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Abstract: Even the simplest mathematical concepts can have surprisingly deep struc- ture and
hidden connections to other topics. In this article we explore rotations of two- dimensional
objects. After viewing rotations first concretely as small matrices, then more abstractly as
members of a "group", we consider how rotations transform simple functions (x, y, x>= y?
etc.) and their products. Transforming products of three or more functions is best captured by
introducing multi-dimensional generalizations of vectors and matrices known as tensors and
chaining these tensors together. The resulting object known as a tensor train (or matrix
product state) is one of the most powerful computational tools for applications such as
modeling fluid flows, understanding properties of metals and crystals, predicting financial
markets, and simulating quantum computers.
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Introduction

Sometimes in mathematics, ideas that initially seem simple may have much more to them

than meets the eye. In this article, we will see that “rotations” are one such example.
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The natural world has a surprisingly economical structure. The more we un-
derstand the laws of physics, the structure of atoms, or even patterns of language,
the more we encounter recurring mathematical structures and connections between
fields previously thought to be unrelated. The physicist Eugene Wigner remarked
on this in his celebrated article “The Unreasonable Effectiveness of Mathematics in
the Natural Sciences” [Wiggo].

In this article we will explore the structure of rotations, specifically two-dimensional
rotations. At first, there does not seem to be too much to say about them. An object
turns by some angle then after 360 degrees is back to where it started, like a record
on a turntable. But rotations turn out to be surprisingly rich. Imagine if the record
was painted with multicolored stripes and we wanted to know how far it could
rotate before the stripes repeated.

The structure grows deeper if we rotate multiple objects at once. Rotations of
composite objects can be “classified” by taking sums and differences of the “rates”
of rotations of the simpler objects forming them, like the “wheels within wheels”
of the Talking Heads song “Slippery People” or the vision of the prophet Ezekiel.

We can try to make sense of the increasingly complex structure of rotations
using vectors and matrices, but ultimately it becomes easier to introduce tensors—
higher dimensional generalizations of vectors and matrices. To organize rotating
objects, we will find that the tensors compose into a chain-like or tree-like structure
known as a tensor train which is a structure that appeared in mathematics only
in the last decade or so, but is now underpinning powerful computational tech-
niques across scientific fields as wide-ranging as fluid dynamics, quantum physics,
language modeling, and economics. Tackling the seemingly humble subject of ro-

tations forces this more powerful structure into our hands.
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Motivation

Rotations and their symmetries are studied by both mathematicians and physicists and have a
number of real-world applications that range from quantum mechanics to machine learning.
This section gives a brief overview.
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Why would we want to know how collections of objects rotate? Rotational sym-
metries and other symmetries have become central to physical theories and our
modern understanding of the natural world. The most profound example might
be Einstein’s relativity where symmetries between observers moving at different
velocities connect the concepts of space and time.

Symmetry plays a central role in the physics of the quantum world too. Quan-
tum mechanics explains the behavior of microscopic objects like atoms in terms of
wave-like mathematical equations. Early experiments on pure gases consisting of
a single type of atom showed that pumping energy into the gas only released light
at specific, discrete wavelengths or colors. The reason for the particular colors ob-
served can be traced back in part to the rotational symmetries of the electron waves
surrounding the atomic nuclei. Later in this article we will encounter the idea of
objects rotating under specific symmetry “representations” labeled by integers—
the discrete atomic gas colors observed by early 2oth century scientists depends
on these integer labels (adapted to the case of three-dimensional rotations). Today
similar quantum mechanical effects are used to build advanced “quantum com-
puters” where the building blocks are puddles of electrons rotating in different
directions [KYG" 07, AAB"19]. And quantum effects can be used to understand
atmospheres of distant planets and stars by distinguishing the discrete bands of
light emitted by electrons orbiting different types of faraway atoms and molecules
[RWH13].

At the more speculative end of physics, rotational symmetries have been pro-
posed to explain the structure of spacetime itself, starting from only quantum me-
chanics, in a theory called loop quantum gravity [Peroq]. At present, quantum
mechanics and gravity have totally different starting points and conceptual foun-
dations, and physicists hope to unify them under a single theoretical framework.
Loop quantum gravity hypothesizes the existence of fundamental objects (“spins”)
obeying quantum mechanics, and argues that the mathematical structure describ-
ing all the possible rotationally symmetric combinations of the states of these spins
has tantalizing parallels with parts of Einstein’s general theory of relativity describ-
ing space, time, and gravity. At the end of this article we will encounter a powerful
object—the F symbol—that explains how the properties of such a spacetime are
actually independent of the microscopic details of how we assemble it from the

constituent spins, since the quantum states can be consistently transformed into
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each other.

Another quite different field of study where combining functions obeying cer-
tain symmetries plays a major role is the field of machine learning. Currently a
major topic in that field is the development of functions which are powerful enough
to perform well on tasks such as image recognition while also transforming in pre-
cise ways under rotations and other symmetry groups [KLT18, BAO 20, DWL " 21].
The tools we will outline below are essential for such constructions. It has been
found that using machine learning models which respect symmetries can lead to
superior learning performance, and is a crucial ingredient in the application of ma-
chine learning to scientific topics such as the behavior of fluids and gases, such as

the behavior of air around the wing of a plane.
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Rotations in Two Dimensions

Next, we will introduce concepts called vectors and matrices. Then we will see how two-
dimensional rotations can be understood by rotating two-dimensional vectors by an angle 0,
and how rotations can be formalized by thinking of them as matrices that act on vectors to

give rotated vectors.
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To start understanding the math of rotations, the simplest setting is two dimen-
sions. In one dimension (1D) you can only go left or right—rotations aren’t too
interesting in 1D—so two dimensions is really the best starting point. What kind
of mathematical objects can be rotated? The traditional example is a vector, which
is a directed arrow. Here are some examples of vectors in the two dimensional (2D)

plane:

]

The notation [ ] stands for a vector extending from the origin (0,0) to the point
(x,y). We say the first entry is the vector’s x coordinate and the second its y
coordinate. What we want is a rule that tells us how a rotation acts on one of these

vectors. Specifically, if we rotate a vector [ ] by an angle 6, we want to know the
/!

new vector [;l ] We can think of a rotation as an operation Ry that acts on one

vector to give another, like this:

The kind of mathematical objects that multiplies a vector to give a new vector is
a matrix. So Ry is a matrix that we are looking to find.(For a review of matrix
multiplication, please see Appendix A.)

We can find the entries of Ry by a graphical argument, using a bit of trigonom-

etry.



FROM ROTATIONS AND GROUPS TO TENSOR NETWORKS 37

7 —sinf 4
cosf:
H cos 0 o
7 SO e
isinf
0
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In the figure above, we have rotated the x and y axes by an angle 6 and used
trigonometry to work out the new coordinates x’ and y’. More specifically, if £ =
[4] is a vector of unit length along the x axis, and § = [{] is a unit vector along

the y axis, then, from the above figure, we can see that acting Ry on £ maps it to a
o cosf
sinf|

cosf
= = cosf
Lin 9]

vector £ with entries:

In other words

1

R
1o

0
+sin@ [1] =cost £ +sinfd 7 .

By similar reasoning about 7 and 7’ also shown in the figure,

cos

—sin6
—[ 1——sin9£+cos€yﬁ
This is now enough information to determine that Ry is the matrix

: (1)

_ |cos® —sinf
~ |sin® cosf

(For more information about why knowing the action of Rg on £ and # determines
this matrix, see the end of Appendix A.) Let’s do an example to check our formula
in Equation (1). If we take 6 = 7r then we have the following rotation:
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an
v
7
and if we use the matrix R, from Equation (1), using cos7t = —1, sinmt = 0 we
find:
-1 0]
R =
““lo -1
so that
o o
Ryt =R = =%
0 0 o] 0|
A o] [o]

In other words the rotation R, sends £ and 7 to their negatives, which matches up

exactly with the result shown in the figure above.
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Rotations as a Group

As we will see in this section, rotations behave like “numbers” that can be “multiplied”
together, but do not have to follow the usual rules of multiplication. This kind of gen-
eralization of numbers is called a group. Two-dimensional rotations form a group whose
elements can be composed or multiplied by adding their angles modulo 2m, and multiplying
the matrices that represent the rotations enacts the same multiplication rules as the abstract

group elements.
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The Notion of a Group

Let’s go one rung up the ladder of abstraction for a moment. Rotations are a key
example of a structure in mathematics called a group. A group is like an “alternate
universe” of number-like objects that we can compose to make other objects in the
group, but which are different from the usual numbers we use every day.

More specifically, a group is a set of objects g called the group elements. The
group as a whole is called G. The group comes equipped with an operation’

“uor

notated as which composes two group elements to make another one:

8182 =43

so that g3 is also in G. Crucially, for G to be a group there has to be a unique group

element called the identity notated e which has no effect on other group elements

§€¢=8

For every element a in G there also has to exist an element b in G that composes
with a to go back to the identity ¢, in other words

a-b=e.

One says that b is the inverse of a.

The most familiar example of a group is the set of real numbers that we use
everyday for measuring things. Two real numbers rq and r, can be composed
by multiplying them: 7y -ro = r3. The identity of this group is the number 1
that is, ¢ = 1. Every element 4 has a multiplicative inverse b = 1/a such that
a-b =a/a =1. The only exception is the number 0, so only the non-zero real
numbers form a group under multiplication. (Real numbers are also a group under
addition, and this double-group structure plus a few other properties makes the

reals not only a group but a “field.”)

* Technically, this operation must also be associative for G to be a valid group.
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Composing Rotations

Now that we know what a group is, we can check that the two-dimensional rota-
tions Ry are a group. Note that we are using the notation Ry to refer to an abstract
object representing a rotation, versus Ry which was a specific 2 x 2 matrix. To make
rotations Ry into a group, we take the composition rule “ - ” to be that we add their

angles. In other words
Ro Ry = Roigp-
Under this rule, the identity element must be e = R because
Ro-Ro=TRg+0) = Re-

The inverse of a group element Ry is given by R_g which we can easily check

because
Rg : R_g = R(@,g) = RO =e.

After doing all this work to formalize how rotations compose, only to find that
their angles just add, could we have not just talked about regular addition of the
angles and skipped the business about groups? A key point is that while small ro-
tations add like regular numbers—their angles just adding together to make bigger
angles—once the angles become too large the addition goes around the circle and

results in small angles again. For example,

because rotating by 7 or 180 degrees two times is the same as no rotation at all.

Another example is
Rar/2  Ra =Ry

which we can visualize as
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whereas if we just naively added the angles we would get 377/2 + 7w = 571/2. But
note that 571/2 = 71/2 4 2m. So really the correct composition rule for rotations
is that we must add the angles modulo 277 since a rotation by an angle 6 + 27 is
exactly the same as a rotation by just 6. That is why we say rotations are an example
of a group. They mostly act like numbers in that they can be added together, but

they are different from the usual numbers in that the addition is modulo 2.

Representing the Rotation Group with Matrices

Recall how in the previous section we had worked out a concrete matrix for a rota-
tion. How does the matrix form Ry of a rotation connect to the more abstract con-
cept of rotations forming a group? The answer is that group composition Ry - R
can be enacted by mapping the group elements Ry to matrices Ry and multiplying

the matrices. To check this, we can roll up our sleeves and do some computation.

Ro-Ryp — RogRyp =
o e sinff cosf | |sing cos¢

cosf —sin 9] [cos ¢ —sin 4)]

| (cosfcos¢ —sinfsing) (—cosfsing —sinb cos¢) @)
| (sinfcos¢ + cosfsing) (—sinfsin -+ cos b cos )

_ |cos(0+¢) —sin(6+¢)

B Lin 0+¢) cos(6+¢) Rote G)

Going from Equation (2) to (3) above requires using the following “trigonometry
identities” for adding angles which you may or may not remember from high



FROM ROTATIONS AND GROUPS TO TENSOR NETWORKS 43

school.

cosfcos¢p —sinfsing = cos (6 + ¢)

sin 6 cos ¢ + cos O sin¢ = sin (6 + ¢)

The upshot is that we can see from Equation (3) that the matrix corresponding to
Rgyy is exactly the matrix we get when we define Ry - Ry to be the rule that we
multiply the corresponding matrices. This correspondence can be summarized by
saying that the rotation matrices

cosf® —sinf
Ry =
sinff  cos6

represent the two-dimensional rotation group (or form a representation of the
group). They are matrices that behave in every way like the abstract group elements
themselves. This includes the addition-modulo-27t property since cos (0 +27) =
cos 0 and similarly for sin 0.

But are these the only matrices that behave like the group elements? We explore
that question in the next section.

(Optional) Advanced Information About the 2D Rotation Group

As a brief detour into terminology which you may see in mathematics or physics
literature, note that the group of 2D rotations is important enough to have an offi-
cial name. This name is SO(2), which stands for the special orthogonal group in
two dimensions. The term special refers to the matrices representing the group
elements, and means that each of these matrices has a determinant of +1. Among
other things, this means the matrices are “pure” rotations and do not include a
reflection across one of the axes. The term orthogonal says that the matrices mak-
ing up the group have rows and columns that are orthogonal to one another. We
can understand intuitively why the columns are orthogonal using the fact that the
columns are what matrices map £ and § onto. The vectors £ and § start out with a

9o degree angle between them, and rotations cannot change this angle.
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Higher Representations

In this section, we will explore how certain functions transform under rotations. Some
transform similarly to vectors X and ], but others transform differently with faster rates of
rotation. Objects (such as collections of functions) that rotate into each other under faster
rotation rates form “higher” representations of the rotation group. This section will show

how the matrices which rotate them have entries like cos(n6), sin(n©) where n is the rate

of rotation.
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Rotating Functions

In the previous section we saw that rotations taken together form a group and that
each rotation is in one-to-one correspondence with or represented by a 2 x 2 matrix
Ry. What’s more, multiplying the Rg matrices together gives the same result as
composing the corresponding abstract group elements Ry labeled by angles. Is that
the end of the story, that 2D rotations really “are” these 2 x 2 matrices which rotate
2-dimensional vectors and that’s all there is to it?

To see that the story is actually richer, let’s consider how functions behave under
rotations. Two of the simplest functions we can write down in two dimensions are
f(x,y) = x and g(x,y) = y which, at each point (x, y), tell us either how large the x
coordinate is or how large the y coordinate is. We will simply denote each function

by x and y, respectively, and we can visualize these functions as follows,

where in the plots above, the darker color indicates a larger (more positive value)
of the function and the lighter color indicates a smaller (more negative) value of
the function. The function x looks like a linear ramp increasing from left to right,
and y a linear ramp increasing from bottom to top.

From the figures, we can see that evidently y is the function you get if you rotate

x by 9o degrees (5 radians), in other words
Rzpx=y. (4)
Likewise, if you rotate x by 180 degrees (7t radians) then
Ryx=—x. (5)

In fact for more general rotations, the function x transforms exactly the same way
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as the vector £,
Re x =cosf x+sinfd y 6)
and similarly the function y transforms like 7,
Roy = —sinf x+ cosB y. (7)

For a longer discussion of why the above general transformations (6) and (7) hold,
see Appendix B for a derivation. We can see that Equations (4) and (5) are special
cases of these formulas by plugging in either § = J or § = 7.

So much for the functions x and y—while it’s interesting that they transform
just like the vectors £ and 7, it’s not too interesting. What about more complicated

functions?

Rotating Harmonic Polynomials of Degree Two

An important class of functions whose rotation properties we might want to know
are the harmonic polynomials. These are functions like xy, x> — 2xy?, and so
on which have the property that their second derivative is zero. Physically, for a
function to have zero second derivative means it describes the density of a fluid,
or some other “stuff,” where the amount of stuff going into any small region is the
same as the amount leaving the region. (If you aren’t familiar with the notion of a
second derivative, which is a concept from calculus, it’s not at all required for what
follows—instead you can think of harmonic polynomials such as xy or x> — 2xy?
as a special set of polynomials tabulated by scientists for having certain desirable
properties.) The harmonic polynomials play a central role in physics because they
are solutions to Laplace’s equation, a well-known equation governing the steady-
state distribution of heat in a material, and to Maxwell’s equations describing the
behavior of electric and magnetic fields.

Let’s consider harmonic polynomials of degree two (meaning the total of all the

exponents in any given term sums to 2), specifically the functions

22—y

2xy.
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Any other harmonic polynomial of degree two can be written as a linear combina-
tion of these two functions. (A “linear combination” is a phrase used to refer to a
sum or difference of these two functions, after possibly multiplying one or both of
them by a real number. The process of taking a second derivative distributes over
addition and multiplication by scalars, so linear combinations of harmonic polyno-
mials are still harmonic.) The extra factor of 2 in front of the second function will
be important, because we will find that certain rotations turn (x> — y?) into (2xy)
and not just (xy).

How do these functions transform under the same rotations, 5 and 71, we con-
sidered for x and y above? To work out the transformation properties, we can

“distribute” the rotation operation onto the individual x and y factors like this:

Ro(x* — y*) = (Rox)(Rex) — (Roy)(Rey)

(More correctly, we are not really “distributing” here but using the coordinate sub-
stitution approach laid out in Appendix B.)
First considering 6 = 7, and using our previous results for how x and y trans-

form, we find

Ry (x* —y*) = (Rgx)(Rgx) — (Rgy)(Rgy)

Likewise we find that

= —(2xy).

Under a go-degree rotation both of these polynomials transform into their negative.
This is quite different from how x and y transform. Recall that x and y, as well as
vectors like £ or  (or actually any 2D vector of coordinates), only transformed into
their negative after a 180-degree rotation. So the degree-two harmonic polynomials

must have a different rotation rule from x and y.
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Consider also a rotation by 71, where we find by a similar computation that
Rn(a? = %) = +(x* =)
Rr(2xy) = +(2xy).

Under a 180-degree rotation these functions are already back to their original value,
whereas for vectors and functions like x and y this would only happen after 360-
degree (27) rotation. Apparently the functions x> — y? and 2xy rotate twice as
quickly as the functions x and y.

To gain an intuition of why the functions x?> — y? and 2xy rotate into each other
and make a full rotation after just an angle of 180 degrees, it is helpful to plot them:

2y

where again the darker color indicates a larger (more positive value) of the function
and the lighter color indicates a smaller (more negative) value of the function.

By inspecting the plots above, one can see that the functions have the same
shape, but one is just rotated by 45 degrees to the other. Furthermore, they have
a kind of an “airplane propeller” shape to them that has more symmetry (twice
as much, in a sense) as the functions x and y we plotted at the beginning of this
section.

To formalize the rotation properties of x> — y? and 2xy we can put them into a

22—y
2xy

and find the matrix which appropriately rotates this vector. The answer one finds

vector like this
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for this matrix is

RE _ cos (20) —sin (20)
o sin (20)  cos(20) |

This matrix can be worked out by applying a rotation to x?> — y?> and xy with
general 0, distributing the rotation over individual factors of x and y as in the
examples above, and using trigonometry identities to simplify and collect terms. It
is a straightforward but tedious calculation and is outlined in Appendix C. Note

]

the superscript “[2]” we have put on RE to distinguish it from R[Gl] = Ry, where

RN = Ry =

cosfl —sin 91

sinf  cosf

was the matrix we found for rotating vectors in previous sections. We can see that

2]
0

Réz] only depends on 26 and not on ¢ alone, which directly says that R carries

out rotations twice as quickly as Rf[)l].
What have found here is a second representation of the 2D rotation group that
is distinct from the R([;l] representation. We have found another set of matrices

R{[)z] that obey all of the abstract properties of the rotation group, but are different

from the R[@” matrices in that they rotate the vectors or functions they act on twice
as quickly. The RIZ representation is called a “higher” representation than R[]
to indicate that objects rotate more quickly under it (and also because the integer
n = 2 “labeling” or “classifying” this representation is larger than the n = 1 label
of RI1).

We see a more interesting story is developing for 2D rotations. Apparently there
are multiple kinds of objects that can be rotated in a 2D plane. Some rotate at a
rate of 1, others at a rate of 2. Are there objects that rotate at a rate of 3, 4, or 5?

How about a rate of 0?
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Combining Representations

Now we will describe how starting from functions like x; , vy, x,, and y,, which transform
at a rate of 1, we can form special combinations that rotate under well-defined rates of 2 and
0. In this section, we will show that we can organize these combined functions into a
combined representation made out of matrices of single-rate representations. We will also see
that the functions with different rates do not mix together.
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Rotating Combinations of Functions

Now that we have seen that there is more than one way mathematical objects can
transform under 2D rotations and that there are higher representations of the 2D
rotation group, it’s interesting to ask if there is a systematic way to build these
higher representations out of lower ones. Namely, how do functions which trans-
form according to one representation transform after they are combined by being
multiplied together?

To motivate why someone would care about a question like this, an actual appli-
cation of functions of this type is in the field of data science or machine learning
where a major goal is to program computers to perform automated tasks on im-
ages such as photographs. Various parts or “features” of images can be filtered
into different channels and organized by their symmetries, which can have benefits
like removing noise from images (since noise would have very little symmetry) or
classifying images irrespective of their orientation. In a bit more detail, a grayscale
image can be viewed as a function f(x,y) that takes the coordinates of a pixel as
input, and outputs the brightness of that pixel. This “image function” can be then
written as a sum of other functions, such as x, y, x2, yz, etc. If one wants to keep
only information about the image that does not depend on which way you rotate
the image, this corresponds to selecting only functions in the sum which also do
not change under rotations.

Another motivation is the field of chemistry. If you remember in high school
learning to count electron shells of atoms by saying “1s?,2s2,2p%,...” you were
actually using group representation theory whether you knew it or not. Electron
shell symmetry is at the root of the field of chemistry and explains why the periodic
table has the structure it does, why some materials are metals, and why the noble
gases do no react with other elements. (Though it’s important to note electron shell
structure is based on 3D rotations, versus the 2D rotations we are studying here.)

In this section we are seeking a more systematic approach to building functions
that transform under rotations according to higher-order representations of the ro-
tation group. To get started, first observe that all degree-one polynomials involving
the variables x and y (polynomials where x and y only appear to the first power)
can be built by taking linear combinations of the functions x and y themselves. For
example, we could make the linear combinations 3x + 2y or —5x + 10y.

Similar “building blocks” for all degree two polynomials can be assembled in the
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following way: make two vectors containing x; and y; or x, and y; then “multiply”
the entries of these vectors in all possible ways.

X1 =)
><fx XXy XY YViXa i
Y1 >y

By taking combinations of these, such as —3x1x2 + 7x1y2 + 4y1y2, we can obtain
every degree-two polynomial made of products of the variables x1, x, ¥1, and y».

Here we are being informal about the definition of what it means to multiply
two vectors, but intuitively it means just what the figure shows above—take each
element of the first vector and multiply it by each element of the second vector.
Note that the entries of each vector in the product above are functions such as
x1 and y; where the subscripts 1 or 2 say which vector they came from. We can
either think of this as a notational convenience or we can think of building higher-
dimensional functions that take two sets of coordinates as input (the input being
(X1, Y1, %2, 2))-

Next, we can find special linear combinations of these degree-two building
blocks that rotate by a well-defined rate, such as at a rate of 1 or a rate of 2. Two
of these combinations are analogous to the functions we studied in the previous

section. They are

f1 = x1x0 —y1y2
fo=x1y2 +y1x2

where we are now giving them the names f; and f, to help keep track of things.
(It would be more correct to write f1(x1,y1,x2,y2) and f(x1,y1, X2, y2) but we will
leave out the arguments when they can be understood from the context.) If we
erase the subscripts on the variables (x; — x, x» — x, etc.), notice how we get the
functions x> — y? and 2xy which are the ones we studied previously. Recall from
before that they rotate into each other under 2D rotations and do so at a rate of 2,
because after an angle of just 77 they already returned back to their original values.

What our more systematic approach lets us do now is look for the remaining
functions we can make out of the products x1x2, X1y, y1x2, and y;y2. We have four
products of variables and have found two functions, so only two more “indepen-
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dent” functions remain. They are
y

f3 = x1x2 + Y12
fa = x1y2 — y1x2.

By independent, we mean that by making linear combinations of fi, f2, f3, fa we
can get any degree-two polynomial. For example, x1x; = f; 4 f3. Let’s check how
the new functions f3 and f; we haven’t studied yet rotate using the techniques of
the previous section, checking a few specific angles.

First the function f3 = x1x, 4y rotates under an angle 7 as

Ra(xixz +y1y2) = (Rgx1)(Rzx2) + (Rzy1)(Rzy2)
= (Y1) (y2) + (=x1)(=x2)
= X1X2 + Y1Y2.
It doesn’t change at all under this rotation. We can also check the angle 7:
Rr(x122 +y1y2) = (Rax1) (Rax2) + (Rry1) (Rry2)
= (=x1)(=x2) + (=y1)(=p2)
= X1X2 T Y1Y2

and we find no change under this angle either.

If we do a more general calculation involving an arbitrary angle and using vari-
ous trigonometry identities—sparing you the details—we will find a similar result
for any angle whatsoever. The function f3 = x1x2 + y1Yy2 is invariant under rota-
tions. It always transforms back into itself. The function f; = x1y2 — y1x2 behaves

in a similar way. For example, rotating it by the angle 7 gives
Rz(xiy2 —y1x2) = (Rgx1)(Rzy2) — (Rzy1)(Rgx2)
= (1) (=x2) = (=x1)(y2)
= X1y2 — Y1x2

which shows that f4 rotates back to itself unchanged. This rotational invariance can
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be shown to hold for any choice of angle using some tedious but straightforward
trig.

Combining Representations

What happens if we combine fi, f», f3, fa together into a big vector and perform
a rotation? How does this vector of functions transform? Starting again with a
concrete example, let’s take the angle § = 7. We have already argued above that

under a 7 rotation,

Rzfi=—-f

Rzfr=—f
while

Rzfs=f3

Rzfa= fa

Putting these results together gives the matrix equation

-1 0 0 0 f1 —f1
0 -1 0 0 |f]| _|-f
0o 0 10[|s] |
0 0 0 1]|fs fa

A more interesting case is the angle Z. From the rotation properties of the

factors x1, y1, x2, Yy individually, one can show that

Rzfi=f

Rzfr=—-f1
while

Rzfs=fa

Rxfs=fa
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where again recall f3 and f; transform into themselves no matter the angle. The

matrix version of this result is

0 -1 0 0f [A f
1 0 0 Of|f _ |-f
0 0 10|l |f
0 0 0 1] |fu fa

Notice how compared to the previous angle, the upper-left corner of the matrix
is different while the lower-right corner is the same. By inspecting these matrix
examples we can conjecture that the general matrix expression for how [f1 f2 f3 fa]
transforms is going to look like this:

cos20 —sin20 0 0| |f1 fi
sin20  cos20 0 O || | f3
0 0 10| |fs| |f
0 0 0 1] |fu fi

]

resentation, and in this section we’ve argued that f3 and f4 always transform into

[0]

themselves. We can call this new “trivial” representation RGO

We already knew that f; and f, transform into each other by the Réz matrix rep-

. As a matrix, it is just

the matrix
Ry = 1].

So the whole matrix for transforming [f; f2 f3 fa] can be written schematically as

/

RE] 0 0 f f%
0 RLO] 0 fa| _ fz/
o o &Y f3 f3
o1 A fa

where it is understood that R[GZ] a 2 x 2 “block” of the matrix, while Rg)] isalxl1

block, and the zeros can stand for whole blocks of zeros.
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Section Summary

As we conclude this section, let’s reflect on what has happened here. We started
with simpler functions x1, y1, X2, y» that individually transform under rotations

]

according to the RE matrix (the rate 1 representation). After multiplying them

together in all possible ways, we were able to find certain groupings (or linear
combinations) of these simpler functions which transform according to the R(Bz]
and R([;o] representations. Just multiplying two of the original functions, say x;
and y,, would give a function xjy, that transforms in a messy, unclear way. But
specific linear combinations of the functions transform among themselves in a clean
way given by a certain “rotation rate” of 0 or 2. A vector of these special linear
combinations is transformed by a matrix which has various representation matrices
such as R[gz] or Réo] down the diagonal of the matrix. The fact that these are on the
diagonal means the functions transforming according to each representation do
not mix together when rotated.

Mathematicians often summarize the story above by writing the expression
1®1 = 2@ 0@ 0 which means, “The product of two 1 representations can be
decomposed into one copy of the 2 representation and two copies of the 0 repre-
sentation.” We started out with two sets of functions that rotate at a rate of 1, and
by taking sums and products of them arrived at functions that rotate at a rate of
0 or 2. We can conjecture that multiplying functions with rotation rates m and m’
leads to functions with rates of m — m’ and m + m’.

Looking ahead, what would happen if we took a product of three sets of func-
tions, each transforming under the 1 representation? What would be the new rep-
resentations we could form out of such products? There is a more general structure
underlying this story and for that we will need to introduce some better notation

and motivate the idea of a tensor.
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Tensors and Tensor Diagrams

This section will introduce tensors, which are higher-dimensional generalizations of vectors
and matrices. It is very useful to notate tensors with three or more indices as shapes with
lines emanating from them, where the lines are the tensor indices. Connecting an index
shared between a pair of tensors means that index is summed over, and the tensors are said be
to contracted together. Multiple indices can be summed over simultaneously.
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Before we tackle the last topic of this article, which is how three or more rotatable
functions combine, we need to upgrade our notation. While vectors and matrices
can be written as columns or squares of numbers, we will soon encounter tensors
which in the same notation would have to be written as a three-dimensional cube of
numbers. Even worse, higher-order tensors would be four-dimensional or higher
“hypercubes” of numbers, so we would have a very hard time writing those.

The kind of notation we are looking for would treat vectors, matrices, and ten-
sors on the same footing, and spare us from having to write down every element
inside of a vector or matrix unless we want to. Fortunately just such a notation
was created by the physicist and mathematician Roger Penrose in his efforts to
understand how Einstein’s theory of gravity might emerge from the laws of quan-
tum mechanics [Peny1]. Penrose diagram notation or tensor diagrams will be very

helpful to us in what follows.

Depicting Tensors (First Rule of Tensor Diagrams)

The first rule of diagram notation is that vectors, matrices, and tensors are shapes with
lines coming out of them. Each line refers to an index which enumerates the entry of
the tensor we wish to access or refer to. Vectors have one index, and matrices have

two indices, as in the following figures.

N ‘
4—»
V2

Mll M12
—>
M21 M22

Setting each of the index lines to a specific value retrieves the corresponding ele-

ment, for example.

1

o= b-. 6.

2
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A third-order tensor has three indices and is a cube of numbers or, in diagram

notation, a shape with three lines coming out of it.

We can likewise refer to a specific element of this tensor by writing the following.

1

+_2 = Tip

2

You can see above that notating a third-order tensor as two superposed matrices
making a cube would be rather unwieldy, so we will use tensor diagrams as much
as we can from now on.

When using diagrams to represent vectors, matrices, or tensors, it doesn’t matter
which way the lines come out of the tensors, whether upward, downward, to the
right, etc.. (In cases where it would be ambiguous, such as distinguishing the
row versus column of a matrix, one can adopt a “house” convention or use an
asymmetric shape for the tensor) The key thing is the number of index lines
and how they connect to other lines. Note also that vectors and matrices are just
considered tensors of order one (vectors) or order two (matrices). So we will use

the term “tensor” to refer to a tensor of any order, including a vector or a matrix.

Contracting Tensors (Second Rule of Tensor Diagrams)

The second rule of tensor diagram notation is that connecting two lines means a sum
is performed over those indices. This kind of connected sum is often referred to as
contracting two tensors together. Some examples can help clarify what this means.

The simplest example of a tensor contraction is summing two vectors v and w

on their shared index
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v w
-0 = D v = v-w
’ J

where the symbol %; means “sum over all the values j takes.” For example if
the vectors are v = [}] = [1] and w = [}] = [}] then the sum above is
v-w = viwy +vwy = 1-3+4+2-4 = 11. This particular operation involving two
vectors is so important is has its own name: the dot product or inner product of
two vectors. Note how the diagram for this operation has no left over index lines
sticking out—this tells us that the result must be a number or a “scalar” (or an
order-zero tensor, if you will).

Another common operation that can be viewed as a tensor contraction is multi-

plying a matrix times a vector. We can notate this as

M v

@0 = > M
J

If the matrix is M = [}%] and the vector is v = [}1] then the above notation is

showing the operation

vk 1B

which we can see results in a vector. For matrix-vector multiplication, the tradi-
tional notation of numbers in boxes works perfectly well, and is especially helpful
when we care about the details about what specific numbers or variables are in the
matrix and vector. But the diagram notation has its own benefits. Just by inspecting

the diagram

—-0-0 = -0

we can deduce that a matrix-vector product involves a sum over one index, while

the other index is “free.” The result is an object with one free index, so it is a vector.
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It is a graphical proof that the product of a matrix times a vector is another vector,

a fact commonly taught in an undergraduate linear algebra course.

The Usefulness of Tensor Diagrams

While diagram notation is fun, is it really necessary? One way to answer this
question is to show a more “serious” tensor diagram that encodes a structure we

will encounter by the end of the next section. Here it is:

0000600

Looking at this diagram, it is straightforward to reason about which tensor is con-
tracted with which other tensors and on which indices. In contrast, the same
expression written in tradition mathematical notation would be
T At AT A Al A A
a1,02,03,04,K5

which I would prefer not to have to write every time compared to the simple
diagram above. While the traditional notation has some advantages, it is much
more laborious to write and read. Meanwhile, additional details, like the names
of the indices, can be optionally included in the diagram notation when they are
helpful, but they can also be left out to provide clarity without losing any key
information.

For more reading about tensor diagrams, a nice introduction with more exam-
ples can be found on the Math3ma Blog [Braig]. To see how tensor diagrams
are used in the wild—mainly in the quantum physics literature so far, though

sometimes in the applied math literature—good review articles include references
[Ort14] and [BC17].


https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams
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Combining Functions with
Tensor Networks

Now that we have a basic understanding of tensors and tensor diagrams, we can use them in
this section to help us combine three or more rotatable functions in a principled way. By
doing so, the mathematics will naturally connect to two concepts that will be familiar to
many physicists, namely “Clebsch-Gordan coefficients” and the “F symbol.” At the end of
this section, we will see that the F symbol is especially relevant to recent progress in both
condensed matter physics and quantum computation.
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Notating Combinations of Functions with Tensor Diagrams

Armed with the concept of tensors and tensor diagram notation, we can revisit
the story from two sections earlier about combining two sets of functions which
transform under rotations in a well-defined way (specific rate of rotation), finding
that we can make new combinations that also transform in a well-defined, but
different, way. Let’s show this process as a tensor diagram. The first ingredient
will be two sets of functions that rotate under the R(El] representation. As before,

we will put these functions into vectors and take the product of these vectors:
s ¢ o
Vi ¥ _

In diagram notation, putting tensors (in this case vectors) next to each other implies
the product introduced at the beginning of Section 6.

Previously we had found that certain linear combinations of the products of
functions transformed under rotations according to the Réz] or Réo] representations.

These were

f1 = x1x2 —y1y2 (rotation rate 2

( )
fa = x1y2 + y1x2 (rotation rate 2)
f3 = x1x2 + y1y2 (rotation rate o)

( )

fa = x1y2 — y1x (rotation rate o

with f; and f, rotating into each other, enacted by the Réz] matrix, while f3 and fy
rotate back into themselves under any angle. We can think of forming the functions
f1, f2, f3, f4+ by making a matrix for each one and contracting it on each side—on
the left with [}! ] and on the right with [}?]. To make the function f; we can do

fi= {x1 1/1] M,y Bj = [xl ]/l} Ll) _01] bj = X1X2 — Y112

where we have defined a matrix M; = [(1) _01 ]. In diagram notation this approach
to making f; looks like
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= T1T2 — Y1Y2

;

We can likewise make f», f3, and fs4 by defining corresponding matrices M, M3,
and M, and contracting them with the original x1, y1, x2, y2 functions arranged

into vectors in a similar way. All the matrices together are

oy

and we could define f3, for example, by the following diagram.

fz = = 2122 + Y1Y2

%

Combiner or Clebsch-Gordan Tensors

Now we can put our upgraded notation to work for us. Let’s define a tensor of

order three which combines all of these matrices into a single object. Here it is.

.=

You can think of the name C as standing for “combiner” and the 1, subscript as
talking about the “spaces” of functions labeled 1 and 2. (The symbol C could also
stand for “Clebsch-Gordan” coefficients which is the name of an analogous object
used often in the physics and applied math literature.) This tensor—a tensor of
order three—lets us organize all of the M matrices we defined above together in
the following way. Say we set the top index of Cy; to the value 1. Then the leftover
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free indices on the left and right side form a matrix. Choose that matrix to be
M;/+/2. (The extra factor of \% will be helpful for a property we need later.)
Diagrammatically this choice looks like:

We can similarly choose the remaining entries of Cj; so that setting the top index to
2, 3, and 4 results in the matrices My, M3, My. In this way, we have made a sort of
“tensor machine” that will consume simpler functions that originally transformed

according to the R([al]

representation (rotating at a rate of 1) and produce new func-
tions that are made from products of these which transform by other well-defined

rates. Here is how this whole process looks

oo - &

T T2 T1Z2 — Y1Y2
Y1 Y2 1 | z1y2 + 122
V2| zizs +y1ye

T1Y2 — Y122

The payoff is that now we have a way to visualize and formalize how we would
go about combining any number of simpler functions into more complex ones, but

always such that the more complex functions have well-defined rotation properties.

Networks of Function Combinations

Say we want to take products of three sets of variables [x1 y1], [x2 ¥2], [x3 y3], all
which rotate under the R([;] representation originally, and produce more compli-
cated functions from them. First we can combine the [x; y1] and [xy yp] vectors
as above using the tensor Cqp. Then we can make another tensor Cz that handles
the combination of functions transforming under the RE] and R{[)O] representations,

combining them with the [x3 y3] variables, like this:
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T1T2 — Y1Y2 xs
1 | z1y2 + 122 Y3
\/5 T122 + Y1Y2

T1Y2 — Y1X2

In the figure above, the functions inside the resulting vector 6 are not displayed,
but this vector contains eight functions, examples of which are (x1xy — y1y2)x3 +
(x1y2 + y1x2)y3 which has a rotation rate of 1 or (x1x2 — y1y2)x3 — (X¥1¥2 + y1%2)Y3
which has rotation rate of 3.

Putting everything together in terms of the original variables, Cj, and Cs join

forces together as a network to process all of the functions from spaces 1, 2, and 3:

b

€3
Y3
1 T2
Y1 Y2
Remember that the above diagram is a fully rigorous mathematical equation, not
just a drawing or a figure. The left-hand side is a complicated sum, but nothing
more than sums and products of functions like x3, y2, or x3, together with some
pre-determined numerical coefficients. The right-hand side is a vector containing

functions like (x1x2 — y1y2)x3 + (X1y2 + y1x2)y3 which rotate under an angle 6 by
a specific, well-defined rate.

Larger Networks

What pays off about this way of viewing how functions combine to make well-
behaved representations is that it can be shown to work for any number of variables.
For example, the network for combining five sets of separate functions to make

single functions with well-defined rotation properties looks like:
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The elements of the C tensors making up such a network can be tabulated once
and for all through a straightforward method. For example, tables of these el-
ements for the three-dimensional rotation group are published in most quantum
physics textbooks since they play a decisive role in that subject.

Thinking of the C tensors by themselves — the backbone of this network —
independently of the functions we would attach to it also has many advantages. For
example, we could use the same network to combine vectors instead of functions.

Most interestingly, we can build up a toolbox to answer questions like this: what
if we had built up the functions from the individual spaces in a different order? In
that case, computing the functions mechanically gives results which appear to be
different depending on whether we combine [x; y;] and [xp y»] first, or combine
[x3 y3] and [x; yp] first. Are the resulting functions really different? It turns out
they are not. They are just linear combinations (i.e. sums and differences) of each
other. How do we work out these linear combinations? The network of Cs can tell
us how.

Say we had combined five sets of functions in the order 1, 2, 3, 4, 5. Then we had
done the same combination process but this time put the pair [x5 ys] before [x4 y4].
We would get different final functions, but can obtain a matrix F which relates one
set of functions to the other. This matrix turns out to be equal to a specific tensor
network. To obtain this network, first it is helpful to redraw the network of Cs like
this:



68 THE JOURNAL OF THE MATH3MA INSTITUTE

It is the same network as earlier, with precisely the same meaning, just drawn dif-
ferently. It can be helpful to view is as a huge “matrix” from five two-dimensional
spaces (lines entering from the bottom) to a single 2> dimensional space (line ema-
nating from the top).

Next, we draw the network that would combine the functions in the other order

of 1, 2, 3, 5, 4 (with 4 and 5 permuted).

Then we contract these two networks in the following way
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Let’s call the above network the permutation network. Lastly, we will use a spe-
cific property that all of these C tensors have. They are isometric embeddings or
isometries which in this context means that they “cancel” when contracted on their

two incoming index lines, like this:

where the plain lines that each pair of tensors “cancels” to can be informally inter-
preted as saying “connect any lines coming into where this pair of tensors used to
be together” or more formally as the pair contracting to make an identity matrix.
(By the way, this isometric property is the reason we needed to introduce the extra
factor of 1/1/2 when defining Cy; earlier.)

Using this isometric property to cancel both copies of C;p and C3 from the per-

mutation network, we get its simplified form
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which depends only on the tensors C4 and Cs. If we now explicitly label the rates
of rotation n1, ny, ..., ng labeling the six kinds of lines in the figure (for technical
reasons the outer two must equal, otherwise the value is zero) we get a quantity

known as the “F symbol”:

This F symbol lets us shortcut making the functions in both of the different
orders, and directly tells us how to map from the functions resulting from one
ordering to the other. Like the C tensors themselves, the F symbols can be algo-
rithmically worked out and tabulated for a group like the 2D rotation group and
other groups. (As a note to experts: for the case of 3D rotations, the F symbols
are very closely related to other quantities known alternatively as the “recoupling
coefficients” or “Wigner 6—j symbols” [SV12].)

Starting from multiplying and adding simple functions like x; or y;, then just
wanting to extend this construction to functions of three variables while preserv-
ing well-defined rotational symmetries, we have actually climbed rather high into
some advanced topics. The F symbols are the basic ingredient in some cutting-
edge thinking about physics in recent decades. One area where they come up

are in simplified models of “quantum liquids” which are distinct from previously



FROM ROTATIONS AND GROUPS TO TENSOR NETWORKS 71

known phases of matter like solid, liquid, or gas. Unlike such conventional, every-
day phases, quantum liquids can be “topologically ordered.” Recall from Section
2 that quantum mechanics describes particles like electrons as having wave-like
properties. Like sound or light waves, electrons can spread out and “explore”
different paths as they move through space. The behavior of an electron going
from some point A to point B is computed by summing over all the paths it can
take. In special settings, these sums over paths can obey “internal symmetries”
quite similar (and in some cases literally identical! to the 2D rotational symmetries
flowing through the tensor networks above. The amazing part is that the electrons
in these liquids can then “melt” together into new kinds of particles (which are
vortex-like disturbances of the liquid) whose properties are accounted for by the
kind of F symbol describing the “recoupling” or branching of the paths inside the
liquid [LWo5]. In some cases, these emergent particles can have surprising proper-
ties, such as having fractional electric charge or other even more exotic properties,
distinct from the particles such as electrons, neutrinos, or quarks making up the
standard model of particle physics. They would be a totally new type of funda-
mental particle that can only exist inside the symmetric liquid. There is a serious
ongoing effort to stabilize such particles in the lab, where they could be used to
make inherently fault-tolerant quantum computers [Wol18].

As we end this section, we have only seen a small taste of the subject of group
representations acting on functions and their connection to tensor networks, but
hopefully some of the main structure has come through. When combining three
or more sets of functions that transform in a well-defined way under rotations,
the process can be made systematic by viewing it as the contraction of vectors
containing the original functions with a “backbone” of tensors making a chain-
like network. Computations involving these networks of tensors can be used to
systematically work out how combined functions built in different orders relate to

one another.
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MPS or Tensor Train Networks

This section concludes with an interesting observation. It turns out that the the network
comprised of the “combiner” tensors (that is, the gray, square tensors labeled with Cs) in the
previous section is essentially the same as a tensor network that is well-known within
quantum physics, called a matrix product state or tensor train. Tensor trains are very
efficient at storing information and thus have a wide range of applications, including in
modeling fluid flow and in financial modeling. This section gives a brief introduction to

tensor trains, their benefits, and some of their applications.
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Before concluding the article, we should briefly explore an interesting connec-
tion between the group representation theory we have been developing and the
topic of tensor networks more broadly. By combining sets of functions to obtain
new ones which transform under rotations, we encountered a network of tensors
that looked like this:

Compared to the diagram in the previous section, there have been a few alterations
(splitting the first tensor into two, removing the extra index from the top) but they
are very minor and not important for what we will discuss below.

Let’s draw the exact same structure above but in a slightly different and more

600060

This network is what is known in the applied math literature as a tensor train. Here

standard way:

we have shown a tensor train with five “cores,” but they can have any number of
cores, including infinitely many. In quantum physics where it is widely used, this
structure is known as a matrix product state (MPS).

This humble looking network is a powerful tool for an increasingly diverse port-
folio of applications, including modeling fluid flow and other processes described
by differential equations [GLD " 22], simulating (and sometimes beating!) quantum
computers [SVST'22], high-performance matrix computations [RO22], and finan-
cial modeling [KP22]. If you are interested in using tensor trains or matrix product
states, a good way to get started is to use the ITensor software [FWS22] which of-
fers tools for instantiating and performing operations on this kind of data structure.
As one of the authors of ITensor, the inspiration for this article was actually based
on our plans to support a larger set of rotation group symmetries within the ITensor


https://itensor.org
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software in the near future. Currently ITensor can handle two-dimensional rota-
tions like the type described in this article, but not yet three-dimensional rotations
(or other so-called “non-Abelian” groups) which have a much more complicated
structure.

To get a feel for why a tensor train is so powerful, let’'s do some counting. First
of all, a key thing to understand is that collectively the tensors making up the

network are implicitly representing a single larger (higher-order) tensor:

006600060 -~ cmmmmm

The reason for the approximately equals sign (=) above is that the tensor train on
the left can’t represent all eighth-order tensors on the right, but only a special sub-
set. By putting different numbers into the tensors on the left, one can (implicitly)
make an important subset of tensors of the type on the right, but technically there
are vastly more eighth-order tensors than eighth-order tensor trains.

But that’s ok! The reason is that a tensor train is a compression format, similar
in spirit to a JPEG image or an MP3 audio file (and even similar in some of the
details [ME22]). To get an idea of just how much compression it achieves, let’s say

the tensor train above has the following dimensions for its indices:

10 10 10 10 10 10 10 10

* 100 * 100 * 100 * 100 * 100 * 100 * 100 *

A rough count of the number of parameters needed to store it on a computer
would be 100 x 100 x 10 x 8 = 800,000 parameters (which is not so bad—Iess
than a megabyte). In contrast, storing an entire eighth-order tensor would require
108 = 100,000,000 or a hundred million parameters, which is 125 times as much.
If we went to tensor trains with ten indices but the same internal dimensions of
100, this compression ratio would grow to 10,000 (meaning we are using 10,000
less memory to store the same object) and would only continue to improve as we
considered ever larger tensors.

In practice, it is not at all an exaggeration to say that tensor train or MPS tech-
niques routinely allow calculations to be performed in minutes or hours that oth-
erwise would take thousands of years to perform if the same calculation was done

in a naive way.
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Conclusions, Connections, and Further Reading

In this article we started with basic notions of how vectors and functions such as x
or y change under two-dimensional rotations. Then by asking how more compli-
cated functions—formed out of sums and products of simpler functions—change
or transform under rotations we were led to the idea of higher representations
and ultimately to tensor networks which are a natural way to organize the way
functions combine into other functions with well-defined rotation behavior.

There are many more topics we could have touched on, but which would take
another article or two to do. One topic could be how the complex numbers are
more or less the 2D rotation group in disguise (if we identify 1 = Ry and i =
Ryz). This shift in perspective helps one to see that complex numbers are not so
much “imaginary” as much as the idea that treating rotations like an alternate
kind of number system (recalling Section 4 on group theory) can be helpful for
mathematics such as factoring polynomials.

Another topic would be generalizing the structure we discussed to 3D rotations.
We would see that, in contrast to 2D rotations, 3D rotations do not commute, mean-
ing that when 3D rotations are composed, the final position you reach depends
on the order in which you compose them. One implication of this fact is that the
matrices representing 3D rotations are no longer always 2 X 2 in size, but can grow
to arbitrary sizes. Nevertheless, the tensor train networks we considered above are
powerful enough to handle the representation theory of 3D rotations as well. Last
but not least, the rotation groups are examples of Lie groups which are not only
groups but also smooth manifolds, forging connections between the mathematics
of groups and the field of geometry.

The study of 2D rotations has provided us a small window into some of the
beautiful structure underlying mathematics and the natural world. Patterns occur-
ring throughout nature at every level share a “fearful symmetry” that leaves us
with a strong intuition that the natural world is “fearfully and wonderfully made.”

To learn more about some of the mathematical topics touched on in this article,

some helpful resources are:
e “Lecture Notes on Group Theory in Physics”, by Daniel Arovas [Aro16]
* Article on topological phases of matter in Quanta Magazine [Wol18]

¢ Collection of review articles and learning resources about tensor networks on


https://courses.physics.ucsd.edu/2016/Spring/physics220/LECTURES/GROUP_THEORY.pdf
https://www.quantamagazine.org/physicists-aim-to-classify-all-possible-phases-of-matter-20180103/#0
http://tensornetwork.org/reviews_resources.html
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tensornetwork.org [ten]
¢ Blog post on the tensor product operation in mathematics [Bra18]

* The excellent book “An Introduction to Tensors and Group Theory for Physi-
cists” by Jeevanjee [Jee11]

Appendix A: Brief Review of Matrix Multiplication

Matrices are usually motivated for writing systems of equations in a more abstract
form. For example, the equations
—3x+2y=7
x+y=4

can equivalently be written in matrix form as

iR

which has the advantage of letting us study the matrix of equation coefficients
separately from the variables they multiply and the result vector [7] on the right,
which turns out to be a very powerful concept. It is also the motivation for the
rules of matrix multiplication, which we will briefly review now.

Say we want to perform the following matrix times vector multiplication.

My M| |0
Mp1 Mp| |v2
The result will be the following vector.

(M11v1 + Mip07)
(Mz1v1 + Mpvs)

We can visualize the multiplication process as follows. First we “distribute” and

multiply the elements of the vector across the first row of the matrix

My My ||\
Moy Moo U2
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and add the products together. This gives the first entry of the result vector.

M1 Mio (1 _ Miivi+ Mqsvo
My, My || v2 |

We repeat the process for the second row of the matrix

Mml _ [Myvi+ My,
My, Mo || 02|
giving the next, and in this case final, entry of the result vector.
My Mo v My1v1+ Mo vs
My, Moo || v2 | = | Moyvi+ Moy vy
An important corollary of the matrix multiplication rule is that multiplying by

the vector £ = [}] gives the first column of the matrix and multiplying by § = [?]

gives the second column. Concretely,

M M| (1 _ M
My Mp| (0 My

M1 M| (O _ My
My Mp| (1 My

which was an important trick we used in Section 3 to deduce the entries of the

and

rotation matrix Rg.

Appendix B: Rotation of Functions

First, it’s helpful to review how functions transform under coordinate transforma-
tions. The simplest case is a function of one variable f(x) and a transformation
which is a translation to the right by a. The translated function T, f(x) is related to

the original one as
Tof(x) = f(x —a). ®)

Why is the new argument x —a and not x + a if the translation is to the right
(positive direction)? We can understand the minus sign by reasoning that the value
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of the function T, f(a) should be the same as f(0) since the point at 0 shifted to the
right by a equals a. Then T,f(a) = f(a —a) = f(0) by the definition in Equation
(8), agreeing with our reasoning.

Similarly, if we translate a function of an angle f(¢) by an amount 6, the trans-
formed function will be Ryf(¢) = f(¢ — 6). We can use this formula to work out
how a two-dimensional function f(x,y) transforms under rotations.

Given a function f(x,y) defined over the two-dimensional plane, what is the
result of rotating f by an angle 6? In other words, we want to know how to write

Rof(x,y) in terms of f(x,y). To work this out, change to polar coordinates:

X =7rcos¢ (9)
y =rsin¢ (10)

defining f(r,¢) = f(rcos¢,rsinp) where a tilde over f indicates it takes polar
arguments. Then the result of rotating f by 6 is by our earlier reasoning

Rof(r,9) = f(r,¢ = 0) = f(rcos(¢ — ), rsin(¢ —0)) (11)
where in the last equation the two slots refer to values plugged into the function
where x and y normally go. Finally, using the trigonometry identities

cos(¢p —0) = cos ¢ cos O + sin ¢ sin

sin(¢ — 0) = sin¢ cos — cos ¢ sin O
we find that using these identities in Equation (11) above gives

Rof(x,y) =Ref(r, ¢)
= f(rcos¢cosb + rsin¢gsinf,rsin¢ cost — rcos ¢ sin )
= f(cosOx +sinfy, —sindx + cos O y)
where we used Equation (11) between the second and third lines and the formulas

(9) and (10) to change variables from r and ¢ back to x and y.

The result above shows we can rotate a function f(x,y) by an angle 6 by making
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the following substitutions:

x — cosfx+sinfy

y — —sinfx+cosfy

everywhere that x and y appear in the definition of that function. Equations (6)

and (7) are special cases of these transformations.

Appendix C: Rotation Matrix for the n = 2 Representa-
tion

To work out the general entries of the matrix R(gz], or the rate 2 representation of

the rotation group, consider the action of rotations of the functions x> — y? and 2xy

under a general angle of rotation. First the function x> — y? transforms as
Ro(x* =) = (Rox)(Rex) — (Rey)(Rey)
= (cos @ x +sinf y)(cosf x +sinf y) — (—sinf x + cos O y)(—sinf x + cos 6 y)
= (cos? 8 — sin?B) (x* — y?) + 4(cos O sinh) xy
= cos (26) (x* — y?) +sin (20) (2xy) (12)
where in the last line we have used the trigonometry identities
cos? — sin? 6 = cos (26)
2 cosBsinf = sin (260)
Next the function 2xy transforms as
Reo(2xy) = 2(Rex)(Roy)
= 2(cosB x +sinf y)(—sin 6 x + cos6 y)

= —(2cos0sinf) (x> — y*) + (cos? 6 — sin 0) (2xy)
= —sin (20)(x* — y*) + cos (20) (2xy). (13)
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Putting lines (12) and (13) together from above and recalling that each of these ex-
pressions was the result of acting the rotation operator Ry on each of the functions,

we can write the equations together in matrix form as

» x2 —y? _ |cos(28) —sin (26) 22
] 2xy ~ |sin (26)  sin(26) 2xy

which tells us that for these functions the rotation operator acts as the matrix

R _ |08 (20) —sin(20)
o sin (20)  sin(26) |
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