering index, SCI ~ 

1.0). These data suggest that motor cortex contains intermingled representations of different 
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movements, and that individual neurons are primed to participate in controlling specific 

movements.

Learning also altered the timing of neuronal activity. In naïve mice activity was distributed 

uniformly across the trial (Fig. 5a). With learning, activity of the classified neurons (but not 

the unclassified neurons) shifted towards the sampling period (Fig. 5b,c; Supplementary Fig. 

17). The fraction of neurons that were most active in the sampling period increased by a 

factor of three, with little change in overall activity levels (Supplementary Fig. 17). These 

shifts in activity were explained in part by changes in whisking, which became more 

concentrated in the sampling period with learning (Fig. 1e), and a shorter touch-lick latency 

(Supplementary Fig. 1). With learning, licking neurons became active earlier within the trial 

and also began to fire earlier with respect to licking. In naïve mice activity in licking 

neurons trailed licking (Fig. 5d–f); in expert mice activity anticipated licking (taking the 

slow kinetics of GCaMP3 fluorescence into account 34). Licking neurons always lagged first 

touch (Fig. 5e), as did touch neurons (Fig. 5g, h). These learning-related changes in temporal 

relationships between activity and motor behavior suggest roles of these neurons in 

controlling movement. Furthermore, nearby neurons can participate in highly specific forms 

of circuit plasticity during learning.

We next analyzed the dynamics of population-level representations during learning (Fig. 6a–

c). We decoded the behavioral features over all experimental sessions and evaluated the 

quality of the fit as a function of behavioral performance (Fig. 6a). Overall, the 

representation of licking strengthened, while the number of licks per trial remained stable 

during learning (Supplementary Fig. 17e). In contrast, the representation of whisking 

remained stable, even though whisking during the sampling period became more vigorous 

and purposeful (Fig. 1e, Supplementary Fig. 1).

We assessed the stability of population representations by using the model derived in one 

session to predict the behavioral features of another session (Fig. 6b). For the first two or 

three sessions the models derived on one day failed to predict movements on subsequent 

days, implying labile population representations. However, as the behavior reached a plateau 

level the representations stabilized, especially for whisking and licking. More than 44 % of 

the variance in the change in behavioral performance between any two sessions could be 

explained based on changes in the representations of the different behavioral features 

(multiple linear regression; p < 10−17; F4,145 = 29). Changes in the representation of licking 

were more predictive of the behavioral performance changes than whisking or touch (Fig. 

6c). The dynamics of the different representations suggests that vM1 innately controls 

whisking, but participates in the control of licking only in the context of specific 

sensorimotor contingencies, such as licking triggered by touch.

Discussion

The precise roles of motor cortex in shaping movement and motor learning have been 

debated for more than a century (reviewed in 1,40). Classic recordings from identified PT-

type neurons, which carry cortical output to motor centers, revealed activity related to 

muscle forces and movements 41. However, PT-type neurons constitute only a tiny fraction 
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of motor cortex neurons 7. Simultaneous recordings from diverse neuron types indicate that 

neuronal ensembles define trajectories of multi-joint movements 26,42. Conversely, 

stimulating groups of motor cortex neurons on behavioral time scales evokes complex, 

ethologically relevant movements 43. vM1 projects to brainstem nuclei controlling facial 

motor programs including whisking 19,20 and licking 5. Our imaging experiments in vM1 

show spatially intermingled representations of various facial movements (Supplementary 

Fig. 16), all of which are related to performing the object detection task (Fig. 1, 3). These 

observations together suggest that small regions of motor cortex help to orchestrate goal-

directed movements involving multiple body parts.

Motor cortex activity changes with learning 3–5. Goal-directed movements might thus be 

established or fine-tuned in the motor cortex. Consistent with this view, representations in 

L2/3 of motor cortex changed during learning of the object detection task. However, 

individual L2/3 neurons appear pre-wired to represent particular motor variables: whisking 

neurons rarely became licking neurons and vice versa (Fig. 4). In expert animals population-

level representations were stable (Fig. 6), even with unstable representations of single 

neurons (Fig. 4, Supplementary Fig. 16). Theoretical work has shown that drifting 

representations at the level of individual neurons may be critical for motor learning 4.

The representation of whisking was strong in L2/3 neurons of naïve animals and remained 

strong throughout learning (Fig. 6). In contrast, the representation of licking increased with 

improvements in behavioral performance. Control of voluntary whisking might thus be 

innate to vM1, whereas vM1 assumes control of licking as the animal learns to initiate 

licking in response to a specific sensory stimulus (touch, Fig. 1; olfaction 5). Enabling 

flexible associations between sensation and action could be a core function of the superficial 

layers of the motor cortex.

What could be the cellular mechanisms driving changes in vM1 activity? Learning the 

object-location task requires chaining a set of sensory-modulated actions into a specific 

order. Behaviorally, we observed that stereotypic whisking and latency between touch and 

licking were highly correlated with task proficiency (Fig. 1). Early during learning, activity 

of L2/3 neurons was distributed uniformly across time, which might provide a basis 

function 2,44 to allow appropriate sequences of movements depending on task demands (Fig. 

5; Supplementary Fig. 17). After learning, neurons fired mostly during the sampling period, 

coincident with whisking, touch and onset of licking. This change of timing suggests a role 

for a dopaminergic reward prediction error signal 45, likely arising in the VTA 6, which 

could implement temporal credit assignment in synaptic plasticity 2.

METHODS

Chronic window preparation

All procedures were approved by the Janelia Farm Research Campus Institutional Animal 

Care and Use Committee. We used adult (> P60) male PV-IRES-cre mice (B6;129P2-

Pvalbtm1(cre)Arbr/J, The Jackson Laboratory). All surgeries were conducted under 

isoflurane anesthesia (1.5–2%). Additional drugs reduced potential inflammation (Ketofen, 

5mg/kg, subcutaneously) and provided local (Marcaine, 0.5% solution injected under the 
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scalp) and general analgesia (Buprenorphine, 0.1 mg/kg, intraperitoneal). A circular piece of 

scalp was removed and the underlying bone was cleaned and dried. The periostium was 

removed with a dental drill and the exposed skull was covered with a thin layer of cyano-

acrylic primer (Crazy glue). A custom-machined titanium frame was cemented to the skull 

with dental acrylic (Lang Dental).

Afferents from the somatosensory cortex were labeled with virus expressing tdTomato 33 

(rAAV-CAG-tdTomato, serotype 2/1; 20 nl at 300 and 550 um depths). The C2 barrel was 

targeted based on intrinsic signal imaging 28. The virus was injected with a custom, piston-

based, volumetric injection system (based on a Narishige, MO-10, manipulator) 46. Glass 

pipettes (Drummond) were pulled and beveled to a sharp tip (30 um outer diameter). 

Pipettes were back-filled with mineral oil and front-loaded with viral suspension 

immediately prior to injection.

A craniotomy was made over vM1 (size, 3×2mm; center relative to Bregma: lateral, 0.8 mm; 

anterior, 1 mm, left hemisphere, Fig. 2a–d). These coordinates were previously determined 

using intracortical microstimulation 8,16,18, mapping axonal projections from vS1 in 

vM1 8,47, and trans-cellular labeling with pseudorabies virus (data not shown). Neurons 

underlying the craniotomy were labeled by injecting virus expressing GCamP3 (rAAV-syn-

GCaMP3, serotype 2/1, produced by the University of Pennsylvania Gene Therapy Program 

Vector Core). The brain was covered with agar (2%). 4–8 sites (10–15 nl/site; depth, 150–

210 um; rate, 10 nl/minute) were injected per craniotomy.

The imaging window was constructed from two layers of standard microscope coverglass 

(Fisher; # 2, thickness, 170 – 210 um), joined with a UV curable optical glue (NOR-61, 

Norland): a larger piece was attached to the bone; a smaller insert fit snugly into the 

craniotomy (Fig. 2b, d). The bone surrounding the craniotomy was thinned to allow for a 

flush fit between insert and the underlying dura.

After virus injection, the glass window was lowered into the craniotomy. The space between 

the glass and the bone was sealed off with a thin layer of agar (2%), and the window was 

cemented in place using dental acrylic (Lang Dental). At the end of the surgery, all whiskers 

on the right side of the snout except row C were trimmed. The mice recovered for 3 days 

before starting water restriction. Imaging sessions started 14–21 days after the surgery.

Behavior

We designed an object detection task, with three goals in mind: First, animals should be able 

to learn the task quickly, in a few days. Second, the sensory (whisker contacts and forces) 

and motor (whisking, licking) behaviors needed to be tracked at high spatial and temporal 

resolutions throughout learning. Third, we wanted to detect neurons in the motor cortex 

whose activity patterns might be shaped by sensory input. Since different object locations 

produce different somatosensory stimuli we presented the object in multiple locations. 

Neural activity levels that depend on object location then indicate coding of sensory 

variables.
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Behavioral training began after the mice had restricted access to water for at least 7 days (1 

ml/day) 5,28. The behavioral apparatus was designed to fit under a custom built two-photon 

microscope (https://openwiki.janelia.org/wiki/display/shareddesigns/

Shared+Two-photon+Microscope+Designs). All behavioral training was performed under 

the microscope while imaging neural activity. In a pre-training session mice learned to lick 

for water rewards from a lickport (~ 100 rewards). At the same time the brain was inspected 

for suitable imaging areas. Fields of view were restricted to zones where expression of 

GCaMP3 and tdTomato (axons from vS1) overlapped (Fig. 2a–d). To escape the vasculature 

near the midline, imaging was typically performed towards the lateral edge of vM1. Mice 

with excessive brain movement, limited virus infection or impaired optical access (bone 

growth, large blood vessels in the vS1 axon projection zone) were excluded from the study.

During the first behavioral session (session 1) the pole was positioned within the range of 

the whiskers’ resting position, thereby increasing the chance of a whisker-pole collision. As 

soon as performance reached d′ > 1 the pole was advanced to a more anterior position (~0.5 

mm from whisker resting position), forcing the mouse to sample actively for the pole. The 

target position was adjusted for every session. In expert mice, multiple target positions, all 

within reach of the whiskers, were introduced to study the effects of object location 

(Supplementary Fig. 8–11, 13, 15, Supplementary Table 1).

Reversible inactivation

To inactivate vM1 the GABA agonist muscimol was injected into the imaging area in expert 

mice. A small hole was drilled through the imaging window to allow access for a glass 

injection pipette. Muscimol hydrobromide (Sigma-Aldrich) was dissolved in saline (5ug/ul) 

and 50 nl were injected slowly (10nl/min) at depths of 500 and 900 micrometers under the 

pia 27. The animals were left to recover for two hours before the behavioral session. 

Inactivation caused a complete absence of fluorescence transients in the imaged field of 

view (data not shown). Similar methods were used to inactivate vS1 (Supplementary Fig. 

1) 27.

Imaging

GCaMP3 was excited using a Ti-Sapphire laser (Chameleon, Coherent) tuned to λ= 1000 

nm. We used GaAsP photomultiplier tubes (10770PB-40, Hamamatsu) and a 16x, 0.8 NA 

microscope objective (Nikon). The field of view was 450×450 um (512×256 pixels; pixel 

size 0.88 × 1.76 um), imaged at 4 Hz. The microscope was controlled with ScanImage 48 

(www.scanimage.org). The average power for imaging was < 70 mW, measured at the 

entrance pupil of the objective. For each mouse the optical axis was adjusted to be 

perpendicular to the imaging window. Imaging was continuous over behavioral sessions 

lasting approximately one hour (average, 53 minutes; range, 24 – 72 minutes). Bleaching of 

GCaMP3 was negligible. Slow drifts of the field of view were corrected manually 

approximately every 50 trials using a reference image.
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Image analysis

To correct for brain motion we used a line-by-line correction algorithm (similar to 49, but 

based on a correlation-based error metric). First, we computed the average of the 5 

consecutive frames (chosen from the approximately 40 images comprising a behavioral trial) 

showing the smallest luminance changes. Each line of each frame was then fit to this 

reference image using a piecewise rigid gradient descent method.

To align all trials within one session, the average of the trial showing the smallest luminance 

changes was used as the session reference and all other trials were aligned using normalized 

cross correlation-based translation.

To extract fluorescence signals from individual cells, regions of interest (ROIs) were drawn 

based on neuronal shape (individual neurons appeared as fluorescent rings; Supplementary 

Fig. 5). Mean, maximum intensity, and standard deviation values of all frames of a session 

were used to determine the boundaries of the neurons. An automated method was used to 

align the ROIs across sessions. For each ROI, a small square (50 × 50 pixels) around the 

ROI was selected. Displacements across sessions were calculated by computing the point at 

which the normalized cross-correlation for this square and the average image of the day 

peaked. For each ROI, its displacement vector was compared to that of its 5 nearest 

neighbors. In cases where the displacement exceeded 7 times the median of the neighbors’ 

displacements, it was set to the median and flagged for manual inspection. The 

displacements of all ROIs defined a warp field for the entire image.

The pixels in each ROI were averaged to estimate the fluorescence of a single cell. The 

cell’s baseline fluorescence, Fo, was determined in an iterative manner. First, we estimated 

the probability distribution function (PDF) of raw fluorescence for each ROI and centered it 

at its peak (i.e., the peak was assigned a value of 0). A “cutoff value” was calculated by 

choosing the points below the PDF’s peak and determining the value above which 90% of 

these values lay (which was negative due to our centering procedure). Cells were 

‘moderately active’ if at least 1% of their fluorescence was above twice the absolute value of 

this “cutoff value” (i.e., the PDF had a long positive tail). Cells were ‘highly active’ if the 

density at this cutoff value relative peak density exceeded 0.1 (i.e, the PDF’s positive tail 

was not only long but also fat). All other cells were ‘sparsely active’. The initial Fo estimate 

was generated by taking a 60 second sliding window over raw fluorescence and using the 

50th, 20th, or 5th percentile as Fo for sparsely, moderately, and highly active cells, 

respectively. Using this first Fo estimate, we computed a preliminary ΔF/F (defined as (F– 

Fo)/ Fo) and extracted events based on a threshold (3 times the median absolute deviation, 

MAD). An event period was defined as starting 2 s prior to the peak during a cross of 

threshold and ending 5s after the peak. In the subsequent Fo estimation procedure, Fo was 

only estimated for periods without events, and determined via linear interpolation for 

periods during events. The final ΔF/F trace used for all subsequent analysis was computed 

using this Fo trace. To produce an event vector from the ΔF/F trace, and thereby minimize 

the temporal distortions caused by GCaMP3 dynamics 34, we used a non-negative 

deconvolution method (Supplementary Fig. 5) 36.
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Calcium imaging with genetically encoded indicators was crucial for tracking the same 

neurons across multiple sessions. Furthermore, imaging samples neural activity densely 

within a region. However, current calcium indicators, including GCamP3, are not 

sufficiently sensitive to detect single action potentials in vivo and, as a consequence, activity 

in neurons with very low firing rates was likely missed 28,34. Our analysis therefore focuses 

on relatively active neurons. In addition, the slow dynamics (on the order of 100 ms) of the 

calcium indicator limits the conclusions that can be drawn about connectivity and causality 

from imaging data.

Approximately 80 % of cortical neurons are pyramidal 50. GABAergic interneurons produce 

much smaller activity-dependent fluorescence changes than pyramidal neurons, presumably 

because of their short action potentials and high concentrations of endogenous calcium 

buffer 51, and their activity were likely not be detected using GCaMP3 28. For these reasons 

the vast majority of active neurons detected with our methods were likely excitatory 

pyramidal neurons.

Long-term expression of GCaMP3

AAV-mediated expression of GCaMP3 provides the high expression levels necessary for in 

vivo cellular imaging. However, expression continues to increase over months, which can 

lead to compromised cell health 34,52, which correlates with break-down of nuclear 

exclusion. Over the time-course of our experiments (up to 4 weeks of expression) at most 2 

% of the cells in the imaged field of view showed nuclear GCaMP3. These neurons were 

excluded from analysis. In addition, overall event rates were stable across time 

(Supplementary Fig. 17).

Several observations indicate that imaging did not damage the brain. First, because of the 

brightness and photostability of GCaMP3 we were able to use low average power. Second, 

there was no evidence for tissue damage (Supplementary Fig. 3). Third, task-related activity 

increased with learning in a specific manner, so that some representations (e.g. licking) 

increased, while other representations did not change (whisking) (Fig. 6). These learning-

related changes are inconsistent with non-specific rundown.

Changes in intracellular calcium are necessary to trigger a variety of forms of cellular 

plasticity. Could GCaMP3 expression interfere with synaptic plasticity? The strength of 

calcium buffering (‘buffer capacity’) can be estimated as buffer concentration divided by its 

Kd 53. High concentrations (> 200 uM) of strong (dissociation constant, Kd, 170 nM) 

calcium buffer (e.g. BAPTA) are required to block synaptic plasticity 54,55. We estimated 

the concentration of GCaMP3 (Kd, 660 nM) 34 under our experimental conditions. We 

harvested acute brain slices from mice that had been used in long-term imaging experiments. 

We then compared cellular fluorescence at saturating calcium levels, induced by high 

external K+ (20–30 mM) to calibrated GCaMP3 solutions (in standard K+-based internal 

solution normally used for whole cell recording). Four weeks of expression in L2/3 

pyramidal neurons of the visual cortex yielded 76 uM of GCaMP3 52. 7 weeks of expression 

in vM1 gave 130 uM of GCaMP. These experiments imply that GCaMP3 produces lower 

buffer capacity than BAPTA concentrations that are known not to perturb synaptic plasticity 

(buffer capacities, < 200 vs > 1200). Consistently, expression of GCaMP3 did not perturb 
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induction of long-term potentiation in hippocampal brain slices (Supplementary Fig. 4) 

(GCaMP3 concentration, 15 uM, determined as above).

We further tested whether GCaMP3 expression level influenced the plasticity of neuronal 

responses. Relative baseline fluorescence measured in individual neurons was constant 

across days and thus was a good indicator of GCaMP3 expression. We calculated the 

probability that a classified cell remained active and retained its classification (i.e. was 

stable). We compared stability in the 25% brightest and dimmest neurons. Dim and bright 

cells were similarly stable (dim cells, 65% stable; bright cells, 60 % stable; χ2=0.39; P>0.5). 

This analysis suggests that under our conditions GCaMP3 does not obviously perturb 

cellular plasticity in vivo.

Other measurements also imply that plasticity was not obviously impaired by long-term 

expression of GCaMP3. Circuit function is shaped by ongoing plasticity, integrated over the 

recent past. Neurons with long-term expression of GCaMP3 generally show normal circuit 

properties. Orientation and direction selectivity are normal in GCaMP3-expressing L2/3 

neurons in mouse V1 52 and hippocampal place cells are normal in CA1 neurons in the 

hippocampus 56. The sparseness and response types of L2/3 neurons in vS1 are 

indistinguishable when measured with electrophysiological methods or GCaMP3 28. Finally, 

in our experiments L2/3 neurons showed specific learning-related changes in activity in vivo 

(Fig. 4–6).

Whisker tracking

Whiskers were illuminated with a high power LED (940 nm, Roithner) and condenser optics 

(Thorlabs). Images were acquired through a telecentric lens (0.36X, Edmund Optics) by a 

high-speed CMOS camera (EoSense CL, Mikrotron, Germany) running at 500 frames/sec 

(640 × 352 pixels; resolution, 42 pixels/mm). Image acquisition was controlled by 

Streampix 3 (Norpix, Canada). The whisker position and shape were tracked using 

automated procedures 27. Whiskers are cantilevered beams, with one end embedded in the 

follicle in the whisker pad. The mechanical forces acting on the follicles can be extracted 

from the shape changes after contact between whisker and object. For example, a change in 

curvature at point p along the whisker is proportional to the force applied by the pole on the 

whisker 30: F ~ Δκp yp, where yp is the bending stiffness at p (approximately 3 mm from the 

follicle). We thus present forces on the whiskers as the change in curvature, Δκ These forces 

underlie object localization 27,31. Δκ was determined using a parametric curve comprising 

2nd order polynomial fits to the whisker backbone. Periods of contact between whisker and 

object (touch) were detected based on nearest distance between whisker and object and Δκ. 

A total of ~13,000,000 whisker video images, comprising ~7500 behavioral trials, were 

analyzed for this project.

Expert mice contacted the pole multiple times with one or several whiskers (average number 

of contacts for the dominant whisker, 8; range 0–19) before their decision (signaled by an 

answer lick on correct Go trials).
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Behavioral features

We analyzed neural activity with respect to multiple behavioral features. Licks were 

detected with a lickometer 27 and lick rate (Hz) was defined as the inverse of the inter-lick 

interval. Our imaging rate (4 Hz) was slower than the rapid components of rhythmic 

whisking (10–20 Hz). In addition, motor cortex neurons primarily code for the slowly 

varying whisking variables, setpoint and amplitude 29,39. Whisker setpoint was the low pass 

filtered (6 Hz) whisker angle. Whisker amplitude was defined as the Hilbert transform 29 of 

the absolute value of the band-pass filtered (6–60 Hz) whisker angle (Fig. 1d). Since 

whiskers move mostly together 27 setpoint and amplitude were averaged across all whiskers. 

The time derivatives of whisker setpoint and amplitude were used as independent features. 

Δκ was measured during the sampling period. Protraction touch (positive curvature 

changes), retraction touch (negative curvature changes) and absolute values were treated 

separately. All behavioral features were down-sampled to match the image acquisition rate 

(4 Hz). Mean and maximum values were calculated for each feature in a 250 ms window 

centered on the middle of the new sampling point.

Decoding behavioral variables

The relationship between the calcium activity xi of the ith neuron and the jth behavioral 

variable yi can be characterized as an encoding description P(xi|yj) or a decoding description 

P(yf|xt). The encoding description specifies how much of neuronal activity can be accounted 

for by behavioral variables. The decoding description specifies how behavioral variables can 

be derived from activity of one neuron or neuronal populations. Here, we focused on the 

decoding description.

We used machine learning algorithms to decode behavioral features based on activity. The 

input to the algorithm was the event-rate (i.e. deconvoluted ΔF/F). To predict sensory input 

we also used time-shifted future activity. For motor variables we used both past and future 

activty, since neural activity could reflect motor commands, corollary discharges, or re-

afferent input.

The goal of the decoder algorithm was to find a mapping ŷf(tk) = f[xt(tk-l),…,xt(tk),

…,xt(tk+p)] that best approximates yf(tk) for all tk (discretized time in units of 0.25s, 

corresponding to the imaging rate); l and p represent the maximum negative and positive 

shifts of the activity respectively.

We concatenated trials to generate a vector t̄ of time-binned data. For sensory variables we 

used l=2 and p=0 and for sensory-motor variables l=2 and p=2 (corresponding to time-shifts 

up to 0.5s). The dimensionality of the input variables is l+p+1. To simplify the notation we 

define the vector x̄i,n as the activity of cell i at all times shifted n frames to the future. The 

algorithm was trained on a subset of trials (the training set; 80 %) and evaluated on a 

separate set of test trials (20%). We repeated this procedure five times to obtain a prediction 

for all trials 38.

The accuracy of decoding was evaluated using the Pearson correlation coefficient (ρ) 

between the model estimate and the data. The explained variance is R2 = ρ2 (range 0 – 1). R2 

was calculated separately for each trial type (i.e. Hit, Correct Rejection, Miss and False 
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Alarm). Treating trial types separately was critical to disambiguate the relationship between 

different behavioral variables and activity. For instance, we observed large amplitude 

whisking during licking, which complicates the classification of neuronal responses. 

However, during Correct Rejection trials, licking was absent and whisking present, allowing 

classification. Similarly, in trained animals, touch and licking occurred with short latencies 

in Hit trials (Fig. 1, 5). In contrast in False Alarm trials touch was absent.

Decoding was done with Random Forests 38,57, a multivariate, non-parametric machine 

learning algorithm based on bootstrap aggregation (i.e. bagging) of regression trees. We 

used the TreeBagger class implemented in Matlab®. TreeBagger requires only few 

parameters: the number of trees (Ntrees = 126), the minimum leaf size (minleaf = 5), the 

number of features chosen randomly at each split (Nspilt –Nfeatures/3; the typical value used 

by default). These parameters were chosen as a trade-off between decoder accuracy and 

computation time. We did not observe much improvement in decoding accuracy for Ntrees > 

32 and minleaf < 10 (data not shown).

Classification of response-types

We measured the R2 between each measured behavioral variable (i.e. whisking speed, lick-

rate, whisking setpoint, etc) and each cell’s decoder prediction for all the trials and for each 

trial type. We considered only cells with more than one event in a session. In addition, for 

sessions with multiple-pole positions we used an Analysis of Variance (ANOVA) to 

determine if the contact evoked calcium response was different for the different pole 

position (Supplementary Fig. 8–11, 13, 15). We grouped the behavioral variables in larger 

categories such as whisking (i.e. including whisking amplitude, setpoint and speed), lick rate 

and touch (i.e. touch per whisker, rate of change of forces, absolute magnitude, etc). We 

considered the best R2 set for each of the three behavioral categories. Alternatively, all cells 

were manually classified based on trial-to-trial calcium transients and behavioral prediction 

for each trial-type. For most cells (>82%) classification was unambiguous based on the 

decoder R2 values. The remaining cells were more accurately classified based on a rarer trial 

type (typically False Alarm trials). Three of the authors independently arrived at consistent 

classifications.

Population decoding

For decoding neural populations (Fig. 3, 6) we considered all neurons showing at least 1 

event and created an input vector of size Nneurons × (l+p+1). We trained the Random Forest 

algorithm to decode each of the behavioral variables and evaluated the quality of the fit as 

before.

With the model based on data from one day we tested decoding of behavioral variables on 

another day. To compare data between two different days, we normalized the neural activity 

and the behavioral variables using a z-score transformation (i.e. by subtracting the mean and 

dividing by the standard deviation). In addition, some cells were active one day but not on 

other days. We labeled these neurons as missing data.

Huber et al. Page 14

Nature. Author manuscript; available in PMC 2015 October 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Measurement of synaptic plasticity in brain slices

Rat hippocampal slice cultures were prepared at postnatal day 4–5 58. Plasmids encoding 

GCaMP3 and cerulean were under the control of a human synapsin1 promoter were 

electroporated into single CA1 pyramidal neurons after 18 days in vitro (1:1 ratio; 50 ng/ul 

each) (modified from ref. 59). Recordings were done 3–7 days after transfection. GCaMP3 

was largely excluded from the nucleus and cell morphology was indistinguishable from 

neurons expressing cerulean alone. Paired whole-cell recordings from CA1 and CA3 

pyramidal cells were made at room temperature (21–23 °C), using 3–4 MOhm pipettes 

containing (in mM): 135 K-gluconate, 4 MgCl2, 4 Na2-ATP, 0.4 Na-GTP, 10 Na2-

phosphocreatine, 3 ascorbate, and 10 Hepes (pH 7.2). ACSF consisted of (in mM): 135 

NaCl, 2.5 KCl, 4 CaCl2, 4 MgCl2, 10 Na-HEPES, 12.5 D-glucose, 1.25 NaH2PO4 (pH 7.4). 

EPSCs were measured at −65 mV holding potential.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Bence Ölveczky, Leopoldo Petreanu, Nuo Li, Adam Hantman, and Shaul Druckmann for critical 
comments on the manuscript. Nathan Clack, Vijay Iyer, and Joshua Vogelstein for help with software; Dan 
Flickinger for help with microscope design; Jinny Kim for tdTomato AAV; Ninglong Xu for help with behavior; 
Tsai-Wen Chen and Eric Schreiter for help with calibrating GCaMP3.

References

1. Scott SH. Inconvenient truths about neural processing in primary motor cortex. The Journal of 
physiology. 2008; 586:1217–1224.10.1113/jphysiol.2007.146068 [PubMed: 18187462] 

2. Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nature reviews. 
Neuroscience. 2011; 12:739–751.10.1038/nrn3112 [PubMed: 22033537] 

3. Wise SP, Moody SL, Blomstrom KJ, Mitz AR. Changes in motor cortical activity during 
visuomotor adaptation. Experimental brain research. Experimentelle Hirnforschung. 
Experimentation cerebrale. 1998; 121:285–299. [PubMed: 9746135] 

4. Rokni U, Richardson AG, Bizzi E, Seung HS. Motor learning with unstable neural representations. 
Neuron. 2007; 54:653–666.10.1016/j.neuron.2007.04.030 [PubMed: 17521576] 

5. Komiyama T, et al. Learning-related fine-scale specificity imaged in motor cortex circuits of 
behaving mice. Nature. 2010; 464:1182–1186. [PubMed: 20376005] 

6. Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. Dopaminergic projections from midbrain to 
primary motor cortex mediate motor skill learning. The Journal of neuroscience : the official journal 
of the Society for Neuroscience. 2011; 31:2481–2487.10.1523/JNEUROSCI.5411-10.2011 
[PubMed: 21325515] 

7. Keller A. Intrinsic synaptic organization of the motor cortex. Cereb Cortex. 1993; 3:430–441. 
[PubMed: 8260811] 

8. Mao T, et al. Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor 
Cortex. Neuron. 2011; 72:111–123.10.1016/j.neuron.2011.07.029 [PubMed: 21982373] 

9. Hooks BM, et al. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical 
areas. PLoS Biol. 2011; 9:e1000572.10.1371/journal.pbio.1000572 [PubMed: 21245906] 

10. Anderson CT, Sheets PL, Kiritani T, Shepherd GM. Sublayer-specific microcircuits of 
corticospinal and corticostriatal neurons in motor cortex. Nat Neurosci. 2010; 13:739–744. 
[PubMed: 20436481] 

Huber et al. Page 15

Nature. Author manuscript; available in PMC 2015 October 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



11. Kaneko T, Cho R, Li Y, Nomura S, Mizuno N. Predominant information transfer from layer III 
pyramidal neurons to corticospinal neurons. J Comp Neurol. 2000; 423:52–65. [pii]. 
10.1002/1096-9861(20000717)423:1<52::AID-CNE5>3.0.CO;2-F [PubMed: 10861536] 

12. Kaneko T, Caria MA, Asanuma H. Information processing within the motor cortex. II.Intracortical 
connections between neurons receiving somatosensory cortical input and motor output neurons of 
the cortex. J Comp Neurol. 1994; 345:172–184.10.1002/cne.903450203 [PubMed: 7929898] 

13. Pavlides C, Miyashita E, Asanuma H. Projection from the sensory to the motor cortex is important 
in learning motor skills in the monkey. Journal of neurophysiology. 1993; 70:733–741. [PubMed: 
8410169] 

14. Iriki A, Pavlides C, Keller A, Asanuma H. Long-term potentiation in the motor cortex. Science. 
1989; 245:1385–1387. [PubMed: 2551038] 

15. Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP. Strengthening of horizontal cortical 
connections following skill learning. Nat Neurosci. 1998; 1:230–234. [PubMed: 10195148] 

16. Li CX, Waters RS. Organization of the mouse motor cortex studied by retrograde tracing and 
intracortical microstimulation (ICMS) mapping. Can J Neurol Sci. 1991; 18:28–38. [PubMed: 
2036613] 

17. Brecht M, et al. Organization of rat vibrissa motor cortex and adjacent areas according to 
cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J Comp 
Neurol. 2004; 479:360–373. [PubMed: 15514982] 

18. Ferezou I, et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. 
Neuron. 2007; 56:907–923. [PubMed: 18054865] 

19. Hattox AM, Priest CA, Keller A. Functional circuitry involved in the regulation of whisker 
movements. J Comp Neurol. 2002; 442:266–276. [pii]. 10.1002/cne.10089 [PubMed: 11774341] 

20. Grinevich V, Brecht M, Osten P. Monosynaptic pathway from rat vibrissa motor cortex to facial 
motor neurons revealed by lentivirus-based axonal tracing. J Neurosci. 2005; 25:8250–8258. 
[PubMed: 16148232] 

21. Travers JB, Dinardo LA, Karimnamazi H. Motor and premotor mechanisms of licking. Neurosci 
Biobehav Rev. 1997; 21:631–647. S0149-7634(96)00045-0 [pii]. [PubMed: 9353796] 

22. Kleinfeld D, Sachdev RN, Merchant LM, Jarvis MR, Ebner FF. Adaptive filtering of vibrissa input 
in motor cortex of rat. Neuron. 2002; 34:1021–1034. [PubMed: 12086648] 

23. Sato TR, Svoboda K. The functional properties of barrel cortex neurons projecting to the primary 
motor cortex. J Neurosci. 2010; 30:4256–4260. [PubMed: 20335461] 

24. Ganguly K, Carmena JM. Emergence of a stable cortical map for neuroprosthetic control. PLoS 
biology. 2009; 7:e1000153.10.1371/journal.pbio.1000153 [PubMed: 19621062] 

25. Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal 
networks. Proc Natl Acad Sci U S A. 2003; 100:7319–7324. [PubMed: 12777621] 

26. Dombeck DA, Graziano MS, Tank DW. Functional clustering of neurons in motor cortex 
determined by cellular resolution imaging in awake behaving mice. J Neurosci. 2009; 29:13751–
13760. [PubMed: 19889987] 

27. O’Connor DH, et al. Vibrissa-based object localization in head-fixed mice. J Neurosci. 2010; 
30:1947–1967. [PubMed: 20130203] 

28. O’Connor DH, Peron SP, Huber D, Svoboda K. Neural activity in barrel cortex underlying 
vibrissa-based object localization in mice. Neuron. 2010; 67:1048–1061. [PubMed: 20869600] 

29. Hill DN, Curtis JC, Moore JD, Kleinfeld D. Primary motor cortex reports efferent control of 
vibrissa motion on multiple timescales. Neuron. 2011; 72:344–356.10.1016/j.neuron.2011.09.020 
[PubMed: 22017992] 

30. Birdwell JA, et al. Biomechanical models for radial distance determination by the rat vibrissal 
system. J Neurophysiol. 2007; 98:2439–2455. [PubMed: 17553946] 

31. Knutsen PM, Ahissar E. Orthogonal coding of object location. Trends Neurosci. 2008

32. Hutson KA, Masterton RB. The sensory contribution of a single vibrissa’s cortical barrel. J 
Neurophysiol. 1986; 56:1196–1223. [PubMed: 3783236] 

33. Shaner NC, et al. Improved monomeric red, orange and yellow fluorescent proteins derived from 
Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004

Huber et al. Page 16

Nature. Author manuscript; available in PMC 2015 October 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



34. Tian L, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium 
indicators. Nat Methods. 2009; 6:875–881. [PubMed: 19898485] 

35. Trachtenberg JT, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in 
adult cortex. Nature. 2002; 420:788–794. [PubMed: 12490942] 

36. Vogelstein JT, et al. Fast nonnegative deconvolution for spike train inference from population 
calcium imaging. Journal of neurophysiology. 2010; 104:3691–3704.10.1152/jn.01073.2009 
[PubMed: 20554834] 

37. Graf AB, Kohn A, Jazayeri M, Movshon JA. Decoding the activity of neuronal populations in 
macaque primary visual cortex. Nat Neurosci. 14:239–245. [PubMed: 21217762] 

38. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. 2. Springer; 2009. 

39. Carvell GE, Miller SA, Simons DJ. The relationship of vibrissal motor cortex unit activity to 
whisking in the awake rat. Somatosens Mot Res. 1996; 13:115–127. [PubMed: 8844960] 

40. Graziano, MSA. The Intelligent Movement Machine. 1. Oxford: 2009. 

41. Evarts EV. Relation of pyramidal tract activity to force exerted during voluntary movement. J 
Neurophysiol. 1968; 31:14–27. [PubMed: 4966614] 

42. Afshar A, et al. Single-trial neural correlates of arm movement preparation. Neuron. 2011; 71:555–
564.10.1016/j.neuron.2011.05.047 [PubMed: 21835350] 

43. Graziano MS, Aflalo TN. Mapping behavioral repertoire onto the cortex. Neuron. 2007; 56:239–
251. [PubMed: 17964243] 

44. Salinas E. Rank-order-selective neurons form a temporal basis set for the generation of motor 
sequences. The Journal of neuroscience : the official journal of the Society for Neuroscience. 
2009; 29:4369–4380.10.1523/JNEUROSCI.0164-09.2009 [PubMed: 19357265] 

45. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997; 
275:1593–1599. [PubMed: 9054347] 

46. Petreanu L, Mao T, Sternson SM, Svoboda K. The subcellular organization of neocortical 
excitatory connections. Nature. 2009; 457:1142–1145. [PubMed: 19151697] 

47. Porter LL, White EL. Afferent and efferent pathways of the vibrissal region of primary motor 
cortex in the mouse. J Comp Neurol. 1983; 214:279–289. [PubMed: 6853758] 

48. Pologruto TA, Sabatini BL, Svoboda K. ScanImage: Flexible software for operating laser-scanning 
microscopes. BioMedical Engineering OnLine. 2003; 2:13. [PubMed: 12801419] 

49. Greenberg DS, Kerr JN. Automated correction of fast motion artifacts for two-photon imaging of 
awake animals. J Neurosci Methods. 2008

50. Gonchar Y, Wang Q, Burkhalter A. Multiple distinct subtypes of GABAergic neurons in mouse 
visual cortex identified by triple immunostaining. Front Neuroanat. 2007; 1:3. [PubMed: 
18958197] 

51. Kerlin AM, Andermann ML, Berezovskii VK, Reid RC. Broadly tuned response properties of 
diverse inhibitory neuron subtypes in mouse visual cortex. Neuron. 2010; 67:858–871. [PubMed: 
20826316] 

52. Zariwala HA, et al. A cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J 
Neurosci. 2012 in press. 

53. Maravall M, Mainen ZM, Sabatini BL, Svoboda K. Estimating intracellular calcium concentrations 
and buffering without wavelength ratioing. Biophys J. 2000; 78:2655–2667. [PubMed: 10777761] 

54. Nevian T, Sakmann B. Spine Ca2+ signaling in spike-timing-dependent plasticity. The Journal of 
neuroscience : the official journal of the Society for Neuroscience. 2006; 26:11001–
11013.10.1523/JNEUROSCI.1749-06.2006 [PubMed: 17065442] 

55. Gordon U, Polsky A, Schiller J. Plasticity compartments in basal dendrites of neocortical 
pyramidal neurons. J Neurosci. 2006; 26:12717–12726. [PubMed: 17151275] 

56. Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW. Functional imaging of hippocampal 
place cells at cellular resolution during virtual navigation. Nat Neurosci. 2010; 13:1433–1440. 
[PubMed: 20890294] 

57. Breiman L. Random forests. Mach Learn. 2001; 45:5–32.

58. Stoppini L, Buchs PA, Muller DA. A simple method for organotypic cultures of nervous tissue. J 
Neurosci Methods. 1991; 37:173–182. [PubMed: 1715499] 

Huber et al. Page 17

Nature. Author manuscript; available in PMC 2015 October 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



59. Rathenberg J, Nevian T, Witzemann V. High-efficiency transfection of individual neurons using 
modified electrophysiology techniques. J Neurosci Methods. 2003; 126:91–98. [PubMed: 
12788505] 

Huber et al. Page 18

Nature. Author manuscript; available in PMC 2015 October 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Figure 1. Learning a whisker-based object detection task under the microscope
a) A head-fixed mouse under a two-photon microscope. Whisker movements were tracked 

with high-speed videography. A metal pole was presented either within reach of the 

whiskers (one of several target locations, blue, ‘Go’-trial) or out-of-reach (red, ‘No Go’-

trial).

b) The pole was within reach in the sampling period. Onset of pole movement produced an 

auditory cue (vertical dotted lines). Answer licks were scored in the answer period.

c) Learning curves. The sensitivity index d′ measures behavioral performance (d′ = 0, 

chance performance; d′ = 1.75, expert level, gray, approximately 80 % correct trials).

d) Whisker movement and forces. Top, trial showing whisker angle (gray) and setpoint 

(black). Middle, whisking amplitude (Methods). Bottom, change in whisker curvature, 

which is proportional to force acting on the follicle. Left, Hit trial; right. Correct Rejection 

trial.

e) Learning-related changes in whisking. Whisker angle (measured at the base of the 

whisker, gray) and setpoint (low-pass filtered angle, black) for 20 consecutive Correct 

Rejection trials in the first (top; d′ = 0.83, first session) fifth session (bottom; d′ = 3.52).
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f) Learning-related changes in licking. Licks (ticks; answer licks in red), aligned to first 

touch, for 20 consecutive Hit trials in naïve (top; d′ = 0.83) and the same animal in the 

fourth session (bottom; d′ = 3.59).

g) Behavioral performance drops after inactivation of vM1 (n = 5 mice, control, solid 

circles; muscimol, open circles).
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Figure 2. Imaging population activity across trials
a) Injection sites for GCaMP3 virus in vibrissal motor cortex (vM1) and tdTomato virus in 

somatosensory cortex (vS1).

b) Glass imaging window (light blue). Bone, light grey; dental cement, dark grey. L2/3 

neurons in vM1 receive strong input from vS1 and excite deep layer neurons in vM1.

c–d) GCaMP3 (green) and tdTomato (red) fluorescence image overlaid on a bright-field 

image (gray). c) Coronal section. d) Imaging window. Box, field of view in e. Bregma, Br.

e) L2/3 neurons expressing GCaMP3 (depth, 210 um). Individual regions (individual 

neurons) are outlined in purple.

f) Example fluorescence traces (ten neurons, twelve trials). Vertical bars, sampling period 

(Go trials, blue; No Go trials, red).

g) Example neurons (cell A & B) across one session (329 trials; expert, d′ = 3.13) and 

simultaneously recorded behaviors. Consecutive Hit, False Alarm, and Correct Rejection 

trials are arrayed from top to bottom (Misses were rare in this session). Fluorescence 

intensity was normalized. Curvature changes due to touch occur only during the sampling 

period in Hit trials, because otherwise the pole was out of reach. Whisking occurred in all 

trials. Licking occurred in Hit and False Alarm trials. Lower panel: session averages for 

correct trial types (Hits, blue; Correct Rejections, red).
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Figure 3. Population decoding of behavioral features
a–d) Time series of behavioral features (black; down-sampled to the imaging rate, 4 Hz) and 

a model based on the activity of all active neurons in one session (magenta) (same session as 

in Fig. 2g). Vertical bars, sampling period (Go trials, blue; No Go trials, red). a) Whisker 

curvature change. b) Whisking amplitude. c) Whisking setpoint. d) Lick rate. Shuffling trial 

labels dropped the quality of the fit for all behavioral features (Ri
2 > Ri, shuffled

2, p < 0.001 

for all sessions and animals except for three sessions in which coding of touch was weak; 

whisking amplitude, mean z-score, 73; whisking setpoint, mean z-score, 28; licking, mean z-

score, 23; touch, mean z-score, 10; 1000 shuffles; see Supplementary Fig. 14l,m for an 

explanation of z-scores).

e) Overlay of whisking at full bandwidth (black) and the model (thick magenta line, 

whisking setpoint; magenta band, whisking setpoint ± whisking amplitude).
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Figure 4. Single neuron representations across learning
a) Dynamics of classified neurons over learning (cyan, touch; magenta, mixed; red, licking; 

green, whisking). The intensity of the color indicates the correlation (R2) between data and 

the model (Methods). Session 1, naïve mice; session 6, expert mice.

b) Animal identity. Each vertical column corresponds to one animal. Black ticks indicate the 

animal corresponding to the classified cell.

c) Classification of individual neurons averaged across sessions. Arrow heads, neurons with 

object location-dependent activity. Tagged neurons, data shown in other figures.
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Figure 5. Plasticity in task-related neuronal dynamics
a–b) Trial averages of all classified neurons, ordered by the timing of their peak activity. a) 

Naïve mice (first session). b) Highly performing mice (fourth session).

c) Fraction of neurons with peak activity during the sampling period of classified (brown) 

and unclassified neurons (black) as a function of learning (mean ± sem, n = 5 mice). The 

gray dotted line indicates the expected fraction of neurons if the timing of peak activity was 

uniformly distributed across the trial (* P<0.05; ** P<0.005; χ2 test for each session).

d–i) Temporal parameters of licking and touch neurons, as a function of task performance. 

Performance (d′) was binned as follows: 1: <1.75, 2: 1.75–2.5, 3: 2.5–3.5, 4: >3.5.
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d) PSTHs of touch (change in whisker curvature, cyan), lick rate (red) and fluorescent traces 

of a representative licking neuron (black) in a naïve (top trace), during learning (middle 

trace) and an expert animal (bottom trace).

e) Delay from first contact to activity onset in licking neurons (12 neurons, decoding licking 

for at least 4 days; mean ± sem).

f) Delay from first lick to activity onset in licking neurons. The delay shortened after 

learning (* P<0.005, Wilcoxon rank sum test).

g) PSTHs of touch (whisker curvature change, cyan), lick rate (red) and calcium transients 

(black) of a representative touch neuron in a naïve (top trace), during learning (middle trace) 

and an expert animal (bottom trace).

h) Delay from first contact to activity onset in touch neurons (12 neurons, from 4 animals)

i) Delay from first lick to activity onset in touch neurons.
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Figure 6. Stability in population decoding
a) Decoding of behavioral features as a function of behavioral performance. Individual 

animals correspond to different symbols; lines are linear fits. Top, whisker curvature; 

middle, whisking setpoint; bottom, lick rate. Whisking amplitude was similar to whisking 

setpoint and is not shown.

b) Matrix of correlation coefficients for all mice, binned and averaged by behavioral 

performance (d′). Each point corresponds to a model derived at one value of d′ applied to a 

session with another value of d′. The points corresponding to models and data from the same 

session (diagonal) were excluded.

c) Stability of population decoding (representation) of behavioral features (change in R2) as 

a function of change in behavioral performance. Points derived as in b. Changes in the 
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representation of licking were more predictive with respect to changes in behavioral 

performance than whisking or touch: Licking, R2 = 0.39, F1,148 = 94; p < 10−17; whisking 

setpoint, R2 = 0.21; F1,148 = 40; p < 10−17; touch R2 = 0.07; F1,148 = 11; p < 0.001; licking 

vs setpoint: p < 0.001; Ansari-Bradley test.
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