
Journal Pre-proof

Evaluating Robustness of Brain Stimulation Biomarkers for depression: A Systematic
Review of MRI and EEG Studies

Debby Klooster, Helena Voetterl, Chris Baeken, Martijn Arns

PII: S0006-3223(23)01569-X

DOI: https://doi.org/10.1016/j.biopsych.2023.09.009

Reference: BPS 15301

To appear in: Biological Psychiatry

Received Date: 12 May 2023

Revised Date: 30 August 2023

Accepted Date: 6 September 2023

Please cite this article as: Klooster D., Voetterl H., Baeken C. & Arns M., Evaluating Robustness of
Brain Stimulation Biomarkers for depression: A Systematic Review of MRI and EEG Studies, Biological
Psychiatry (2023), doi: https://doi.org/10.1016/j.biopsych.2023.09.009.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Inc on behalf of Society of Biological Psychiatry.

https://doi.org/10.1016/j.biopsych.2023.09.009
https://doi.org/10.1016/j.biopsych.2023.09.009


1 

Evaluating Robustness of Brain Stimulation Biomarkers for depression: A Systematic Review 

of MRI and EEG Studies 

 

Debby Klooster1,2,3*, Helena Voetterl4,5*, Chris Baeken1,2,6 & Martijn Arns4,5 

  

1 Ghent Experimental Psychiatry Laboratory, Department of Head and Skin, Faculty of Medicine and Health 

Sciences, Ghent University, Ghent, Belgium  

24BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 
Belgium 

3 Center for Care and Cure, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 

the Netherlands 

4 Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands 

5 Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 

Maastricht, The Netherlands 

6 Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Psychiatry, Brussels, 

Belgium 

 

*shared first authorship 

  

 

Article type: Review 

Word count: 3999 

Keywords: fMRI; EEG; Depression; rTMS; systematic review; Robustness 

Short title: EEG and MRI Biomarkers for Brain Stimulation 

Figures: 4 

 

Corresponding author:  

Martijn Arns 

Brainclinics Foundation 

martijn@brainclinics.com 

 

  

Jo
urn

al 
Pre-

pro
of



2 

Abstract  

Non-invasive brain stimulation (NIBS) treatments have gained considerable attention as a 

potential therapeutic intervention for psychiatric disorders. The identification of reliable 

biomarkers for predicting clinical response to NIBS has been a major focus of research in recent 

years. Neuroimaging techniques, such as electroencephalography (EEG) and (functional) 

magnetic resonance imaging (fMRI), have been used to identify potential biomarkers that could 

predict response to NIBS. However, identifying clinically actionable brain biomarkers requires 

robustness. 

In this systematic review, we aimed to summarize the current state of brain biomarker 

research for NIBS in depression, focusing only on well-powered studies (N≥88) and/or studies 

that aimed at independently replicating prior findings, either successfully or unsuccessfully. A 

total of 220 studies were initially identified, of which 18 MRI studies and 18 EEG studies adhered 

to the inclusion criteria, all focused on repetitive transcranial magnetic stimulation treatment in 

depression. 

After reviewing the included studies, we found the following MRI and EEG biomarkers to 

be most robust: 1) fMRI-based functional connectivity between the dorsolateral prefrontal cortex 

and subgenual anterior cingulate cortex, 2) fMRI-based network connectivity, 3) task-induced 

EEG frontal-midline theta, and 4) EEG individual alpha frequency. 

Future prospective studies should further investigate the clinical actionability of these 

specific EEG and MRI biomarkers to bring biomarkers closer to clinical reality.  
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Introduction 

The search for biomarkers of clinical response to non-invasive brain stimulation (NIBS) 

treatments has been a major focus of attention over the last decade. Since the introduction of 

the DSM-5 in 2013 an even stronger focus on biomarker research was ignited by the launch of 

the National Institute for Mental Health (NIMH) Research Domain Criteria (RDoC) project. A few 

years later, NIMH made RDoC inclusion mandatory for NIMH funded research, and the term 

‘personalized medicine’ transitioned into the now more frequently used term ‘precision 

psychiatry’. At the same time, some of the largest biomarker studies for major depressive 

disorder (MDD) emerged, such as the International Study to Predict Optimized Treatment in 

Depression (iSPOT-D) (1), EMBARC (Establishing Moderators and Biosignatures of Antidepressant 

Response for Clinical Care) (2), or CAN-BIND (Canadian Biomarker Integration Network in 

Depression)(3). In parallel, a wider adoption of NIBS techniques emerged, such as repetitive 

transcranial magnetic stimulation (rTMS) for the treatment of MDD and other conditions such as 

obsessive-compulsive disorder (OCD) or addiction, with currently more than 24 FDA device 

approvals (4), as well as transcranial electrical stimulation (tES). Many NIBS studies have been 

complemented by imaging work (5–7). Since many NIBS applications have built upon 

neuroscientific knowledge (e.g., frontal asymmetry) and given the focus on interventional 

psychiatry and brain circuit therapeutics (8,9), identifying NIBS biomarkers is of great importance, 

both to improve clinical outcomes, and to validate hypothesized working mechanisms. We, 

therefore, aim to systematically review the current state of biomarker-driven precision 

psychiatry for NIBS.  

  Several prior reviews and meta-analyses have investigated biomarkers for depression 

focused on EEG (10) or MRI (11) and a critical meta-analysis questioned the usefulness of EEG 

biomarkers for guiding antidepressant response (12). This latter meta-analysis raised valid 

concerns about biomarker studies criticizing a lack of, particularly out-of-sample, replications, 

and demonstrating strong evidence for publication bias, with overrepresentation of studies with 

large effects and underrepresentation of null findings. This highlights the need for well-powered 

studies and out-of-sample validations to identify clinically actionable biomarkers. This systematic 

review, thus, focused on 1) adequately powered imaging studies and 2) studies that attempted 
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to (out-of-sample) replicate earlier findings. Concretely, biomarkers were considered robust if 

they showed the ability to predict treatment response in an adequately powered study and/or 

were replicated in multiple studies. The aim of this systematic review was to systematically 

extract robust biomarkers of NIBS treatment response. 

 

Inclusion criteria 

One of the main criticisms of Widge and colleagues (12) was that EEG biomarker studies suffered 

from low sample sizes (median N=25). Therefore, to prevent inclusion of underpowered studies 

and determine the right minimum sample size for inclusion, we first consulted power calculations 

from pivotal biomarker studies (see supplement). Given these pivotal trials yielded inconsistent 

sample-size justifications, we conducted a power calculation in GPower 3.1. (14) to determine a 

minimum sample size to define robust studies. We used a categorical outcome measure 

reflecting the difference in biomarker presence between responders and non-responders 

expressed as a medium effect size (Cohen’s d=0.5) with an alpha level of p<0.05 and power of 

0.7, resulting in a sample size of N=88. Furthermore, studies with smaller sample size could be 

included on the condition that subsequent replication studies were reported in an independent 

sample.  Studies investigating pre-treatment biomarkers of any NIBS modality and protocol were 

included. Studies identifying treatment-emergent biomarkers (biomarkers that reflect changes 

during treatment), were not taken into account in this review since such biomarkers would 

require high accuracy to justify stopping a treatment course halfway. Ideally, several studies 

found the same direction of effect in independent samples.  

The exact search terms can be found in the supplement. Figure 1 visualizes the 

inclusion/exclusion and final selection of studies for EEG and MRI. 

 

[Figure 1 here] 
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Results 

Results are summarized below as well as in Figure 1, with biomarkers grouped thematically.  

Information on the included MRI and EEG studies are summarized in Table 1 and 2, respectively. 

The systematic review only yielded rTMS studies since no studies on other NIBS/TES modalities 

met our inclusion criteria. rTMS is a technique that can be used to non-invasively modulate brain 

activity, based on the principles of electromagnetic induction (16). In the specific case of 

depression treatment, mostly the left DLPFC is stimulated (17). When a different stimulation 

location was used or the biomarker was protocol-specific, this is explicitly stated. Additionally, a 

detailed description of technical terms used in this section can be found in Figure 2. 

  

MRI biomarkers 

[Figure 2 here] 

 

Anatomical MRI: Cortical Thickness 

In a first study, Boes and colleagues reported thinner rostral anterior cingulate (rACC) 

cortex at baseline to be associated with better clinical improvement (18). However, subsequent 

work failed to replicate this finding (19) albeit here accelerated intermittent theta burst 

stimulation (iTBS) was used, whereas Boes and colleagues used 10Hz rTMS.  

  

Functional MRI: DLPFC-sgACC functional connectivity 

In an influential 2012 study, Fox and colleagues suggested that the DLPFC (as part of the Central 

Executive Network) should only be seen as an entry point to a network relevant to the 

pathophysiology of depression (20). They demonstrated that clinical benefit of rTMS for 

depression was related to intrinsic functional connectivity (FC) of the respective DLPFC target to 

the sgACC (as part of the Default Mode Network), as determined by resting-state functional MRI 

(rs-fMRI). This functional connectivity was indexed as ‘anti-correlation’ of the sgACC to prefrontal 

cortical areas, and suggestive of a way to individualize prefrontal rTMS sites for MDD treatment 

by selecting the most sgACC-anti-correlated prefrontal site. 
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Several studies have attempted to replicate this finding, with successful conceptual replications 

by Weigand and colleagues (21), Cash (22), Siddiqi (23) and Elbau and colleagues (24). However, 

studies in which a whole brain FC analysis was performed, using the sgACC as seed-region showed 

no relationship between functional anti-correlations between the seed and stimulation targets 

in the left DLPFC and response (25–30). These non-replication studies are all based on individual 

rs-fMRI data. Hopman and colleagues even suggested an inverse relationship, i.e., stronger 

connectivity between the sgACC and stimulation site was related to improved clinical response 

(27). 

 

The studies by Fox et al. (20) and Weigand et al. (21) employed a normative functional 

connectome to derive FC. Cash et al. reasoned that using individual rs-fMRI data instead of a 

normative functional connectome may potentially improve TMS-personalization (22). Besides 

replication of previous results based on the normative connectome, this study showed that the 

relation between functional anti-correlation and clinical response was preserved when individual 

rs-fMRI data were used instead of group connectome data.  

 

In 2021, Cash et al. introduced new insights into the relationship between FC and clinical 

responses (31). Instead of the direct FC between the stimulation site in the left DLPFC and the 

sgACC, the proximity between the clinically applied stimulation site and the rs-fMRI-personalized 

target in the left DLPFC was found to be related to clinical response. This relationship was not 

significant when personalized targets were replaced by a group average target derived from a 

normative functional connectome, arguing for the first time for the advantages of using individual 

rs-fMRI data. Siddiqi et al. (23) confirmed the importance of distance and even reported a 

response rate of 100% for patients whose stimulated target was within 25 mm of the 

personalized target.  

 

Recently, Elbau et al. published the largest study (N=295), focusing on the potential of sgACC 

connectivity to infer TMS coil positions, as of now (24). Although an association between FC 

between the sgACC and left DLPFC target and clinical response was observed, this association 
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was much weaker (r=-.16) compared to previous studies (e.g. r=-.355 (20)), with low explained 

variance (3%). Only when subject-specific TMS-induced electric field simulations were performed 

and a weighted seedmap method was used to derive the time series of the sgACC, the weak but 

robust correlation was found. Of note, this relation was stronger in a subgroup of patients with 

strong global signal fluctuations due to burst breathing patterns (24). It was suggested that this 

weaker relationship could potentially be attributed to the relatively low-resolution of the rs-fMRI 

data (voxel size 5x5x5mm) (32). Indeed, better data quality could lead to better predictions and 

nowadays more sophisticated scanning sequences such as multi-echo and multi-band sequences, 

are available (33). Moreover, studies that showed stronger relations between anti-correlations 

and clinical responses based on high(er) resolution rs-fMRI data used strong smoothing 

parameters, effectively lowering the spatial resolution. 

FC between the sgACC and the left DLPFC has been studied extensively in relation to clinical 

response to rTMS treatment in MDD. This information can be used to define personalized coil-

positions and might in the future become a robust MRI-derived biomarker. However, optimal 

methodology to compute FC needs further investigation, and future prospective studies are 

warranted to demonstrate utility of this approach on the individual level.  

 

Functional MRI: Lesion network mapping 

In addition to using functional connections between specific brain regions as potential 

biomarkers, connectivity of stimulation sites with brain networks have also been related to 

clinical responses. A general depression network was identified by studying FC profiles from the 

normative connectome of 14 independent datasets including data on brain lesions, TMS, or deep 

brain stimulation (DBS), representing different sources of causal effects (8). Correlations between 

the individual connectivity maps of the TMS stimulation site and the depression network 

predicted the efficacy of the stimulation target. Cash et al. used a comparable approach to derive 

a network related to aberrant emotional processing in MDD patients, using coordinate network 

mapping of spatially heterogeneous coordinates (34). Of note, this emotional network resembles 

the depression network by Siddiqi et al. (𝛒=0.47, p=0.00)(8). Closer proximity between the 
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stimulation target and the emotional-network-derived personalized targets was associated with 

better clinical response (34).  

These findings suggest that in the future, effective rTMS stimulation sites could be derived from 

correlations between individual connectivity profiles and the depression network.  

  

Functional MRI: Machine learning-derived biotype approach 

Using FC as input to machine learning (ML) approaches, Drysdale et al. (35) identified four 

clusters, called biotypes, which in a subsequent validation showed differential sensitivity to 

response to rTMS over the dorsomedial prefrontal cortex (dmPFC). Subtype 1, represented by 

reduced connectivity in a fronto-amygdalar network and reduced connectivity to anterior 

cingulate and orbitofrontal areas, showed a high partial response rate of 83% (25%, 61% and 30% 

for subtypes 2, 3 and 4, respectively). Of note, partial response was defined as a >25% reduction 

in Hamilton depression rating scale (HDRS), albeit results were similar when using the more 

traditional >50% cut-off for response, but predicted full-response was lower (e.g. ~63% for 

biotype 1).  

 

Later work by Dinga (36) failed to replicate these findings in a more heterogeneous sample of 

187 patients with depression and anxiety. Their analysis led to three instead of four clusters. 

Neither the canonical correlates nor the clusters were statistically significant. Potential 

methodological explanations for this non-replication are overfitting of the nonregularized 

canonical correlation analysis and arbitrary definitions of the subtypes (37). Also, variations in 

the clinical sample characteristics might explain the non-replication (38).  

 

[Figure 3 here] 

  

EEG biomarkers 

EEG Frequency band power: Theta Power 

EEG biomarker studies have traditionally focused on frequency band power (e.g. theta or alpha), 

however few sufficiently powered biomarkers have been found and replicated for NIBS.  
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An early study by Arns (39) in 90 MDD patients reported that high frontocentral theta power, low 

prefrontal delta and beta cordance and high P300 amplitude at baseline were associated with 

non-response to 10Hz rTMS over DLPFC. However, in a replication attempt the findings for theta 

and P300 could not be replicated by the same group (40).  

 

Frontal-midline theta power and change in frontal theta power, measured after a rostral ACC-

engaging cognitive task demonstrated predictive potential in a small pilot study (41). The findings 

were replicated in an independent sample and moreover it was shown that the obtained 

predictor was specific to 10Hz rTMS since it could not predict response to iTBS treatment (42). In 

both studies, response was evaluated after 10 treatment sessions - a low number to assess 

clinical improvement. The final sample size was small (N=24 in the pilot and N=35 per treatment 

arm in the replication), however, the concept of independent-sample replication strengthens the 

findings, and the differential prediction for iTBS vs 10Hz rTMS suggests potential for future 

treatment stratification. 

 

[Figure 4 here] 

 

EEG Machine-Learning and Source-Reconstruction 

Wu and colleagues reported on ML applied to the alpha band, where response to sertraline – but 

not placebo – could be specifically predicted in the EMBARC dataset (43). When this alpha-

signature of response to rTMS was prospectively tested, it predicted change on the anxiety 

subscale of the DASS (Depression, Anxiety and Stress Scale) after 1Hz TMS treatment. Notably, 

the predictive effect was specific to 1Hz treatment (and not 10Hz), and opposite that of 

sertraline, offering potential for stratification. However, since no effects for depressive 

symptoms were reported (neither BDI nor DASS-depression), this analysis cannot be considered 

a true out-of-sample validation. Moreover, when another group inferred the data points 

reported for the sertraline finding, and calculated the ROC curve, model performance was rather 

weak with an AUC= 0.67 (for a detailed critique about the methodology, see (44)). 
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A novel approach which conceptually resembles the previously mentioned rs-fMRI biotype 

analyses, applied independent component analysis to source-reconstructed EEG frequency band 

data. An EEG signature was identified that was associated with the polygenic risk scores for 

antidepressant response (45). Subsequent application of this signature to new samples yielded 

an association with response to both antidepressants and rTMS in men, but not women. As 

selecting EEG biomarkers using genetic data is a novel technique, this study should rather be 

viewed as a proof-of-concept that could aid in future biomarker development but requires 

further replication and comparison of the obtained networks with other known rs-fMRI or EEG 

networks. 

  

 

Individual alpha peak frequency 

One of the most heritable and reproducible aspects of the EEG is the individual alpha peak 

frequency (iAF) - the exact frequency of the alpha oscillations (46–48). Initial findings for iAF were 

mixed. Some studies reported an association between slow alpha and non-response to DLPFC 

rTMS (39,49) which could not be replicated by the same group (40) or by Widge (50). Adding iAF 

to a predictive model of non-linear EEG features of the alpha band, on the other hand, improved 

model prediction albeit in a rather small group of non-responders (N=20)(51). 

 

More recent work shed light on these contradictory results by showing a predictive effect of iAF 

that was specific to 10Hz rTMS treatment outcome (with no such effect for 1Hz R-DLPFC rTMS) 

and could only be found using an average reference (indexing more focal activity than the linked-

ears montage used in the studies mentioned above) (52). Furthermore, the association between 

iAF and symptom improvement turned out to be a quadratic instead of the previously assumed 

linear effect, demonstrating that the distance of iAF to 10Hz was negatively correlated with 

symptom improvement after 10Hz rTMS (6). These results were successfully replicated (52) in 

the same sample by Krepel et al. (40), where previous findings (using linked ears reference) could 

initially not be replicated. This emphasizes the importance of exact methodological replications 
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and a uniform way to preprocess and analyze EEG data. These differential predictive results for 

iAF in 10Hz and 1Hz rTMS were recently further validated in a treatment stratification approach 

using iAF-based Brainmarker-I including multiple blinded out-of-sample validations for 1Hz rTMS 

and ECT (53). 

 

   

EEG Cordance 

A study investigating prefrontal theta cordance found that baseline cordance could predict 

response to 1Hz rTMS with high accuracy (54) although this could not be replicated in another 

study where only 1-week change in theta cordance at central electrode sites predicted 

differences in response but not baseline or prefrontal cordance (55).  

Two ML studies investigated pretreatment frontal cordance to predict outcome to 25Hz rTMS in 

the same dataset of 147 subjects, using artificial neural networks (56,57). High classification 

accuracies were obtained, albeit in the first study only a 6-fold cross validation was conducted 

but models were not tested in an external validation set which is considered necessary to prevent 

over-fitting (58). The second study in 2016 included a separate sample of 36 subjects for external 

validation, achieving high accuracy (AUC=.807-918). However, another ML study that used 

minimal-redundancy-maximal-relevance feature selection to test response prediction with 

frontal and prefrontal baseline cordance found no differences between responders and non-

responders (59). Thus, no conclusions can be drawn about the predictive value of baseline 

cordance.  

  

EEG Functional Connectivity 

Zhang and colleagues used ML to identify differences in beta connectivity in frontal and posterior 

regions during eyes-open recordings which could distinguish two clinical subtypes that 

responded differentially to psychotherapy in posttraumatic stress disorder and SSRI treatment in 

MDD (60). However, no such differences between subtypes were found for rTMS, suggesting little 

relevance for rTMS prediction, but possible relevance for stratification between SSRI and rTMS 

treatment. Another ML model, built on 54 EEG features, such as baseline and week-1 alpha and 
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theta connectivity (and other features such as power, iAF and cordance), demonstrated high 

predictive accuracy of response (86.6%) (61), which could not be replicated in an independent 

sample (62). The discovery analysis was based on only 12 responders compared to 128 

responders in the replication sample. One important caveat of the replication analysis was the 

strong differences in EEG processing that can lead to different results (52).  

Findings regarding FC are, thus, inconclusive with different processing and modelling approaches 

hampering robust findings.  

 

Discussion 

The aim of this systematic review was to assess the progress regarding EEG and MRI-biomarkers 

for NIBS techniques. To improve upon previous criticisms, particularly the lack of replications as 

highlighted by Widge and colleagues(12), we focused on robustness in this review. To achieve 

this, we included only studies with a sample size of N≥88 or those that attempted to replicate 

biomarkers in independent samples, in order to identify robust biomarkers that can be used 

clinically to predict response to NIBS techniques. 

 

Eighteen MRI and 18 EEG biomarker studies were included (visualized in figure 1). All studies 

focused on rTMS while no relevant imaging biomarker studies were found for TES.  

 

MRI Biomarkers 

The most robust rs-fMRI based metric predicting clinical response supported by a large sample 

(N=295) (24) as well as several independent replications, is the anti-correlation between the 

stimulation target (within the left DLPFC) and sgACC (20). This anti-correlation was shown to be 

related to response to various rTMS protocols, such as iTBS and 10Hz rTMS. However, replication 

in the largest sample yielded only weak effects (24), potentially suggesting reduced utility in 

clinical practice. Thus, prospective studies targeting the personalized location in the DLPFC with 

the highest anti-correlation with the sgACC should demonstrate if this connection has true 

biomarker potential. 
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A newer method based on network mapping also demonstrated biomarker potential of the 

connection between the stimulation site and a general depression network or an emotional 

network. Even though these findings are based on a large study using data from 151 TMS 

stimulation sites (four merged TMS datasets) (8) and was independently replicated (34), more 

and prospective research is warranted to demonstrate clinical value. 

 

EEG Biomarkers 

For EEG biomarkers, frontal-midline-elicited theta power after an rACC-activating task and iAF 

emerged as the most promising and robust EEG biomarkers. Frontal-midline theta power has 

been extensively described in the literature as a biomarker for treatment prediction and is 

thought to reflect rACC theta (for review see Pizzagalli (63)), supported by the finding that an 

rACC-engaging task can elicit this frequency (41,42). Interestingly, rACC activation was found to 

be predictive across imaging modalities, including EEG and fMRI (63). However, this was true for 

both sertraline and placebo response (13). Thus, despite successful replication, future studies 

should further investigate whether this finding is specific to 10Hz rTMS vs. iTBS or should rather 

be considered a non-specific predictor of response, including placebo. 

 

The iAF finding emerged from two well-powered studies (N=143; N=153) by two independent 

groups. Interestingly, this result was specific to 10Hz rTMS (proximity of iAF to 10Hz was 

associated with better clinical response, suggesting ‘synchronisation’ effects of rTMS to the 

endogenous iAF rhythm). Recent work indicated promise of the iAF-based Brainmarker-I to 

stratify between 10Hz L-DLPFC and 1Hz R-DLPFC rTMS to enhance clinical outcomes (53), 

providing additional clinical merit of this biomarker. 

 

Lessons learned: The devil is in the detail. 

There are many methods to derive seed regions and compute prefrontal-sgACC FC. Even though 

earlier work used circles or weighted cone models to derive seed region time-series, currently 

more advanced methods such as individual TMS-induced electric field simulations and weighted 

seedmap methods are used. These methodological details have shown to be highly influential 
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since Elbau et al. (24) only found a relation between the FC between stimulation site and sgACC 

and clinical response when the stimulated area was derived from the simulated electric field 

distribution and the sgACC time-series were derived using a seedmap approach. Four of the 

papers included in this review demonstrate clinical value of using individual rs-fMRI data 

compared to group connectome data (23,24,34,64). Future research needs to compare 

biomarkers derived from these different connectomes and answer the question whether 

baseline individualized rs-fMRI data collection should be added to treatment protocols.  

 

In the case of the iAF EEG biomarker, initial findings were mixed, even though several well-

powered studies were used to examine the effect (e.g. N=180 (50) or N=90-106 (39,40), and 

replication analyses were conducted. Later work actually led to consistent and robust findings 

(6,52), showing that the crucial factors were: 1) Use of the correct EEG montage: initial studies 

used the less focal linked-ears reference, while Roelofs  (52) demonstrated that the main result 

critically depended on the average reference montage; 2) protocol-specific effects for 10Hz TMS 

and no such effect for 1Hz TMS, meaning effects could average out when combined, and 3) a 

quadratic association between TMS response and iAF as opposed to the presumed linear 

association (i.e. lower iAF predicts worse TMS-response).  

 

The actual predictive value of clinical response of these MRI- and EEG-derived metrics depends 

on the preprocessing pipelines used. Future research is necessary to investigate if the content of 

these metrics is related to core brain mechanisms or reflect other sources of signal fluctuations 

such as respiration or cardiac patterns.  

 

Artificial intelligence (AI) and machine learning (ML) 

The present review reveals a limited biomarker potential for AI and ML-techniques in both EEG 

and rs-fMRI studies. 

Although large – and often multiple - samples were used and results seemed promising at first 

glance, some studies lacked external validation samples (56) which are needed to prevent 

overfitting (58); some out-of-sample validation results were only significant for different 
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measures than the discovery measure (e.g. anxiety instead of depression) (43); and some could 

not be replicated, possibly due to overfitting (62). Finally, it is important to use consistent 

definitions for response and remission (e.g. not ‘partial response’), in order to keep outcomes 

comparable. 

 

Future directions 

It remains to be investigated whether the biomarkers described in this review generalize to 

multiple rTMS protocols. If not, this might at least partly explain some of the unsuccessful 

replication attempts. Moreover, especially for biomarkers with weaker effects, the cost/benefit 

ratio needs to be assessed.  

Although predicting NIBS outcome in other disorders would be highly relevant, the present 

manuscript only discusses robust biomarkers for MDD. Future research is needed to determine 

if these are also predictive of treatment response in other disorders. 

Finally, prospective studies, similar to van der Vinne et al (65), will be necessary to test treatment 

individualization in daily clinical practice. 

 

Conclusion 

This systematic review has identified four robust neuroimaging biomarkers that have reached a 

sufficient level for testing in prospective trials to evaluate their feasibility and clinical 

actionability. Some of those biomarkers show promise for treatment stratification (e.g. 

stratification between 10Hz vs. 1Hz rTMS protocols using iAF (53)) which might be a more realistic 

and feasible approach for clinical practice opposed to precision psychiatry (66). 

 

Overall, a limited number of studies met our inclusion criteria, highlighting the need for 

improvements in the quality of imaging biomarker research for rTMS. Nevertheless, the 

identification of four robust biomarkers over the past decade presents a promising outlook and 

justifies large trials, similar to iSPOT-D and EMBARC for antidepressant medication, but then 

aimed at rTMS and NIBS. 
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Figure legends: 

 

Figure 1: Flow-diagram of total studies identified, excluded and included in the systematic review 

for EEG-biomarkers (left) and MRI-biomarkers (right), as well as all identified and the most robust 

biomarkers that emerged from this systematic review (1, 2 for EEG and 3, 4 for MRI). 

Records were excluded on basis of the abstract if they turned out to be non-human studies, no 

original research, pertain to another pathology than MDD, or another biomarker than EEG/MRI, 

or another treatment than NIBS. 

Prespecified exclusion criteria were: 1. Treatment-emergent biomarker, and 2. Sample size <88 

and no replication (iAF= individual alpha frequency; rACC=rostral anterior cingulate cortex; 

DLPFC=dorsolateral prefrontal cortex, sgACC=subgenual anterior cingulate cortex). 

 

Figure 2: Overview of study details on the included MRI studies based on sample size (N≥88; 

highlighted in green) or based on replication-work (highlighted in blue). Strength of finding 

reports the area under the receiver-operator characteristic curve (AUC), effect size, correlation 

coefficient or another measure of effect size, depending on what was reported in article. Total N 

refers to the full sample size used to compute the biomarker while Group N is the sample size of 

the group in which the biomarker was tested for rTMS. 

(a)iTBS= (accelerated) intermittent theta burst stimulation, dmPFC = dorsomedial prefrontal 

cortex, HDRS= Hamilton Depression Rating Scale, rTMS = repetitive transcranial magnetic 

stimulation, QIDS = Quick Inventory of Depressive Symptomatology, DLPFC = dorsolateral 

prefrontal cortex, (sg)ACC= (subgenual) anterior cingulate cortex, BDI = Beck Depression 

Inventory, MADRS = Montgomery-Åsberg Depression Rating Scale, DBS = deep brain stimulation, 

ANOVA = analysis of variance, (rs) FC = (resting-state) functional connectivity. 

 

Figure 3: Glossary of terms used throughout the article. 
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Figure 4: Overview of study details of included EEG studies based on sample size (N>88; 

highlighted in green) or based on replication-work (highlighted in blue). Strength of finding 

reports the area under the receiver-operator characteristic curve (AUC), effect size, correlation 

coefficient or another measure of effect size, depending on what was reported in article. Total N 

refers to the full sample size used to compute the biomarker while Group N is the sample size of 

the group in which the biomarker was tested for rTMS.  

BDI = Beck Depression Inventory, iAF= individual alpha peak frequency, IDS(-SR) = Inventory of 

Depressive Symptomatology (self-rated), rTMS = repetitive transcranial magnetic stimulation, 

HDRS= Hamilton Depression Rating Scale, ML= machine learning, PRS= polygenic risk score, fICA= 

functional independent component analysis, (DL)PFC = (dorsolateral) prefrontal cortex, DASS = 

Depression Anxiety and Stress Scale,  EO= eyes open, EC = eyes closed, MADRS = Montgomery-

Åsberg Depression Rating Scale, CGI-I= Clinical Global Impressions Scale (Improvement), iTBS= 

intermittent theta burst stimulation, RECT= rostral anterior cingulate cortex engaging cognitive 

task  
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Alternative Finding

Thicker cortex in the right caudal part 
of the ACC at baseline was associated 
with better clinical response 3 days 
after stimulation

Responders showed significantly 
stronger rs FC anti-correlation between 
the sgACC and parts of the left superior 
medial prefrontal cortex

Higher baseline connectivity between 
sgACC and dlPFC was associated with 
better clinical response.

FC between sgACC and medial orbito-
frontal cortex at baseline could distin-
guish aiTBS responders from non-
responders

Clinical response (post-treatment and 
12 weeks after rTMS) was related to 
lower functional connectivity between 
the sgACC and the right DLPFC

Baseline functional connectivity be-
tween the sgACC and the precuneus is 
negatively correlated with clinical 
response

Stronger DLPFC-sgACC connectivity was 
associated with symptom improvement. 
Long-term responders showed higher 
connectivity between sgACC and frontal 
pole, superior parietal lobule, and 
occipital cortex and between the left 
DLPFC and the central opercular cortex

Biotypes could not be replicated

Positive Finding

Thinner cortex in the rostral part 
of the ACC at baseline was asso-
ciated with better clinical response

DLPFC sites with higher clinical 
efficacy showed higher anti-
correlations with the sgACC

Better clinical response was related to 
higher anti-correlations between 
the stimulation site in the DLPFC 
and the sgACC

Better clinical response was related to 
higher anti-correlations between the stim-
ulation site in the DLPFC and the sgACC

Better clinical response was related to 
higher anti-correlations between the stim-
ulation site in the DLPFC and the sgACC

Better clinical response was related to 
higher anti-correlations between the stim-
ulation site in the DLPFC and the sgACC

Clinical response was related to higher 
anti-correlations between the stimula-
tion site in the DLPFC and the sgACC

Circuits derived from lesions, rTMS, 
and DBS stimulation sites are similar 
and connectivity to this circuit predicts 
efficacy of rTMS treatment

Closer proximity between actual and 
emotional network-specific TMS targets 
is associated with better clinical outcome

Four distinct biotypes, characterised by 
dysfunctional connectivity in limbic and 
frontostriatal networks predicted clinical 
response to dmPFC rTMS

Strength
of finding

r N.S., p<0.001

r = 0.51, p = 0.02

r = –0.355, p<.05

ANOVA F-value = 3.62

Peak z-score 3.6

r = –0.55, p < 0.005

r = –0.52, p < 0.05

p<0.01

r = –0.61, p=0.001

r = –0.54, p = 0.002

AUC = 0.87, p<.001, 
r = –0.62, p<.001
AUC = 0.79, p<.001, 
r = –0.49, p=0.001

p = 0.021, T = 6.75

Effect size: .26 – .30 
depending on area cluster 
(for long-term responders
vs non-responders)

r = –0.6, p < 0.005

r = –0.16, p=.006

Weighted mean 
r = 0.22, p < 0.001

r = –0.41, p = 0.018

   2 = 25.7, p<.001

ns

Outcome 
measure

BDI/HDRS-24

HDRS-17

MADRS

HDRS-17

HDRS-17

BDI

MADRS

HDRS-17

MADRS

MADRS

HDRS-17

MADRS

MADRS

BDI

QIDS-SR

BDI/MADRS/
HDRS-24

MADRS

HDRS-17

IDS

rTMS protocol

10 Hz rTMS

Accelerated iTBS

10 Hz rTMS

Accelerated 
10 Hz rTMS

10 Hz rTMS 
(dmPFC) 

10 Hz rTMS or 
20 Hz rTMS
10 Hz rTMS

Accelerated iTBS

10 Hz rTMS

10 Hz rTMS

10 Hz rTMS 
or iTBS

iTBS

10 Hz rTMS

10 Hz rTMS

10 Hz rTMS 
or iTBS

10 Hz 
or 20 Hz rTMS

10 Hz rTMS

10 Hz or iTBS 
(dmPFC)

Not applicable

Total N 
(Group N)

48 (48)

50 (21)

149 (27)

20 (12)

 

25 (25)

25 (25)

16 (12)

50 (44)

47 (24)

26 (26)

50 (50)

50 (32)*

30 (20)

70 (61 long-
term, 63 
short-term)

 

25 (25)

414 (295)

713 (151)

26 (26)

1188 (154)

187 (187)

Study

Boes, 2018

Baeken, 2021

Fox, 2012

Baeken, 2014

Salomons, 2014

Weigand, 2017

Baeken, 2017

Cash, 2019

Cash, 2020

Ge, 2020

Persson, 2020

Hopman, 2021

Siddiqi, 2021

Elbau, 2023

Siddiqi, 2021

aCash, 2023

Drysdale, 2017

Dinga et al. 2019

Biomarker
Category

Cortical thickness

DLPFC-sgACC functional connectivity

Network Mapping

Machine Learning

* 12-week Follow up
Group N denotes the treatment group tested for effect
ns = not significant;  N.S= not specified;  IDS = inventory of depressive symptomatology

Sample size ≥88
Replication studies, sample size potentially <88
Robust biomarker found

Jo
urn

al 
Pre-

pro
of



A normative functional connectome is an averaged 
connectivity map derived from rs-fMRI scans from many 
individuals, also called functional group connectome or 
human connectome. This connectome represents the average 

wiring diagram of the brain’s functional connections. The advantage of a normative 
functional connectome is that the signal-to-noise ratio is higher compared to 
individual rs-fMRI data. However, inter-individual differences in functional connectiv-
ity are discarded.

TMS-induced electric field simulations can provide insight in the 
distribution of the TMS effects within the brain. When a TMS pulse is 
applied to the brain, a secondary electric field is induced in the 
superficial layers of the cortex. The exact distribution of this 
TMS-induced electric field depends on the shape of the TMS coil 
used as well as on the individual’s gyral folding pattern. 

The weighted seedmap method, introduced by Cash et al (1), is an 
alternative method to compute the time-series in the sgACC 
combining knowledge from the normative functional connectome with 
the individual rs-fMRI data. According to the weighted seedmap approach the 
time-series of the sgACC is computed as the weighted spatial average of the 
time-series in the gray matter voxels of the individual rs-fMRI data, excluding the 
DLPFC region. The weights are derived from the connectivity strength between the 
sgACC and the gray matter voxels in the normative functional connectome. 

Global signal is the mean of the voxel time-series within the brain. Particularly in the 
work of Elbau et al. (2), the global signal is relevant since it was shown to reflect burst 
breathing patterns. Especially the subset of patients showing global signal patterns 
related to burst breathing showed strong negative correlations between sgACC-stim-
site FC and clinical response.

Network mapping is an analysis technique that does not solely consider focal brain 
regions but is also sensitive to networks connected to those regions. At first, network 
mapping used lesions to seek convergence for symptoms caused by lesions in 
different non-overlapping brain regions (3). Network mapping has since been 
expanded to contain other (causal) sources of information such as TMS stimulation 
sites (TMS network mapping) (4) or coordinates related to abnormal brain function-
ing (coordinate network mapping) (5).

The emotional network, identified by Cash et al. (5), involves the 
subgenual cingulate cortex, pregenual anterior cingulate cortex, left 

DLPFC, cingulum, and superior frontal gyrus including the 
pre-supplementary motor area. 

The depression network, derived by Siddiqi et al. (4), contains 
positive peaks in the DLPFC, frontal eye fields, inferior frontal 

gyrus, intraparietal sulcus and extrastriate visual cortex and 
negative peaks in the subgenual cingulate cortex and ventromedial 

prefrontal cortex. . 

Canonical correlation analysis (CCA) is a well-established method used to 
identify the association between two sets of variables. Drysdale et al. (6) used CCA to 
select a low-dimensional representation of FC features that were related to weighted 
combinations of clinical symptoms. Regularized CCA is based on a subset of 
features. This prevents overfitting of CCA as might be the case in nonregularized 
CCA.

Frequency band power is most commonly calculated for 
the 5 standard frequency bands delta (1-4 Hz), theta (4-8 Hz), 
alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-100 Hz) 
although the frequency ranges are not standardized and 

often differ between studies. The power spectrum within a frequency band is usually 
calculated by Fast-Fourier Transform (FFT), an algorithm that transforms a signal from 
a time or space domain to a frequency domain.

The P300 is an event-related potential (ERP), which can be observed 
in the EEG in response to an infrequent tone in a row of frequent 
tones. It denotes a positive deflection approximately 300ms 
following the stimulus and is assumed to be involved in attention 
and memory processes.

Independent component analysis (ICA) is a computational 
method to filter a multivariate signal into its distinct subcomponents. 
ICA was here applied to data which had been source reconstructed with 
LORETA (Low Resolution Brain Electromagnetic Tomography), an EEG 
method for 3D imaging brain activity to estimate where signals come from in the 
brain.

Polygenic risk scores (PRS) estimate a person’s genetic predisposition to develop 
certain traits or disorders, based on their genetic profile and genome-wide 
association study data. 
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The individual alpha peak frequency (iAF) is the frequency at which an individual’s 
alpha oscillations are most pronounced. It is calculated by determining the power 
spectrum within the alpha frequency band (see above) and identifying the highest 
(modal) peak in that spectrum. 

Brainmarker-I is an iAF-based biomarker which has been age- and sex-normalized 
on a large dataset (>4000 individuals) by employing the biological ground 

truth that the iAF matures (speeds up) during childhood and 
adolescence (7).

Cordance is an EEG measure, originally developed by Leuchter 
and colleagues (8) that combines both absolute and relative 
power within a specific frequency band, with negative values 
reflecting increased slow-wave and decreased fast activity. This 

pattern was termed discordance and is assumed to reflect low 
perfusion and metabolism. 

Cross validation is a statistical method used in machine learning to 
evaluate model performance. Ideally, an external validation dataset is used to 

test model predictions. Often, cross validation is done on a segment basis, meaning 
all data segments from all participants are merged and some segments are kept for 
later validation. This can lead to high prediction accuracy, so-called overfitting, since 
the model is predicting the participant instead of the signal.
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Study

Arns, 2012

Krepel, 2018

Widge, 2013

Arns, 2014

Corlier, 2019

Roelofs, 2021

Erguzel, 2014

Erguzel, 2016

Wu, 2020

Meijs, 2022

Zhang, 2020

Bailey, 2019

Bailey, 2021

Bares, 2015

Hunter, 2018

Hasanzadeh, 
2021

Li, 2016

Li, 2021

Total N 
(Group N)

90 (90)

106 (106)

180 (86)

90 (90)

147 (68)

153 (59)

147 (147)

147 (147)

177 (152)

193 (95)

179 (179)

71 (42)

193 (193)

50 (25)

18 (18)

46 (46)

36 (24)

105 (70)

rTMS protocol

10 Hz or 1 Hz

10 Hz or 1 Hz

10 Hz

10 Hz or 1 Hz

10 Hz, 5 Hz or 
sequential bilateral 
(10 Hz and 1 Hz)

10 Hz or 1 Hz

25 Hz

25 Hz

10 Hz or 1 Hz

10 Hz or 1 Hz

10 Hz or 1 Hz

10 Hz initially; later 
unilateral 10 Hz or 
1 Hz or sequential 
bilateral

10 Hz or 1 Hz or 
sequential bilateral

1 Hz

10 Hz (with potential 
switch to bilateral 
after session 10)

10 Hz initially; last 6 
sessions unilateral 
10 Hz or 1 Hz or 
sequential bilateral

10 Hz

10 Hz or iTBS

Outcome 
measure

BDI

BDI

HDRS-17

BDI

IDS-30 SR 
(response ≥40%)

BDI

HDRS-17

HDRS-17

DASS

BDI

BDI

HDRS-17

BDI

MADRS

IDS-SR, CGI-I

BDI, HRSD

HDRS-17

HDRS-17

AUC
(/effect size)

.814

ns

ns

.697 (for alpha), 

.793 (for iAF)

r = –0.305 (adj p = .045)

r = –0.250 (p = .028)

.904 (using 
genetic algorithm)

.807 - .918

rTMS: p = .004; effect 
size N.S. 
Sertraline: AUC = 0.67 
(taken from Nilsonne 
and Harrell, 2020)

.719 (model with 
baseline BDI and age)

ns

Balanced accuracy: 86.6%

ns (Cohen’s d = 0.25241) 

.82

Baseline ns (p = .15)

Accuracy: 91.3% beta, 
76.1% cordance

.799

.800 (for 10 Hz), 

.549 (for iTBS)

Positive Finding

Non-response characterised by in-
creased fronto-central theta, slower 
iAF, larger P300 amplitude in re-
sponse to high-pitched targets of 
auditory oddball task, decreased 
prefrontal delta and beta cordance

Decrease in Lempel-Ziv complexity 
(LZC) from minute 1 to minute 2 in non-
responders, increase in responders and 
controls; predictive accuracy improved 
when LZC was calculated on iAF range

A higher iAF and lower iAF distance to 
10 Hz were significantly correlated with 
symptom improvement to 10 Hz but not 
to 5 Hz or bilateral rTMS

Significant negative correlation between 
distance of iAF to 10 Hz and BDI percent 
change for 10 Hz but not 1 Hz rTMS

ML algorithm based on delta and theta 
cordance can classify responders and 
nonresponders with high accuracy

Erguzel, 2014 was replicated in same 
sample but with added external validation 
and assessing different classifiers

Values of SELSER algorithm below median 
predict better outcome to 1 Hz rTMS in 
anxiety subscale of DASS

PRS-informed fICA EEG component, reflect-
ing delta and theta power in left DLPFC, in-
versely correlated with delta power in right 
anterior PFC, distinguishes response/non-
response

Responders showed higher theta connec-
tivity (averaged across EO and EC) than con-
trols; ML model based on 54 alpha and 
theta power, connectivity, iAF and theta cor-
dance features can classify responders/non-
responders with high accuracy

Baseline cordance and decrease in cordance 
after week 1 of treatment predictive of 
response

Responders showed significant increase of 
frontal theta after RECT

Replication of Li, 2016: post-RECT frontal 
theta predictive of 10 Hz rTMS response 
but not of response to iTBS

Alternative Finding

Non-replication of Arns, 2012

All variables were non-significant
(non-replication of iAF)

Identified subtypes based on beta func-
tional connectivity could not distinguish 
response/nonresponse for rTMS

Non-replication of Bailey, 2019: no 
difference between responders/non-
responders in all measured variables

Central cordance change at week-1 
but not at baseline was significantly 
associated with treatment outcome

Cordance features were not significantly 
different between responders/non-
responders

Biomarker
Category

Theta power & iAF

iAF

ML & theta
cordance

ML & source
reconstruction

EEG functional 
connectivity

Theta cordance

Frontal-midline theta

Group N denotes the treatment group tested for effect
ns = not significant
N.S= not specified

Sample size ≥88
Replication studies, sample size potentially <88
Robust biomarker found

(39)

(50)

(51)

(6)

(52)

(56)

(57)

(43)

(45)

(60)

(61)

(62)

(54)

(55)

(59)

(41)

(42)

(40)

Jo
urn

al 
Pre-

pro
of


