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IMS data sample selection

Al‐Rohil, Rami N., Jessica L. Moore, Nathan Heath Patterson, Sarah Nicholson, Nico Verbeeck, Marc Claesen, Jameelah Z. Muhammad et al. "Diagnosis of melanoma by imaging mass 
spectrometry: Development and validation of a melanoma prediction model." Journal of cutaneous pathology 48, no. 12 (2021): 1455-1462.

Note: Each sample has 21 annotation spots on average



Data visualization
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Randomly sampled microscopy data

IMS data
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the same fold, during each 
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Model Mean ROC-AUC Mean F1 score Mean Precision Mean Recall

Unimodal IMS 0.915 0.049 0.823 0.067 0.846 0.085 0.815 0.11

Unimodal Microscopy 0.937 0.03 0.82 0.056 0.857 0.104 0.805 0.111

Multimodal 0.968 0.023 0.866 0.056 0.920 0.051 0.83 0.112

Note: Melanoma is negative; all results are based on spots-level; Standard deviation are in grey, ROC-AUC = 1 means the 
classifier can distinguish between all Positive and Negative class points perfectly correctly.  
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Model ROC-AUC F1 score Precision Recall Specificity

Unimodal IMS 0.931 0.856 0.828 0.886 0.83

Unimodal Microscopy 0.938 0.861 0.871 0.851 0.883

Multimodal 0.968 0.91 0.924 0.90 0.932

Results

Nested cross validation results on training data: 

Results on independent test data (with optimized parameters):  

Note: Melanoma is negative; all results are based on spots-level; Standard deviation are in grey, ROC-AUC = 1 means the 
classifier can distinguish between all Positive and Negative class points perfectly correctly.  



Results on independent test set



Interesting cases
Misclassified cases from unimodal pipelines
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Conclusion

• Multimodal is great!

• Do not throw your microscopy data away 
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