Incorporating morphology via deep learning improves classification performance of MALDI imaging for skin lesions

Wanqiu Zhang; Nathan Heath Patterson; Nico Verbeeck; Jessica Moore; Alice Ly; Richard M. Caprioli; Bart De Moor; Jeremy L. Norris; Marc Claesen

- As the 3rd most common form of skin cancer, melanoma causes most skin cancer deaths
- Current definitive diagnosis of melanoma is mostly based on histopathologic evaluation

Need for objective novel technologies to assist the diagnosis

- · As the 3rd most common form of skin cancer, melanoma causes most skin cancer deaths
- Current definitive diagnosis of melanoma is mostly based on histopathologic evaluation

Need for objective novel technologies to assist the diagnosis

• Previous study¹ shows **MALDI IMS** is an effective tool for objective melanoma diagnosis

- As the 3rd most common form of skin cancer, melanoma causes most skin cancer deaths
- Current definitive diagnosis of melanoma is mostly based on histopathologic evaluation

Need for objective novel technologies to assist the diagnosis

• Previous study¹ shows MALDI IMS is an effective tool for objectively confirming melanoma diagnosis

<u>Does combining histopathology data with MALDI IMS improve the unimodal classification results on melanoma diagnosis?</u>

- As the 3rd most common form of skin cancer, melanoma causes most skin cancer deaths
- Current definitive diagnosis of melanoma is mostly based on *histopathologic evaluation*

Need for objective novel technologies to assist the diagnosis

Previous study¹ shows MALDI IMS is an effective tool for objectively confirming melanoma diagnosis

Does combining histopathology data with MALDI IMS improve the unimodal classification results on melanoma diagnosis?

> Benign nevus Malignant melanoma

- As the 3rd most common form of skin cancer, melanoma causes most skin cancer deaths
- Current definitive diagnosis of melanoma is mostly based on histopathologic evaluation

Need for objective novel technologies to assist the diagnosis

• Previous study¹ shows MALDI IMS is an effective tool for objectively confirming melanoma diagnosis

Does combining histopathology data with MALDI IMS improve the unimodal classification results on melanoma diagnosis?

Yes!

Benign nevus *VS.*Malignant melanoma

Histology-guided IMS sample preparation pipeline

Histology-guided IMS sample preparation pipeline

Histology-guided IMS sample preparation pipeline

IMS data sample selection

Note: Each sample has 21 annotation spots on average

TABLE 1 Patient demographics for training and test sets

	•			
	Training set	Test set		
Benign subtype				
Intradermal nevus	75	25		
Compound nevus	65	24		
Blue nevus	1	0		
Total benign	141	49		
Melanoma subtype				
Superficial spreading	47	23		
Lentigo maligna	26	11		
Mel-NOS	9	5		
Nodular	8	2		
Spitzoid	3	1		
Desmoplastic	3	0		
Spindle cell	2	1		
Nevoid	1	0		
Acral	1	0		
Total melanoma	100	43		
Other clinical parameters				
Mean patient age				
Benign	44.4	39.9		
Melanoma	61.3	63.9		
Patient sex				
Benign				
Male	52	18		
Female	89	31		
Melanoma				
Male	55	28		
Female	45	15		
Mean Breslow depth				
Benign	_	-		
Melanoma	1.42 mm	1.12 mm		

Al-Rohil, Rami N., Jessica L. Moore, Nathan Heath Patterson, Sarah Nicholson, Nico Verbeeck, Marc Claesen, Jameelah Z. Muhammad et al. "Diagnosis of melanoma by imaging mass spectrometry: Development and validation of a melanoma prediction model." Journal of cutaneous pathology 48, no. 12 (2021): 1455-1462.

Data visualization

Randomly sampled microscopy data

Al-Rohil, Rami N., Jessica L. Moore, Nathan Heath Patterson, Sarah Nicholson, Nico Verbeeck, Marc Claesen, Jameelah Z. Muhammad et al. "Diagnosis of melanoma by imaging mass spectrometry: Development and validation of a melanoma prediction model." Journal of cutaneous pathology 48, no. 12 (2021): 1455-1462.

Data analysis pipeline (Study design)

Data analysis pipeline (Study design)

Unimodal IMS pipeline

Pre-trained neural networks

Before training

Pre-trained neural networks

57 histopathology multi-organ datasets¹:

- 206,000 patches in 23 datasets;
- 25,000 giga-resolution images in 35 datasets

Before training

Pre-trained neural networks

57 histopathology multi-organ datasets¹:

- 206,000 patches in 23 datasets;
- 25,000 giga-resolution images in 35 datasets

After training

Multimodal pipeline

VEM: vector embedding morphology P: size of patch C: size of microscopy embedding In this study, P=96, C=512, #bins = 5558

Multimodal pipeline

VEM: vector embedding morphology
P: size of patch
C: size of microscopy embedding
In this study, P=96, C=512,
#bins = 5558

Multimodal pipeline

UMAP on training data

UMAP on test data

Experiments details:

- Classification model: linear support vector machine (SVM)
- Nested cross validation with grid search parameter tuning (on training data)
 - Inner cross validation: 10 folds
 - · Outer cross validation: 10 folds

Experiments details:

- Classification model: linear support vector machine (SVM)
- Nested cross validation with grid search parameter tuning (on training data)

· Inner cross validation: 10 folds

Outer cross validation: 10 folds

Spots that measured in the same tissue were grouped in the same fold, during each iteration

Final Multimodal IMS and Microscopy data							
Number	Training set	Test set					
Samples/Patients	239	92					
Spots	5080	1924					
Diagnosis Melanoma	2476	999					
Diagnosis Nevus	2604	925					

Experiments details:

- Classification model: linear support vector machine (SVM)
- Nested cross validation with grid search parameter tuning (on training data)
 - · Inner cross validation: 10 folds
 - · Outer cross validation: 10 folds

Final Multimodal IMS and Microscopy data							
Number	Test set						
Samples/Patients	239	92					
Spots	5080	1924					
Diagnosis Melanoma	2476	999					
Diagnosis Nevus	2604	925					

Nested cross validation results on training data:

Model	Mean ROC-AUC		Mean F1 score		Mean Precision		Mean Recall	
Unimodal IMS	0.915	0.049	0.823	0.067	0.846	0.085	0.815	0.11
Unimodal Microscopy	0.937	0.03	0.82	0.056	0.857	0.104	0.805	0.111
Multimodal	0.968	0.023	0.866	0.056	0.920	0.051	0.83	0.112

Note: Melanoma is negative; all results are based on spots-level; Standard deviation are in grey, ROC-AUC = 1 means the classifier can distinguish between all Positive and Negative class points perfectly correctly.

Nested cross validation results on training data:

Model	Mean ROC-AUC		Mean F1 score		Mean Precision		Mean Recall	
Unimodal IMS	0.915	0.049	0.823	0.067	0.846	0.085	0.815	0.11
Unimodal Microscopy	0.937	0.03	0.82	0.056	0.857	0.104	0.805	0.111
Multimodal	0.968	0.023	0.866	0.056	0.920	0.051	0.83	0.112

Note: Melanoma is negative; all results are based on spots-level; Standard deviation are in grey, ROC-AUC = 1 means the classifier can distinguish between all Positive and Negative class points perfectly correctly.

Nested cross validation results on training data:

Model	Mean ROC-AUC		Mean F1 score		Mean Precision		Mean Recall	
Unimodal IMS	0.915	0.049	0.823	0.067	0.846	0.085	0.815	0.11
Unimodal Microscopy	0.937	0.03	0.82	0.056	0.857	0.104	0.805	0.111
Multimodal	0.968	0.023	0.866	0.056	0.920	0.051	0.83	0.112

Results on independent test data (with optimized parameters):

Model	ROC-AUC	F1 score	Precision	Recall	Specificity	
Unimodal IMS	0.931	0.856	0.828	0.886	0.83	
Unimodal Microscopy	0.938	0.861	0.871	0.851	0.883	
Multimodal	0.968	0.91	0.924	0.90	0.932	

Note: Melanoma is negative; all results are based on spots-level; Standard deviation are in grey, ROC-AUC = 1 means the classifier can distinguish between all Positive and Negative class points perfectly correctly.

Results on independent test set

Interesting cases

Misclassified cases from unimodal pipelines

Microscopy data	IMS data	Unimodal Microscopy prediction	Unimodal IMS prediction	Multimodal prediction	Experts evaluation
					Melanoma
					Melanoma
					Nevus
					Nevus

Microscopy data	IMS data	Unimodal Microscopy prediction	Unimodal IMS prediction	Multimodal prediction	Experts evaluation
	200 150 50 100 1000 1500 2000 2500 3000 3500	Nevus	Melanoma		Melanoma
	150 100 50 1000 1500 2000 2500 3000 3500	Nevus	Melanoma		Melanoma
	200 m/z 150 50 0 1000 1500 2000 2500 3000 3500	Melanoma	Nevus		Nevus
	150 100 50 1000 1500 2000 2500 3000 3500	Melanoma	Nevus		Nevus

Microscopy data	IMS data	Unimodal Microscopy prediction	Unimodal IMS prediction	Multimodal prediction	Experts evaluation
	200 150 50 100 1000 1500 2000 2500 3000 3500	Nevus	Melanoma	Melanoma	Melanoma
	150 100 50 1000 1500 2000 2500 3000 3500	Nevus	Melanoma	Melanoma	Melanoma
	200 m/z 150 50 100 1000 1500 2000 2500 3000 3500	Melanoma	Nevus	Nevus	Nevus
	150 150 50 0 1000 1500 2000 2500 3000 3500	Melanoma	Nevus	Nevus	Nevus

Microscopy data	IMS data	Unimodal Microscopy prediction	Unimodal IMS prediction	Multimodal prediction	Experts evaluation
	200 150 50 0 1000 1500 2000 2500 3000 3500	Melanoma	Nevus	Melanoma	Melanoma
	150 100 50 1000 1500 2000 2500 3000 3500	Melanoma	Nevus	Melanoma	Melanoma
	100 100 1000 1500 2000 2500 3000 3500	Nevus	Melanoma	Nevus	Nevus
	m/z 150 100 50 1000 1500 2000 2500 3000 3500	Nevus	Melanoma	Nevus	Nevus

Microscopy data	IMS data	Unimodal Microscopy prediction	Unimodal IMS prediction	Multimodal prediction	Experts evaluation
	200 150 50 1000 1500 2000 2500 3000 3500 m/z	Melanoma	Melanoma		Nevus
	150 200 1000 1500 2000 2000 2000 2500 3500	Nevus	Nevus		Melanoma
	150 100 0 1000 1500 2000 2500 3000 3500	Nevus	Nevus		Melanoma
	200 m/z 150 250 0 1000 1500 2000 2500 3000 3500	Nevus	Nevus		Melanoma

Microscopy data	IMS data	Unimodal Microscopy prediction	Unimodal IMS prediction	Multimodal prediction	Experts evaluation
	200 150 50 1000 1500 2000 2500 3000 3500 m/z	Melanoma	Melanoma	Nevus	Nevus
	150 200 1000 1500 2000 2000 2500 3000 3500	Nevus	Nevus	Melanoma	Melanoma
	150 100 0 1000 1500 2000 2500 3000 3500	Nevus	Nevus	Melanoma	Melanoma
	200 m/z 150 zig 100 so 2000 2500 3000 3500	Nevus	Nevus	Melanoma	Melanoma

Microscopy data	IMS data	Unimodal Microscopy prediction	Unimodal IMS prediction	Multimodal prediction	Experts evaluation
	200 150 150 50 0 1000 1500 2000 2500 3000 3500 m/z	Nevus	Nevus		Melanoma
	200 150 100 50 0 1000 1500 2000 2500 3000 3500 m/z	Nevus	Nevus		Melanoma
	200 150 100 0 1500 2000 2500 3000 3500 m/z	Nevus	Nevus		Melanoma

Microscopy data	IMS data	Unimodal Microscopy prediction	Unimodal IMS prediction	Multimodal prediction	Experts evaluation
	200 150 50 0 1000 1500 2000 2500 3000 3500 m/z	Nevus	Nevus	Melanoma	Melanoma
	200 150 50 0 1000 1500 2000 2500 3000 3500 m/z	Nevus	Nevus	Melanoma	Melanoma
	200 150 50 0 1000 1500 2000 2500 3000 3500 m/z	Nevus	Nevus	Melanoma	Melanoma

Conclusion

- Multimodal is great!
- Do not throw your microscopy data away ©

Want to know more?

Wanqiu Zhang

wanqiu.zhang@kuleuven.be

ESAT – STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium

Aspect Analytics NV info@aspect-analytics.com

Booth 324

Want to know more?

Wanqiu Zhang

wanqiu.zhang@kuleuven.be

ESAT - STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium

Aspect Analytics NV info@aspect-analytics.com

Booth 324

Acknowledgements

Wanqiu Zhang was supported by a Baekeland PhD grant from Flanders Innovation and Entrepreneurship (VLAIO)

Nathan Heath Patterson; Jessica Moore; Richard M. Caprioli; Jeremy L. Norris; Nico Verbeeck; Alice Ly; Bart De Moor; Marc Claesen

Conflict of Interest

JM, NHP, RMC, and JLN disclose a financial interest in Frontier Diagnostics, LLC (FDx). FDx has issued and pending patent applications in the US Patent Office that include part of the methods described in paper¹. NV and MC, principals of Aspect Analytics NV, are paid consultants and provide services to FDx. WZ declares no competing interests.

¹Al-Rohil, Rami N., Jessica L. Moore, Nathan Heath Patterson, Sarah Nicholson, Nico Verbeeck, Marc Claesen, Jameelah Z. Muhammad et al. "Diagnosis of melanoma by imaging mass spectrometry: Development and validation of a melanoma prediction model." Journal of cutaneous pathology 48, no. 12 (2021): 1455-1462.