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Abstract: This article describes a new connection between two seemingly disparate topics in science,
namely entropy and higher mathematics. It does not assume prior knowledge of either subject and be-
gins with a brief introduction to information theory and a concept known as Shannon entropy, which
we simply refer to as entropy. We then survey the vast landscape of higher mathematics, giving spe-
cial attention to advanced analogues of high-school algebra and geometry known as abstract algebra
and topology, respectively. Our goal is then to show that entropy, abstract algebra, and topology are
inextricably linked through a version of a well-known formula from calculus known as the Leibniz rule.
This result is given in the author’s recent work in [Braz1], and this present article is intended to give an
overview of the ideas by gently introducing them from the ground up.

Introduction

In 2009 mathematician and theoretical physicist Freeman Dyson wrote an article for the Amer-
ican Mathematical Society in which he surveyed the works of notable mathematicians of the
past few centuries. The scientific landscape is exceedingly broad, and yet as Dyson observed,
mathematicians often fall into two categories [Dysog]:

Some mathematicians are birds, others are frogs. Birds fly high in the air and survey broad vistas
of mathematics out to the far horizon. They delight in concepts that unify our thinking and bring
together diverse problems from different parts of the landscape. Frogs live in the mud below and
see only the flowers that grow nearby. They delight in the details of particular objects, and they
solve problems one at a time.

Lest we conclude that birds are better than frogs or vice versa, Dyson quickly adds:
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Mathematics is rich and beautiful because birds give it broad visions and frogs give it intricate
details.... It is stupid to claim that birds are better than frogs because they see farther, or that frogs
are better than birds because they see deeper. The world of mathematics is both broad and deep,
and we need birds and frogs working together to explore it.

The bird’s-eye view of the landscape is a valuable perspective, and discoveries of unexpected
connections between different parts of it are fascinating. But making those connections precise
and rigorous often requires a frog’s attention to detail. The subject of this present article has a
similar bird-and-frog feel to it. It is a new connection between information theory and parts of
higher mathematics related to algebra and geometry, and my recent technical article [Bra21]
contains all the “froggy” details. In this article, however, we will begin by flying high in the
air and surveying the ideas from a bird’s vantage point, occasionally landing on the ground
when necessary.

To begin, information theory fits broadly under the purview of science, technology, and
engineering, while more advanced versions of algebra and geometry (called abstract algebra and
topology, respectively) fit under higher mathematics. Information theory has a very applied
flavor, whereas higher mathematics has a very pure flavor. The two thus reside within separate
regions of the scientific landscape, and historically neither has had much much to say to the
other. But in recent years a few mathematicians have unearthed parts of what seems to be an
interesting bridge connecting them. Our present discussion is one of those small parts. It is
a new way to understand entropy from the perspective of higher mathematics. But what is
entropy? What does entropy have to do with information? What is the connection to higher
mathematics? And what is meant by “higher mathematics” anyway? We will answer these
questions one at a time.

A First Look at Information and Entropy

The study of information and communication finds its home in a branch of science called
information theory. At first glance it may be surprising to learn that information has its
own field of academic study, but a few moments of thought should dispel the surprise. After
all, what are the basic ingredients of communication? There must be an information source
(something that produces information), a channel (the medium through which information
is sent), and a destination (the person or object intended to receive the information) at least.
These simple ingredients quickly turn into a feast of questions. What if the channel has a
limited capacity? If some information is lost along the way, can it be recovered? If so, how
and to what extent? How is information stored, encoded, and decoded to produce meaningful
messages? Is it possible to quantify something as general as “information” in the first place?
Rephrasing these ideas in the precise language of mathematics allows such questions to be
asked and answered in more useful, quantitative ways. That is precisely what mathematician
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and computer scientist Claude Shannon did in a seminal 1948 paper that launched the field of
information theory [Sha48].

To see how mathematics can help quantify information, consider the following two state-
ments: “The sun was shining in Los Angeles today,” and “There was a blizzard in Los Angeles
today.” Which of those two sentences conveys more information? Readers familiar with US ge-
ography will know that it is almost always sunny in Southern California, so it is not surprising
to learn that today was also sunny. Little information is conveyed in that first statement. On
the other hand, it would be extraordinarily surprising—and somewhat distressing—to learn
that Los Angeles was experiencing blizzard conditions. That would be a surprising scenario,
and so a great deal of information is conveyed in the second statement.

These examples illustrate the intuitive idea that information and probability are inversely
proportional. An event with high probability (“The sun was shining in Los Angeles today.”)
seems to carry little information, whereas an event with low probability (“There was a blizzard
in Los Angeles today.”) seems to carry lots of information. We can express this inverse
relationship as a simple fraction. If an event occurs with probability p, then we might say the
amount of information conveyed is 1/p because if p is small, then 1/p is large and vice versa.
This is almost the same quantity Shannon used in his 1948 paper, though he instead used the
logarithm of 1/p, which is a little more convenient to work with.* This is a minor, technical
detail for us, but let us briefly digress to explain what is meant by “convenient.” Think of
an event that is 100% guaranteed to happen, that is, an event that occurs with probability
p = 1. Since the event is certain to occur, it would not be surprising to learn that it did
indeed happen. Intuitively, such a lack of surprise corresponds to the fact that no information
has been conveyed. Zero surprise. Zero information. And yet since p = 1 the fraction
1/p =1/1 = 1is not zero, which goes against that intuition. On the other hand, if p = 1, then
log(1/p) = log(1) = 0 as desired. This is one reason why logarithms are more convenient.
So, with this intuition in hand, we define the amount of information conveyed in a single event
with probability p to be the number log(1/p).

Thinking back to the weather, there are a range of possibilities—sunny, snowy, windy,
cloudy, and so on. Each may occur in Los Angeles with a particular probability, so we may
also compute the average (or “mean” or “expected”) value of information contained in a state-
ment describing today’s weather. Generally speaking, this average amount of information has
a name: entropy. More precisely it is called Shannon entropy to distinguish it from other no-
tions of entropy that arise in science. (The precise formula for Shannon entropy will be given
later on.) Perhaps the most familiar kind of entropy is that which appears in the Second Law
of Thermodynamics, which says that the total entropy in a physical system never decreases.
This kind of entropy is a measure of the amount of disorder or randomness in a system, and it

* The logarithm of some number x is another number that we will denote by log(x) (taken to be the natural logarithm
in this paper). In particular, a useful fact to know in this article is that log(1) = 0.
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is conceptually the same as Shannon’s version of entropy. Instead of asking about the weather
in Los Angeles, we may instead ask about the speed or position of a molecule of gas, for in-
stance. Other notions of entropy include von Neumann entropy, Tsallis entropy, Rényi entropy,
and more. Our present discussion will not concern these, and so there will be no confusion
if we simply refer to Shannon entropy as entropy. And notice that entropy, being the average
of some numbers, is itself a number. It is not a vague notion or an intangible concept. It is a
concrete mathematical object that has rich mathematical properties, as we will see in the page
to come.

Entropy and information thus go hand-in-hand. Shannon’s entropy was introduced roughly
70 years ago in a quest for a mathematical theory of communication. Thermodynamic entropy
has been studied since the 1870s. Both are still of great interest to scientists today. American
theoretical physicist Lee Smolin once reflected on the role that entropy has played in the past
and future directions of physics, from the discovery of atoms to modern-day research on black
holes [Smoo1]:

The search for the meaning of temperature and entropy of matter led to the discovery of atoms.

The search for the meaning of the temperature and entropy of radiation led to the discovery of

quanta. In just the same way, the search for the meaning of the temperature and entropy of a black
hole is now leading to the discovery of the atomic structure of space time.

American-Israeli theoretical physicist Jacob Bekenstein, who died in 2015 and is known for his
work on black hole thermodynamics, has also observed the fundamental relationship between
information and the natural world [Beko3]:
Ask anybody what the physical world is made of, and you are likely to be told matter and energy.
Yet if we have learned anything from engineering, biology and physics, information is just as cru-

cial an ingredient.... Indeed, a current trend, initiated by John A. Wheeler of Princeton University,
is to regard the physical world as made of information, with energy and matter as incidentals.

So entropy and information naturally arise in investigations of the physical world. One goal
of this article is to show that entropy also naturally arises in higher mathematics—that is, in
the sophisticated analogues of algebra and geometry alluded to above. It is natural, however,
to wonder who might find these ideas interesting. Why is such a connection worth writing
about?

Discovering the Unexpected

Nothing in this discussion so far suggests entropy may be related to the world of higher
mathematics. Indeed, the only math used so far has involved fractions and probabilities.
Higher, abstract mathematics is nowhere in sight. And yet, as we will see below, it is in fact
inevitable. Entropy is therefore a link between two things that seem very different, which may
suggest that deeper connections are waiting to be discovered. In a recent interview, Edward
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Witten, one of the world’s premier mathematical physicists, reflected on his nearly 50 years of
work in the field. When asked which current developments he is most excited about, his reply
included entropy and related phenomena that may uncover some of the hidden mysteries
surrounding the quantum world and Einstein’s theory of general relativity [Cha21]. It is
intriguing to think about the mathematics that may underlie such developments. Speculations
aside, this is simply meant to whet the reader’s appetite. Why would anyone devote time
and attention to these technical ideas, that is, to a new way to understand entropy through
abstract algebra and topology? Perhaps one day it may shed light on a new corner of science
and mathematics not yet seen before. This is one reason why the ideas in the pages below
are worth sharing. Consider what German theoretical physicist Max Plank, who won the 1918
Nobel prize in physics for his work in quantum theory, once said towards the end of his life
[Plag8] (quoted in [Nico1, p. 201], emphasis added):
What has led me to science and made me since youth enthusiastic for it is not the at all obvious
fact that the laws of our thoughts coincide with the regularity of the flow of impressions which
we receive from the external world, [and] that it is therefore possible for man to reach conclusions
through pure speculation about those regularities. Here it is of essential significance that the

external world represents something independent of us, something absolute which we confront, and the
search for the laws valid for this absolute appeared to me the most beautiful scientific task in life.

We will revisit this line of thought at the end of the article, but it is now time to turn to
the mathematics. The next section will open with a brief introduction to the vast landscape
of higher mathematics. Our attention will then shift to two regions within that landscape:
abstract algebra and topology. We will give a short explanation of each, learning just enough
to see how these kinds of advanced mathematical ideas are a natural part of entropy. The
discussion will then climax into the main result of my technical article [Bra21], which describes
a specific link between information theory and higher mathematics. We will then close with a
final brief remark on the intrigue of such discoveries.

The Landscape of Higher Mathematics

The word “mathematics” may bring to mind the procedural material we once learned in
school: word problems, long division, timed multiplication worksheets, and the like. But
in reality the world of mathematics extends far beyond—and is very different from—the sub-
ject we are taught at a young age. So it is natural to wonder, “What does it mean to discover
new mathematics?” Far from being a static subject, there is a sweeping, flourishing landscape
of higher mathematics, and what is taught in school occupies only a tiny fraction of that land.
It is elsewhere in this terrain that we will spend most of our time in this article. Afterwards,
we will have seen an example of what it means to discover new mathematics. To that end, let
us give a better description of our terrain.
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The phrase “higher mathematics” becomes clearer when drawing an analogy with athletics.
Upon learning that someone is an athlete, we may be curious to know which sport he or she
plays. The word athlete is a broad term, and merely knowing that someone is an athlete
does not tell us much about what that person does. The athletic landscape is comprised of a
variety of sports, and any given athlete typically specializes in one or two of them: basketball,
baseball, soccer, track and field, and so on. A professional athlete may go a step further and
devote decades of his or her life to excelling in a specific role within a single sport. So, athletes
generally differ greatly from one another even though they share a common profession. The
same is true for mathematicians.

Like the athletic landscape, the mathematical landscape is also comprised of many different
realms, and a professional mathematician may spend decades of his or her life in a particular
locale within one of those realms. But unlike the names of our favorite sports, the names of
these mathematical realms may sound less familiar: abstract algebra, topology, category theory,
differential geometry, complex analysis, and more. And unlike the familiar features of the athletic
landscape, the rolling hills and towering landmarks of the higher mathematical landscape go
largely unnoticed despite their being foundational to science and technology. They are truly
hidden in plain sight. There have, however, been some attempts at making this invisible land-
scape visible. One excellent example is the beautifully detailed map created by mathematician
Martin Kuppe in the 2018 article [Brai8, p. 23]. The vintage-colored map entitled “Math-
ematistian” takes the voyager on a quest through magical mathematical lands with cleverly
devised names, such as “Probabilistan” and “Statistigrad,” the “Plains of Analysis,” and the
“Ocean of Logic.” Two such regions within Kuppe’s map are most relevant to our present
discussion on entropy, namely the “Califate of Al-Gebra” and the “Tundra of Topology.” The
first is a play on words and refers to a branch of math called abstract algebra, which (as the
name suggests) is a more sophisticated, abstract version of the subject we learn in high school.
The second is topology, which is a more sophisticated, abstract version of geometry. Entropy
is inherently algebraic and topological, so it will be helpful to first take a brief journal through
both.

Abstract Algebra: Math Beyond Numbers

The word algebra originates from the Arabic word al-jabr, which means “reunion of broken
parts.” It appears in the title of a ninth century book on the subject written by Persian scholar
Mohammad ibn Misa al-Khowarizmi [Gan26] and brings to mind the basic concept of com-
bining things to form something new. If we have two numbers, for instance, then we can
combine them, say by multiplication, to form a new number: 2 x 3 = 6. Of course there is
nothing special about the numbers 2 and 3 in the previous sentence. If we have any two num-
bers, say x and y, then we can multiply them to obtain a new number x X y, also denoted by
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xy. This simple idea of combining things (whether by multiplication or addition or something
else) quickly leads to the kind of algebra we learn in high school, where we are tasked with
assignments such as “Simplify the expression (x%)?y*x~! using laws of exponents” and “Fac-
tor the quadratic polynomial x% 4+ 7x + 12” and the like. But this kind of algebra is nothing
like the algebra studied at the graduate and research levels, which is called abstract algebra
or modern algebra. To get a feel for the difference, it will help to think like a bird and not a
frog. Forget the details. Forget the symbols. Forget words like “exponents” and “polynomial.”
Instead, think back to the simple idea mentioned above: combining things to form something new.
Whenever things can be combined, whether they are numbers or something else, there is likely
algebraic structure behind the scenes.

Multiplication of numbers is just one example. Consider human language, for instance,
where words combine to form longer expressions. Yellow is a word, and banana is a word,
and we can “multiply” them to form the new expression yellow banana. The technical term
for stacking words side-by-side is concatenation, as opposed to multiplication. But the term is
not so important. The concept is. Concatenation and multiplication are conceptually similar.
They both allow us to combine things to form something new. There is, however, a notable
difference. The order in which we multiply numbers does not matter, whereas the order in
which we concatenate words certainly matters. The product 2 x 3 is the same as 3 x 2, but
yellow banana is not the same as banana yellow. This property is called commutativity. Mul-
tiplication of numbers is said to be commutative, whereas concatenation of English words is
not commutative. Associativity, on the other hand, is a property shared by both multiplication
and concatenation. When multiplying three numbers, it does not matter which two are multi-
plied first: (2 x 3) x 5 is the same as 2 x (3 x 5), and the analogous holds for concatenation of
English words.

This gives a taste of abstract algebra, where concrete details are abstracted away. In this
branch of mathematics, the particulars of what is being combined, whether they are numbers,
or words, or something else, is not the main focus. More important is the abstract structure,
that is, the operation itself (multiplication or concatenation or...) and the properties it pos-
sesses. Informally speaking, any collection of things that can be combined—that is, where
some notion of “multiplication” makes sense—is called an algebra, and when the multiplica-
tion possesses certain properties, the algebra is usually given a descriptive name. Examples
include commutative algebras, associative algebras, Lie algebras, A«-algebras, and more.? In
fact, an algebra is just one kind of algebraic structure. There are many more. Mathematicians
also study groups, rings, fields, and vector spaces, to name a few. Each of these algebraic

> More formally, an algebra is defined to be a vector space equipped with a way to multiply vectors. (These words will
be familiar to students of linear algebra.) Lie algebras are named after Norwegian mathematician Marius Sophus Lie
(1842-1899) and are used widely in physics. An Ac-algebra is one where the multiplication is not associative on the
nose. Instead, it is only associative up to some wiggle room. This kind of structure appears in topology, the subject of
the next section.
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objects has a different (and sometimes multiple) notion(s) of combining things, and each plays
a different role on the mathematical stage.

What, then, is the point of abstracting away details? Why pursue this line of thinking? One
advantage is that it is clarifying. It helps us see relationships between things that initially seem
unrelated. Karen H. Parshall, an American historian of mathematics, summarizes this nicely
in an article on the history of abstract algebra in the The Princeton Companion to Mathematics
[GBGLO08, Section I1.3]:

One objective of this new type of algebra is to understand the underlying structure of the objects
and, in doing so, to build entire theories of groups or rings or fields. These abstract theories may
then be applied in diverse settings where the basic axioms are satisfied but where it may not be at
all apparent a priori that a group or ring or field may be lurking. This, in fact, is one of modern
algebra’s great strengths: once we have proved a general fact about an algebraic structure, there
is no need to prove that fact separately each time we come across an instance of that structure.
This abstract approach allows us to recognize that contexts that may look quite different are in fact
importantly similar.

With that, it appears we have progressed from high-school algebra to advanced mathematics
rather quickly. Here is the bottom line. First, the claim that entropy can be understood in terms
of algebra refers to abstract algebra and not to high-school algebra. Second, know that abstract
algebra encompasses a large zoo of advanced mathematical structures. It is not necessary to
know about any of them in detail, but it is good to be aware of their existence. This will
help us make the connection to entropy later on. Here is a quick preview: it turns out that
probabilities exhibit both algebraic and topological structure, and entropy interacts very nicely
with both. More to the point, the way in which entropy interacts with algebra and topology is
its defining characteristic—its fingerprint, so to speak. To understand this claim, however, we
must first understand what topology is.

Topology: Geometry’s Flexible Cousin

Like geometry, topology is a branch of mathematics that involves the study of shapes. But
unlike geometry, where angles, areas, lengths, and size take center stage, topology focuses on
something else. What else can be said about shapes if not these features? A lot. Consider,
for instance, the notion of sameness. What does it mean for two shapes to be equivalent?
This may seem to be an innocent question, but as mathematician Barry Mazur once astutely
observed [Mazo7],

One can’t do mathematics for more than ten minutes without grappling, in some way or other,
with the slippery notion of equality. Slippery, because the way in which objects are presented to
us hardly ever, perhaps never, immediately tells us—without further commentary—when two of
them are to be considered equal. We even see this, for example, if we try to define real numbers
as decimals, and then have to mention aliases like 20 = 19.999..., a fact not unknown to the
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merchants who price their items $19.99. The heart and soul of much mathematics consists of the
fact that the “same” object can be presented to us in different ways.

A key difference between geometry and topology is how each answers the question, “When
are two shapes considered the same?” In topology, shapes are thought of as malleable and
pliable—made of something like Play-Doh—and two shapes are considered to be the same if
one can be molded and deformed into the other without ever tearing or ripping the shape.
As an example, the familiar shapes shown in Figure 1 are all considered to be equivalent.
There is no difference between triangle, a square, a hexagon, or a circle in the eyes of topology.
A triangle made of Play-Doh, for instance, can be deformed into a circle by smoothing the
corners and rounding out the edges. So, rather than focusing on their differences—a triangle
has three straight sides and a circle does not—topology instead embraces what they have in
common: both shapes enclose a region on the page. On the other hand, a circle and a line are
fundamentally different from this perspective. A line is not “closed” in the way that a circle is.

Figure 1: In topology a tri-
angle, square, hexagon, and
circle are considered to be
equivalent shapes.

This notion of sameness is neither arbitrary nor meaningless mathematics, but rather is a
consequence of formalizing another fundamental idea, namely that of closeness. In Mazur’s
quote above, we understand that the number 19.99 is relatively close to 20, and that 19.999 is
closer, and that 19.9999 is closer still. Said differently, the closeness of the numbers is measured
by the distance between them. We also have the intuition that two items whose prices are close
together will have values that are close together, as well. We could purchase a new book for
$19.99, for instance, but would not expect that an extra penny could afford us a new luxury
yacht for $20. The concept of mapping between objects (money and items in this case) in a
way that preserves closeness is at the heart of topology. It is called continuity. More precisely,
topology allows us to generalize the notion of distance in settings beyond numbers, and it
does so in a way that also formalizes the idea of continuity. Simply put, any set—that is, any
collection of things or elements—can be equipped with extra structure known as a topology.
Very roughly speaking, “a topology on a set X” is a mathematician’s way of declaring which
elements in X are close to each other. When considered together as a pair, both the set and its
topology are referred to as a topological space. The formal definition is quite abstract and will
not be given here, but it encompasses many familiar shapes. Lines, circles, triangles, squares,
spheres, pyramids, cubes, and a plethora of more exotic shapes are all examples of topological
spaces.

So, the field of topology generalizes distance or closeness, and this informs how one should
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address the question of sameness. Two topological spaces are—again, roughly speaking—
considered to be the “same” if they can be transformed into each other while preserving their
respective versions of closeness. Such transformations include the deformations of Play-Doh
triangles and circles mentioned above. While these ideas may sound quite different from high-
school geometry, topology is a deeply rich and useful branch of mathematics, with applications
ranging from explorations of the shape of space [Wee20] to DNA modeling [Adao4] to data
analysis [CV]21] and much more [Ghri4].

Entropy + Algebra + Topology = ?

Now that we have some familiarity with the higher mathematical landscape—algebra and
topology in particular—we are ready to see how they are inextricably related to entropy. Our
introductory discussion began with the observation that information and probability are in-
versely proportional. We also said that Shannon entropy, or entropy for short, is the average
amount of information contained in a collection of probabilities. In other words, entropy is
a number associated to a list of probabilities, and we interpret that number as a measure of
information. That number is computed by a particular formula that will be shared below. The
remainder of this article will rely heavily on that formula, and it will help to first establish
some terminology in the next section. The subsequent pages aim to give a bird’s-eye view of
the mathematics while occasionally providing frog-level details for interested readers. Such
technical paragraphs are decorated with a triangle and labeled “» In more detail.” These para-
graphs are included for the enjoyment of those who wish to dig deeper into the mathematics
and may be safely skipped, if desired.

Entropy is a Number

We begin by introducing basic terminology. To start, a list of probabilities is called a probability
distribution. That is, a probability distribution is a finite list of numbers between 0 and 1

whose sum is 1. For example, (%, %) and (%, %, %) are both probability distributions whereas

(7,3) and (—%, —%, —11—0) are not. In the first example, % and % may represent the respective

probabilities of landing a heads or tails on a fair coin toss, while in the second example %, %,
and 11—0 may represent the respective probabilities of choosing cereal, oatmeal, or fruit for
breakfast. In both cases, it helps to think of probabilities as numbers associated to a finite set
of options: the first option (choosing cereal), the second option (choosing oatmeal), the third
option (choosing fruit), and so on.

Said more formally, given a natural number 7 (that is, a whole number 1,2,3,...), a proba-
bility distribution onaset {1,2,...,n} is a list of nonnegative real numbers p = (p1, p2,..., Pn)
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satisfying p1 + p2 + - - - + pn = 1. Elements in the set {1,2,...,n} may be thought of as enu-
merating the different options or outcomes, each of which is assigned a particular probability.
The letter p is being used as shorthand to represent the full list of numbers (p1, p2, ..., Pn)-
Teasing this out with n = 2, suppose we have a set of two elements {1,2} corresponding to
the two faces of a coin, namely heads (option #1) or tails (option #2). If we let p; = % and
p2 = %, then the list p = (p1, p2) is the first example of a probability distribution given above.

In addition to viewing probability distributions as lists, they can also be visualized with
pictures. Figure 2 gives an example. There, the probability distribution p = (%, %) associated
to a coin toss is represented by a stick-like tree with one root and two leaves, each representing
a face of the coin. The words “tree” and “root” and “leaf” are technical terms used in a branch
of mathematics called graph theory. (Even more formally, the pictures in Figure 2 are known as
planar rooted trees.) The right-hand side of the figure shows a tidier version of this by labeling

each leaf with its corresponding probability. We can likewise depict an arbitrary probability

Figure 2: The probability dis-

heads tails tribution p = (%%) can

50% 50% 1 1 be visualized as a tree with

2 2 a root and one leaf for

— each outcome of a coin toss,

labeled with the respective
leaves probabilities.

root

distribution p = (p1,p2, ..., pn) as a tree with one root and n leaves that are labeled by the
individual probabilities as in Figure 3. Visualizing probability distributions in this way will be
a worthwhile adjustment for us, as we will see later on. A picture is worth a thousand words
in mathematics, too.

Figure 3: Any probability
distribution on n elements
P1 P2 P can be illustrated as a tree
with n leaves labeled by the
p=(pLpe .- Pn) — individual probabilities.

What's more, every probability distribution p has a number associated to it called entropy.
This number, which we will denote by H(p), is given explicitly in the following formula.
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Definition. The entropy of a probability distribution p = (p1, p2, ..., Pn) is defined to be

H(p) = —p1log(p1) — p2log(pa) — -+ — pulog(pn)- (1)

It will be helpful to gain intuition for this expression, and we may start by comparing it to our
opening remarks on entropy at the beginning of this article. There we defined the information
contained in a single event with probability p to be the number log(1/p). By basic properties
of logarithms, this number is the same as log(1) — log(p) which is equal to —log(p) because
log(1) = 0. In other words, the information in an event with probability p is the number
—log(p). But notice the formula for entropy in Equation (1) does not merely consider one
event. It considers multiple events, each of which has its own probability. So the formula
first computes the information associated to each event, that is, —log(p1) and — log(p2) and
so on. Then it computes the average of those numbers by multiplying each by its respective
probability and adding them. That is what is displayed in Equation (1), where the minus signs
are important. The natural logarithm log(p) is negative whenever its input p is between 0 and
1, so —log(p) is nonnegative. In other words, the number H(p) is always either positive or
zero.

Examples are helpful. Think of an event that is guaranteed to happen. An avid coffee
drinker, for instance, will look forward to a cup of coffee each day. Suppose there is a 100%
chance they will have coffee each day and a 0% chance they will not. This scenario corresponds
to the probability distribution p = (1,0). If we were to learn that this person indeed drank
coffee today, then we would not be surprised. The behavior is expected, so no information has
been conveyed. This lack of surprise is mathematically represented by the entropy of p in this
example, which is zero:

H(p) = —1log(1) — 0log(0) = —log(1) = 0.

Zero entropy corresponds to zero uncertainty. Now think about the other extreme, that is, an
event with maximal uncertainty. Consider the outcome of tossing a coin. The result is either
heads or tails, and neither is more likely assuming it is a fair coin. We expect the entropy
of the corresponding probability distribution p = (%, %) to be positive since the outcome is
totally uncertain. This is indeed the case:

H(p) = —}1log (3) — 11og (}) = —log (}) = —log(1) — (~log(2)) = log(2).

This computation is a special instance of a more general pattern. Whenever there are n out-
comes each with equal probability %, the entropy of the resulting probability distribution

(%, %,. .., %) will always be log(n), and this turns out to be the maximum possible value. In

other words, one can show that 0 < H(p) < log(n) for any probability distribution p on a set
with 1 elements. So, entropy is akin to a measure of surprise or uncertainty, it has a formula,
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and we have now seen two extremal examples. With these basics in hand, it is now time for a
slight shift in perspective. We have seen that entropy is number, but in actuality, that number
is a shadow of something more. Entropy is not merely a number. It is a function.

Entropy is a Function

Recall that every probability distribution p on n elements corresponds to a number H(p). The
quantifier “every” suggests there is a function lurking behind the scenes. Indeed, the process
of assigning a real number to a probability distribution is precisely what it means to have a
function from the set of all probability distributions on n things to the set of real numbers.
New mathematical notation allows us to restate this idea more conveniently:

For each natural number n, there is a function H: A, — R. (2)
We have used the letter H as the name of the function that assigns to a probability distribution
p its entropy H(p). We will also use A, to denote the set of all possible probability distributions
on the set {1,2,...,n}. For example,

(%, %) and (1,0) are elements of the set Ay,

(%, %, 11—0) and (%, %, %) are elements of the set Az,

=)

(%, 1,0, 47> and (%, L }1) are elements of the set Ay,

and so on. Mathematicians usually prefer to lower the index by 1 and write A"~! instead,
but constantly “being off by 1” would be inconvenient in the work to come, so we will use
Ay instead.3 In our menagerie of mathematical notation, we have also used the symbol R to
denote the set of all real numbers. Moreover, the letter H paired with an arrow — represents
the assignment of a probability distribution p to the number H(p). The notation H: A, — R
is very convenient, so we will always use analogous notation f: X — Y to mean “a function f
from a set X to a set Y that assigns to each input x in X one output f(x) in Y.”

In summary, entropy defines a function H, and we will refer to both H and its values H(p)
by the same word: entropy. There is a subtlety, however. The claim that “entropy defines a
function” is not the full truth. Entropy does not merely define one function. It defines infinitely
many functions. The number n provides a clue.

3 The notation A, is pronounced “delta n” and is a clever choice. We will see later that the set of all probability
distributions on three elements can be visualized as a triangle A.
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Entropy is a Collection of Functions

Look back to the sentence displayed in (2): “For each natural number 7, there is a function
H.” The word order of that sentence implies that H depends on the value of n. Since there
are infinitely many natural numbers n = 1,2,3, ..., there are necessarily infinitely many Hs,
as well. It would be helpful to indicate this dependency in our notation and write H, instead
of H. Doing so would allow us to refine the sentence in (2) as follows:

Entropy defines a collection of functions {H, : A, — R}. (3)

This is better. Even so, the subscripts are rather cumbersome to carry around, so we will
continue to omit them and write H instead of H,. Simply remember that H depends on n.
Notation aside, here is the essential idea: we must first choose a natural number # to specify
the length of a probability distribution p, and then we may compute its entropy H(p). In
this way, entropy defines infinitely many functions, one for each natural number. There is
H: Ay - Rand H: Ay -+ R and H: A3 — R, and so on.

LET Us Now pause and consider our changes in perspective. We began with the idea that
entropy is a number. Then we observed that entropy defines a function. Now we see it
defines a collection of infinitely many functions. There are many layers to entropy with still
more to come. The functions H: A, — R turn out to possess nice mathematical properties,
both individually and collectively. For instance, if we were to change the probabilities of a
probability distribution p by a small amount, then it can be shown that the entropy H(p)
would change by a small amount, as well. Conceptually this invokes the idea of “closeness.”
Two probability distributions that are close or similar will have entropies that are likewise
close or similar. This intuitive property has a name, which we briefly mentioned earlier—
continuity. In other words, each of the functions H: A, — R are not merely functions; they
are said to be continuous functions. We now find ourselves in the world of topology.

Entropy is a Collection of Continuous Functions

Recall that the symbol A, represents the set of all probability distributions on # things. Im-
portantly, each of these sets A1, Ap, A3z, ... is not merely a set. There is a standard way in
which they are in fact topological spaces. The first few are familiar and simple shapes. It can
be shown that A; is a point, A, is a line segment, A3 is a triangle, and A4 is a pyramid, as
displayed in Figure 4.

» In more detail. Consider the case when n = 1. The set A; consists of all probability dis-
tributions on a single element. Such a probability distribution is a list consisting of a single
number, and moreover that number must be equal to 1. So A; is the singleton number 1,
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which can be viewed as a point on the number line, as in Figure 4. A point is not a very in-
teresting shape, but it is a shape nonetheless. Consider the more interesting case when n = 2.
The set A, of probability distributions on two elements is the set of all pairs of nonnegative
numbers (x,y) whose sum is 1; that is, x + y = 1. We can rearrange this equation to see it
is equivalent to ¥ = 1 — x, which is the equation of a line. Since we have further restricted x
and y to be nonnegative, we may conclude that A, is a line segment in the positive quadrant
of the two-dimensional plane as in Figure 4. So, a point on that line segment is a probability
distribution on two elements. Moving on to the case when n = 3, the set A3 of probability
distributions on three elements is the set of all triples of nonnegative numbers (x, Y, z) whose
sum is 1; that is x +y +z = 1 or equivalently z = 1 — x — y, which is the equation of a plane
in three-dimensional space. Restricting to nonnegative coordinates gives rise to the triangular
slice of the plane as in Figure 4. So A3 is likewise a very simple shape. It is a triangle, and
a point on that triangle is a probability distribution on three elements. Understanding the
case when n = 4 requires more work, but it can be shown that the set A4 of all probability
distributions on four elements is a tetrahedron, or triangular pyramid, as shown in Figure 4.
A point on that tetrahedron is a probability distribution on four elements.

y Figure 4: For small values of

; z7=1—x— y n, the topological spaces A,

y=1-x are easy to visualize. For ex-

x=1 y ample, Ay is a point, A, is a
v

line segment, A3 is a triangle,
¥ and Ay is a tetrahedron.

A Ay Az Ay

The picture for A, becomes harder to visualize when 7 is greater than four, but each A,
is indeed a topological space. The set of real numbers IR is also a topological space, and the
upshot is that the functions H: A, — R defined by entropy are continuous with respect to the
topologies. The A, further play an especially fundamental role in topology, where for each n
the topological space A is called an n — 1-simplex.# For small values of n we have seen that
simplices coincide with familiar objects: a 0-simplex is a point, a 1-simplex is a line segment,
a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. In general, simplices are often
used by topologists as building blocks for more complicated topological spaces, somewhat
like Lego pieces. A hierarchy is already apparent: a tetrahedron is built up from triangles,

4 Recall that our A, are traditionally denoted by A"~!, which is why we have called A, an 1 — 1-simplex rather than an
n-simplex.
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a triangle is built up from line segments, and a line segment consists of points. The popular
online periodical Quanta Magazine recently expounded upon this idea [HE21]:
Many topological shapes can be built by gluing together pieces of different dimensions.... Indi-
vidual pieces of the shape are grouped by dimension and then arranged hierarchically: The first
level contains all the points, the next level contains all the lines, and so on. (There’s also an empty
zeroth level, which simply serves as a foundation.) Each level is connected to the one below it by
arrows, which indicate how they are glued together. For example, a solid triangle is linked to the
three edges that form its boundary.
That “each level” is connected by arrows is an additional part of the mathematical theory that
is not the focus of this article. But the quote above alludes to the fact that topological simplices
are part of a larger framework that enables mathematicians to translate difficult topological
problems into a language that is easier to work with. This framework is called homology,
and the Quanta article reference above is a good place to learn more. It all starts by breaking
up complicated topological spaces into little pieces or simplices. By definition, these same
simplices have a probabilistic interpretation, and whenever there are probabilities, entropy
is not far behind. Topology and entropy are thus inextricably linked. As we will soon see,
algebra is just as inevitable.

LET Us AGAIN pause to take inventory of our progress so far. We understand that entropy
is not just a number but is rather a collection of infinitely many functions. Those functions
moreover behave well from the perspective of topology because they are continuous. There
now remains one final property of entropy to know about. One more layer to peel back. It is
the fulcrum of this article and manifests itself whenever an event or outcome can be viewed
as a composite process. This concept is best explained with an example.

Composing Probabilities: Where Algebra and Topology Meet

This section contains an example of “composing” probability distributions, an operation that
will take center stage in our understanding of entropy. Both the example and ensuing dis-
cussion are heavily inspired by a 2011 informal article written by mathematical physicist John
Baez [Bae11], as well as a talk given by mathematician Tom Leinster at the Centre International
de Rencontres Mathématiques in 2017 [Lei]. The work and masterful expositions of both Baez
and Leinster served as a primary source of motivation for the main result in [Braz1] that we
are en route to unveiling, as well as the narrative we are sharing along the way.

Consider the following example. Suppose we flip a fair coin and then decide what to eat
for breakfast or dinner depending on which face the coin lands. There is a 50-50 chance the
coin will land on heads or tails, which corresponds to the probability distribution p = (%, %)
As shown previously in Figure 2, we may further represent p as a (green) tree with two leaves
labeled by the probabilities. Now, if the coin lands on heads, suppose we will choose what
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to have for breakfast. Say there is a 40% chance we choose cereal, a 50% chance we choose
oatmeal, and a 10% chance we choose fruit. This probability distribution on three breakfast
items will be denoted by g = (%, %, 11—0) , which is a point in A3. The picture for this probability
distribution is on the left-hand side of Figure 5. If the coin instead lands on tails, then suppose
we will decide what to have for dinner. Say there is a 30% chance we choose pizza and a
70% chance we choose stir fry. Denote this probability distribution on two dinner options by
r = (3, %), which is a point in A;. The picture of this probability distribution is shown on
the right-hand side of Figure 5.

Figure 5: The probability dis-
tribution g on three elements

cereal oatmeal fruit pizza stir fry
can be represented as a tree
2 1 1 3 7 with three leaves labeled by
S 2 10 10 10 the probabilities, and simi-
larly for r.
q 1

Notice there are five possible outcomes of this two-step process: cereal, oatmeal, fruit,
pizza, or stir fry, depending on the coin toss. Importantly, each of those five outcomes has
a probability associated to it, and those probabilities are easy to calculate. For example, the
probability of flipping heads (a 50% chance) and then choosing cereal (a 40% chance) is the
product of the probabilities of each individual outcome, namely % X % = % or 20%. Similarly,
the probability of flipping heads (a 50% chance) and then choosing oatmeal (a 50% chance) is

equal to 5 x 5 = I or 25%, and the probability of flipping heads and choosing fruit is equal

to 3 X {5 = 4 or 5%. This, too, has a visual counterpart. One can imagine grafting the root of
the pink tree representing g onto the first leaf of p, since the first leaf corresponds to flipping
heads, and moreover letting the green probability 5 for “heads” propagate up through the
three leaves of 4. Figure 6 shows the picture. Similar calculations show that the probability of
flipping tails and choosing pizza is %, and the probability of flipping tails and choosing stir
fry is %. The corresponding picture is analogous. To summarize this example, the process of
flipping a coin and then choosing a meal gives rise to a new probability distribution on five
things—cereal, oatmeal, fruit, pizza, stir fry—and based on our calculations above, that new
probability distribution is equal to (%, }I' 21—0, %, %) . Itis a point in A5, and its picture is shown
in Figure 7.

THIS PROCESS OF combining p and g and r to obtain a new probability distribution is not
a standard operation. It would not be found in the table of contents of a typical textbook
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Figure 6: To compute the

land heads land heads land heads probability ‘Of flipping heads
choose cereal choose oatmeal choose fruit and choosing cereal, oat-
1 2 1 1 1 1 1 1 1 meal, or fruit, simply multi-
7 XE =735 5 X5 =13 5 X 90 = 20 ply the probability for each
v R El food item by % In our graph-
A g ical notation, this is repre-
2 1 1 sented by grafting the root of
5 2 10 the pink tree into the first leaf
of the green tree.
1 1
1 2 2
p

on probability and statistics, for instance. Rather, it is an example of something new, and
it is an essential ingredient in our discussion on entropy. To see how, it will be helpful to
first introduce new notation for such composite probability distributions. Since this is a new
mathematical construction, we are at liberty to invent our own notation for it. What should we
choose? That is, what notation should we use to denote the probability distribution in Figure
7? We obtained the probabilities by multiplication, so it might be instructive to incorporate
the “times symbol” x somehow, which would also invoke the essence of abstract algebra
introduced earlier, namely the notion of combining things to form something new. That is indeed
what we have done here. A probability distribution p has been combined with probability
distributions g and r to obtain a new probability distribution. We may therefore wish to
denote this new distribution by, say, “p x (g,7)” to remind us that the probabilities in q and
r were multiplied by the probabilities in p to give rise to new probabilities. This would be a
reasonable choice. Nevertheless, we will replace the x with a circle o and write the following

ol = (L1 L3 7
Pe\ ) =\54202020)"

Why a circle? In a remarkable turn of events, this new mathematical operation was recently

instead:

found to be not new at all. That is, our way of “multiplying” probability distributions—or
rather, our way of composing them—is just one example of what can be represented by the tree
grafting shown above. Many other kinds of composite mathematical objects fit neatly into the
same template. That template is called an operad, and in the operadic literature a circle o is
standard notation for the kind of composition seen in the example above. Moreover, our ability
to compose probabilities is summarized in the fact that topological simplices Ay, Ay, A, . . . form
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Figure 7: There are five pos-

sible outcomes from flipping
) a coin and then choosing a

meal. Each of those out-
A4 4 3 comes has a certain probabil-
' ’ ity, which is obtained by mul-
tiplying individual probabili-
ties from p by those from g or
r. This composite process can
be illustrated by grafting the
respective trees as shown.

NI,
S
8-
:
S
~
S

|—
oo o
|~

QN -
NJ—

—|

o
ol

|

o

an operad.

So, what is an operad? The formal definition strikes a balance between the concrete and the
abstract. It is concrete enough to be useful; it is abstract enough to subsume many examples.
It is also rather technical and thus beyond the scope of this discussion. But some intuition will
be helpful. Loosely speaking, an operad is an abstract mathematical tool that keeps track of
certain properties of operations such as commutativity and associativity. One might think of
these properties as “flavors” of multiplication. In the culinary world, there are many types of
foods, and those foods come in a variety of flavors. Similarly, in the mathematical world, there
are many types of operations and each may have a different flavor. Multiplication of numbers
is just one example, but there are many more. Mathematicians frequently “multiply” things
that are not numbers and then ask whether the flavors of those operations are interesting. We
noted earlier that these more elaborate algebraic objects are well-known in mathematics with
names such as commutative algebras, associative algebras, and Lie algebras, among many
others. The language of operads distills these objects down to their core, leaving only the
bare essentials that distinguish one algebra from another. For this to be useful, however,
mathematicians had to first pin down an appropriate definition—one that was both rigorous
and abstract, and this was accomplished in the early 1970s. An operad is defined to be a
collection of “abstract operations” that accept n inputs for each natural number n =1,2,3, ...
together with a notion of composing them, and moreover that composition must satisfy a
list of reasonable axioms. For an accessible introduction to the formal definition, see [Stao4,
Braiya, Braiyb] as well as [Lei21, Chapter 12.1].
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» In more detail. Though a mouthful, the formal definition is conceptually simple. Pictures
are especially helpful. An abstract operation generalizes the concept of a function that accepts
n inputs and combines them to produce one output. That output can then be used as one
of the inputs for a different function. Multiplication, for instance, is a function f: R?> — R
that accepts a pair of numbers (x,y) as input and computes their product f(x,y) = xy as
output, which can be visualized by the cartoon in Figure 8. If we wish, we can then use the
output xy, which is just a number, as one of the inputs for some other function. This the
basic idea behind function composition, a concept usually taught in high-school or college
algebra. More generally, abstract operations can likewise be illustrated as cartoon-like trees

Figure 8: Multiplication can
be visualized as a tree with

input input
F F two leaves and one root. The
X y arrows indicate the input-
output flow.
Xy
output

with leaves that enumerate inputs and a single root to represent the output, exactly like those
appearing in Figures 2, 3, 5, 6, and 7. In this way, we begin to see how probabilities start to
fit into the theory of operads. But there is a mental exercise here. Probability distributions are
now on par with abstract operations, which may seem confusing. How is a list of numbers
an operation? It is not, really. It would be better to represent a probability distribution p =
(p1,p2,--.,Pn) by an actual (continuous) function f: R" — R that accepts a list of numbers
x = (x1,%2,...,%,) as input and that outputs a single number f(x). In such a passage from
probability distributions to functions, the formula for f may involve the probabilities p1, p2, ..., pu
somehow. As an example, given a probability distribution p and a list of arbitrary numbers x =
(x1,x2,...,x,) as input, we could define f(x) to be equal to the sum p1x1 + paxa + - - -+ pnxp, a
number known as the “dot product” between p and x. In general, the passage from probability
distributions to functions is a standard part of the theory of operads. Traditionally, such
passages are (quite confusingly) called “algebras over the operad,” although one might prefer
to call them representations of the operad [Bra21].

Needless to say, this topic is a specialized one. Not all mathematicians work with operads or
are familiar with them, and yet the prevalence of operads throughout the higher mathematical
landscape is quite astounding. Here is an overview given in [MSS02], a book written in 2002
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for graduate students, research mathematicians, and mathematical physicists:

Significant examples [of operads] first appeared in the 1960’s though the formal definition and
appropriate generality waited for the 1970’s. These early occurrences were in algebraic topology in
the study of (iterated) loop spaces and their chain algebras. In the 1990’s there was a renaissance
and further development of the theory inspired by the discovery of new relationships with graph
cohomology, representation theory, algebraic geometry, derived categories, Morse theory, symplec-
tic and contact geometry, combinatorics, knot theory, moduli spaces, cohomology and, not least,
theoretical physics, especially string field theory and deformation quantization.

While not all the terms may sound familiar, the variety is unmistakable. One more can now be
added to the list: information theory. Around 2010, Leinster observed that the composition of
probabilities described above is precisely what is needed to have an operad. That is, Leinster
showed that the collection of topological simplices A1, Ap, Az, ... admits the structure of an
operad [Bae11, Lei21]. The upshot is that the way we have composed probability distributions
p,q and r to obtain p o (g,r) in our coin-food example is neither homeless nor isolated in the
land of mathematics. It finds a natural home in the established theory of operads. The com-
position of probabilities is moreover a collision between the worlds of algebra and topology.
It is algebraic because we are combining probability distributions. It is topological because
those probability distributions are elements of topological simplices. And as we will now see,
entropy is not far behind.

The Chain Rule for Entropy

Recall that in its most basic sense, entropy is a number associated to a probability distribu-
tion. Our coin-food example involved four probability distributions—namely, p (a coin toss)
and g (breakfast choices) and r (dinner choices) and their composition p o (g, r)—and each has
an entropy associated to it as in Equation (1). Because the composite probability distribution
po(q,r) is built up from three individual distributions, it is natural to wonder whether the
entropy of p o (g,7) can likewise be built up from the entropies of the three individual distribu-
tions. In other words, can the formula for H(p o (q,7)) be reexpressed in terms of H(p) and
H(gq) and H(r)? Perhaps, for instance, the entropy of the composite distribution is equal to

the sum of the entropies of the individual distributions: H(p o (g,7)) < H( p)+H(q)+ H(r).
While a good guess, this is not the case. But one can show the equality does hold if the
entropies of g and r are multiplied by the probabilities of p, as follows:

H(po(q,r)) = H(p) + 3H(q) + 3H(r). 4

It may not be obvious why this modified equality is indeed true, but it can be easily verified
using basic arithmetic and high school algebra. Simply apply the formula in Equation (1) to
p o (g,r) and recall basic properties of the logarithm function.
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Quite crucially, Equation (4) is just one example of a more general rule. An analogous
equation holds whenever any probability distribution p = (p1, p2,. .., pn) is combined with n
other probability distributions, as in Figure 9, which will now be denoted with superscripts:
q',4%,...,q". (Pay careful attention to the difference between subscripts and superscripts:
p1 is a number, whereas g! is a list of numbers.) As in our motivating example above, the
probability distributions that are composed with p may be of different lengths. For example,
g' might be an element of A3, while 4> might be an element of A;;, while 4> might be an
element of As, and so on. In general, it can be shown that the entropy of the composite
distribution p o (¢,42,...,q") satisfies the following important equation, which is sometimes
called the chain rule for entropy [Lei21, Proposition 2.2.8]:

H(po(q',q%....q") = H(p) + prH(q") + p2H(7*) + - -+ + puH(q"). (5)

The chain rule is important because entropy is essentially the only collection of continuous
functions that satisfies it. In other words, continuity and the chain rule are at the heart of
entropy; they are enough to distinguish it from all other functions that assign real numbers to
probability distributions. In mathematical parlance, entropy is said to be “uniquely character-
ized” by the chain rule. This is a theorem, and a proof of it may be found in a recent book by
Leinster [Lei21, Theorem 2.5.1].

Figure 9: A picture for the
composite probability distri-
bution po (g',4%,...,9").

» In more detail. This characterization may be stated more formally as follows: if {F: A, —
R} is any other collection of continuous functions satisfying Equation (5), then F must in
fact be equal to H or to some multiple of it. In symbols this means F = cH for some real
number c. As mentioned above, this important theorem appears in [Lei21] and is actually a
slight variation of a closely related theorem about entropy that Russian mathematician Dmitry
Faddeev proved more than six decades ago [Fad56]. Here is the precise statement of Leinster’s
version of Faddeev’s theorem:
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Theorem 1. Let {F: Ay, — R},>1 be a sequence of functions. The following are equivalent:

i. The functions F are continuous and satisfy the chain rule.
ii. F = cH for some real number c.

By now it might seem we are drowning in a sea of symbols. Perhaps our mathematical
lungs are gasping for air. “Why does the chain rule hold? What is going on here?” These are
reasonable questions. The first is easily resolved. Why is Equation (5) true? As claimed above,
it can be verified using simple math. Walking through those calculations here, however, would
cause us to sink deeper into the symbolic sea. But the details are found in [Lei21, Proposition
2.2.8] whose surrounding text also contains a more formal discussion of the mathematics in
this section. Our second question is much more interesting. What is going on here? What does
the chain rule in Equation (5) mean? To start, it tells us that entropy interacts with the operadic
composition o of probability distributions in a very principled manner. Curiosity drives us to
wonder whether a similar kind of interaction arises elsewhere in the mathematical landscape
and, if so, where. On the surface this may appear to be a grandiose task. Where would we even
begin to explore such a question?

A good place to begin is at the beginning. Suppose n = 1. Then the chain rule takes on the
form H(pogq) = H(p) + H(q) for probability distributions p and 4. In words, this equation
seems® to say that entropy H behaves nicely with composition o of probability distributions
and with addition + of real numbers. Functions with this kind of behavior may be familiar to
those who have taken a course in abstract algebra, where such functions are called homomor-
phisms. To elaborate, in abstract algebra we often begin with a set X together with some way
to combine or “multiply” elements in that set. This idea was introduced previously in this ar-
ticle, but let us unwind it further. Suppose e and e are any two elements of X. These dots may
represent numbers such as 2 and 3, or they may represent English words such as yellow and
banana. We will not specify what the elements of X are because it does not matter. Supposing
we can combine or multiply elements of X, we will use juxtaposition ee to denote this opera-
tion. This could represent multiplication of real numbers, or concatenation of English words,
or something entirely different. The abstraction allows us to represent all possibilities simulta-
neously. Similarly, suppose Y is another set with its own operation, which we will also denote
by juxtaposition. Then a function f: X — Y is called a homomorphism if combining elements
in X and then applying f is the same as first applying f and then combining the elements in
Y; that is, if the function satisfies the equation f(ee) = f(e)f(e) for all elements ¢ and e in X.
When comparing this with the chain rule for entropy when n = 1, it may seem that entropy
is a homomorphism. The equation H(p o q) = H(p) + H(g) is indeed analogous to the newly

5When n = 1 the only possible choice for p is the trivial probability distribution (1), which necessarily implies that
pog =qand H(p) = 0 and so the chain rule reduces to H(q) = H(g), which is uninteresting. But we will momentarily
ignore this for the sake of exposition.
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introduced equation f(ee) = f(e)f(e). So if we were asked to decipher the mathematical
message in the chain rule, may we thus confidently assert, “Entropy is a homomorphism”?
Alas, the answer is no. Baez shared this conundrum in his 2011 article [Bae11]:
While [the chain rule] is cute, it’s a bit tricky to find its proper place in the world of abstract
algebra.... Shannon entropy gives a map H from probability distributions to numbers. So, if you're
algebraically inclined, you would want H to be a homomorphism.... We see laws of this sort all
over math. But the true law has an extra term. What's going on?
To see where the problem lies, let us progress from n = 1 to n = 2. In that case, a probability
distribution p = (p1, p2) may be combined with two other probability distributions 4! and 4?2,

and the chain rule then becomes®

H(po(q',9%) = H(p) + p1H(q") + p2H(q%). (6)

This makes it clear that entropy is not a homomorphism, as the ps have intermingled with the
gs on the right-hand side. Alternatively, one might wish that the right-hand side of Equation
(6) did not include the term H(p), for in its absence a small trick could be applied to make
the equation look more like a homomorphism. (This is what Baez meant by “the true law has
an extra term.” The details of the trick are given in his article.) So, it seems we are back to
where we started. If entropy is not a homomorphism, then what is it? To gain the clarity we
seek, we must strip away the details. It will help to squint our eyes while looking at the chain
rule in Equation (6) and ignore most of the symbols. Forget the subscripts and superscripts.
Forget the ps and gs. To see what is really going on with entropy, imagine that p is a green dot
e and the gs collectively are a pink dot e. Then Equation (6) roughly looks like something of
the following form:

H(ee) = H(e) +*H(e). 7)

In words, this says that the entropy of two things ee is equal to the entropy of the first thing
plus the first thing e mulitplied by the entropy of the second thing e. Does this sound familiar?
Perhaps not. Regardless, Equation (7) is undeniably asymmetric. It looks off, visually speak-
ing. On the right-hand side of the equals sign there are two green dots but only one pink dot.
That asymmetry is somewhat irksome, like having a pebble stuck in one’s shoe. The formula
would appear more balanced if there were an extra pink dot on the right, like so:

H(se) = H(s)s + oH(o). ®)

Now, does this look more familiar? Students of calculus may indeed recognize the equation
above. It is reminiscent of a famous formula known as the “product rule” or the Leibniz rule,
which is standard material in a first course on calculus.

% Notice this equation coincides with Equation (4) when p = (%, %) corresponds to a coin toss and when g' = g and

g% = r correspond to our breakfast and dinner choices in the example in the previous section.
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» In more detail. In calculus, the product rule is a formula for the derivative of a product of
functions. To elaborate, the derivative of a differentiable function f: R — R (that is, a function
whose derivative exists) is another function often denoted by f” or by % or by d(f). Given
two differentiable functions f and g, it is natural to ask about the derivative of their product.
Can the derivative (fg)' be expressed in terms of the individual functions f’ and g'? The
affirmative answer is given by the famous product rule, which says that the derivative (fg)’ is
the function whose value at a point x is given by (fg)'(x) = f'(x)g(x) + f(x)g'(x). In words,
the derivative of fg is obtained by multiplying ¢ by the derivative of f, then multiplying f by
the derivative of g, and then taking the sum of these two functions. This may be written more

succinctly as d(fg) = d(f)g + fd(g), which should be compared with Equation (8).

But calculus is not the only place in mathematics where a version of the Leibniz rule ap-
pears. Many other functions may satisfy an analogous equation,” and such functions are given
a name: derivations. Elaborating, suppose we have any set of elements o, o, ... together with
some notion of “multiplication” between them so that we may make sense of expressions such
as ee. Perhaps these dots are numbers, but perhaps they are something else. The abstraction is
once again intentional. Then, informally speaking, a derivation is defined to be any function d
on this set that satisfies the Leibniz rule d(ee) = d(e)e + od(e) for all elements ¢ and e. As one
might expect, this is a loose explanation of a much more formal definition, but the takeaway
is that derivations are a staple in the world of advanced mathematics. A small digression
may help to illuminate this claim. In our opening discussion on topological simplices, we
briefly mentioned “homology,” which is a mathematical framework that assigns algebraic ob-
jects called homology groups to a topological space. Those groups encode valuable information
about the topological space and are often easier to work with than the space itself. A similar
story holds if the words “topological space” are replaced with “associative algebra.” There,
the analogous construction is called the Hochschild cohomology of the algebra, and derivations
of the algebra play a vital role: they are what are known as “cocycles of degree 1” [Wit1o,
Chapter 1]. Lingo aside, the takeaway is that derivations are functions that generalize the
Leibniz rule from calculus, and Equations (7) and (8) hint at a tantalizing connection between
derivations and entropy.

» I[n more detail. As suggested above, derivations are functions defined with respect to some
algebraic structure. That is, one must work in some kind of setting where “multiplication”
makes sense. Given an algebra A, for instance, a derivation on A is formally defined to be a

7 As an example, here is a simple exercise. Let [0,1] denote the set of all numbers between and including 0 and 1, and
define a function d: [0,1] — R by declaring d(x) = —xlog(x) if x > 0 and d(x) = 0 if x = 0. Show that d satisfies
the Leibniz rule. That is, show that d(xy) = d(x)y + xd(y) for all numbers x and y in [0,1]. This computation only
requires arithmetic and basic properties of the logarithm function.



60 THE JOURNAL OF THE MATH3MA INSTITUTE

linear function d: A — A satisfying the Leibniz rule d(ab) = d(a)b + ad(b) for all elements
a and b in A. This can be generalized slightly by replacing the target A with another object
M called a “bimodule over A” and instead considering functions d: A — M satisfying the
same equation. These, too, are called derivations. The only difference now is that d(a) is an
element of M, which is allowed to be different than A. So, some care is needed here. If M and
A are genuinely different from one another, then it is not at all obvious how to make sense
of the expressions d(a)b and ad(b). Here, d(a) and b are elements of different sets, namely
M and A, respectively, and we have not said what it means to multiply elements that are not
members of the same set. By way of analogy, multiplication of two numbers 0.5 x 8 = 4 makes
sense, but what would it mean to multiply a number with an English word, 0.5 x yellow =?
This is the nature of the question we are faced with here, and a similar thought holds for a
and d(b). Bimodules are the answer to such questions. A bimodule over A is a mathematical
object M that is equipped with a way to “multiply” its elements by elements from A. Readers
familiar with linear algebra have seen this idea before. It generalizes what is known as scalar
multiplication. The ability to multiply a vector v by a real number k to obtain a new vector
kv is precisely the statement that a real vector space is a bimodule over the real numbers. In this
analogy a and b are “scalars” and d(a) and d(b) are “vectors.”

In short, derivations are functions that interact with algebraic structure in a precise way
known as the Leibniz rule. Moreover, the rough form of the chain rule in Equation (7) suggests
that entropy behaves somewhat like a derivation. The similarity is indeed hard to miss:

Leibniz rule: entropy:

d(oe) = d(e)s + d(s) H(e®) = H(s)+ oH(s) ©

We are now in a position to ask the obvious question: Is there a real sense in which entropy is
a derivation? Baez posed this very puzzle in his 2011 article, where he wondered how the
similarity between entropy and derivations might be reconciled with some of Leinster’s work
on the operad of topological simplices: “So an interesting question presents itself: How does
the ‘derivation” way of thinking about the [chain rule] relate to Tom Leinster’s interpretation
of it...?” [Bae11] Ten years later, my work in [Braz1] gave an answer to this question.

THE ANSWER Is that there is a correspondence—that is, a way to go back and forth—between
Shannon entropy and derivations of the operad of topological simplices. The latter expres-
sion is a brand new generalization of the Leibniz rule in the context of operads, and a formal
definition is one of the contributions of [Braz1]. The definition draws inspiration from the fa-
miliar concept of a derivation from abstract algebra, yet it is notably different. A derivation of
an operad turns out to consist not of a single function, but rather of infinitely many functions.
Happily, we have made a similar shift in perspective before. It is analogous to our understand-
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ing that entropy is not merely a number, nor is it merely a function, but rather it is a collection
of infinitely many continuous functions { H: A, — R} satisfying a certain equation—the chain
rule. Analogously, a derivation of the operad of simplices is defined to be a collection of in-
finitely many continuous functions {d: A, — B} satisfying a certain equation—the Leibniz
rule. The black box is a temporary place-holder for a new kind of output that we explain
now. Recall that entropy assigns numbers to probability distributions. Our derivation, on the
other hand, will assign functions to probability distributions. Explicitly, a derivation d of the
operad of topological simplices assigns a continuous function d(p): R" — R to each probability
distribution p in A;,. We have seen an example of such an assignment already in a “represen-
tation of an operad” mentioned in our introduction to operads. Indeed, we noted previously
that, because operads are abstract, it is better to work with concrete representations of them
in practice. Our new version of a derivation takes this to heart. So to summarize, the first step
in making the connection between entropy and derivations is to represent each probability
distribution p in A, by a continuous function d(p): R” — R. And this gives a clue to the
black box above. It is precisely the set of all continuous functions from R” to R. This set can
further be made into a topological space, albeit one that is harder to visualize than simplices.®
Even so, let hom(R",R) denote this topological space of functions. Then we can summarize
this discussion with the following informal definition.

Definition (Informal). A derivation of the operad of topological simplices is a collection of
continuous functions {d: A, — hom(R",R)} that satisfies an appropriate version of the Leibniz rule,
“d(poqg)=d(p)oq+qod(q)” for any probability distributions p and q.

Of course, care must be taken to explain the desired Leibniz rule in the scare quotes above.
The expression p o g does not make much sense, for instance. So far we have only used the
symbol o to denote the composition of multiple probability distributions with an arbitrary p in
Ay, as in the tree-grafting picture in Figure 9. To have an appropriate version of the Leibniz
rule, however, we need only compose a single probability distribution with p. But this problem
is no problem at all. A single probability distribution g4 may indeed be composed with p, and
we have already done so in the example shown in Figure 6. That is, we can simply graft the
root of some g onto any one of the leaves of some p. The definition asks that an appropriate
version of the Leibniz rule holds for each of those ways.

To make sense of the Leibniz rule in the context of the operad of topological simplices, we
also need to make sense of the expressions d(p) o g and g o d(g) that appear in the formula.
Notably, both expressions involve the combination of two things that are not the same; p is a
probability distribution, whereas d(g) is a function. What does it mean to combine the two?
We have been faced with this question once before. What kind of mathematical structure

8 Formally speaking, we can equip the set of continuous functions R” — R with what is known as the “product
topology,” which turns it into a topological space that is easy to work with in this setting.
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enables one to “multiply” elements from different sets in a meaningful way? As discussed
above, the answer lies in a bimodule structure. Pinning down such details is another contribu-
tion of [Braz1]. The paper gives a formal definition of a “bimodule over an operad,” and it
shows that the collection of topological spaces hom(R",R) for each n =1,2,3,... admits such
a structure. Curiously enough, this part of the mathematics explains the reason that entropy
appears to be missing a pink dot when compared with the traditional Leibniz rule in (9). See
[Braz1, Example 3] for more details. So, a part of the mystery has now been solved.

With these definitions in hand, the rest of the mathematics falls into place as well. First, it
can be shown that every derivation of the operad of topological simplices satisfies a version of
the chain rule. This upgraded rule looks roughly like the following:

n rt of n
d(po(qhq%....q") =" d(p) + p1d(g") + p2d(q?) + - - + pud(q"),

which is analogous to the original chain rule in Equation (5). The “sort of” hovering over the
equals sign means interested readers are encouraged to take a look at the frue equation, which
is given in [Braz1, Proposition 1]. Either way, in our graphical notation this new version of
the chain rule essentially says that the function d(p o (g',4?,...,9")) is obtained by applying
d to each of the trees representing the individual probability distributions. Below is a picture
of this rule in the case when n = 3. The “dots” on the leaves can be ignored—they are part of
the bimodule structure, whose explanation we omit.

d(Y\P>:Y\dp MY\\P m@P wqg

Finally, with the proper definition of “derivation” in place, the main theorem of [Braz1]—and
the climax of our discussion—follows immediately. One can show there is a way to go back
and forth between Shannon entropy and derivations of the operad of topological simplices.
More specifically, we can always use Shannon entropy to define a derivation and, conversely,
every derivation knows about Shannon entropy. Here is the formal statement of the theorem:

Theorem 2 (Bradley, 2021). Shannon entropy defines a derivation of the operad of topological sim-
plices, and for every derivation of this operad, there exists a point at which it is given by a constant
multiple of Shannon entropy.

» In more detail. The statement of the theorem does not tell the reader exactly how the corre-
spondence works, so let us provide a few more details for those who are curious. One direction
is quite easy. To show that Shannon entropy defines a derivation, we need to use entropy to
construct a collection of continuous functions {d: A, — hom(R",R)} and verify that it satis-
fies the appropriate version of the Leibniz rule hinted at above. Here is how to construct such
a collection: for each natural number n and for each probability distribution p in A;, define
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the function d(p): R” — R to be constant at entropy; that is, define d(p)(x) = H(p) for all
points x in R". The proof that this defines a derivation is straightforward, requiring nothing
more than arithmetic. The other direction of the correspondence is slightly more involved. It
says that if {d: A, — hom(R",R)} is any derivation, then for each natural number n there
exists a point x in R” so that d(p)(x) = cH(p) for some real number c. The proof of this part
of the theorem uses the result of Leinster-Faddeev mentioned previously in Theorem 1, which
is the reason that both theorems involve a constant multiple of entropy. What’s more, one can
easily show that the special point x is actually zero, that is, d(p)(0) = cH(p).

So, the mystery surrounding entropy and derivations is now solved. Or is it? We have
reached the end of this article, but now there are new mysteries to explore. For instance, at
the time of writing, it is not known whether there is a meaningful interpretation of derivations
evaluated at other points besides zero, or whether the operad has other derivations besides the
one that is constant at entropy. Further, it turns out that the original chain rule for entropy in
Equation (5)—the very equation that caught the attention of Baez and Leinster [Bae11, Leiz1]—
is merely a corollary to the chain rule for derivations and the main theorem above. So, perhaps
the chain rule is just a shadow of something more. Our “final layer” of entropy is almost
certainly not the final layer at all.

Venturing Into New Mathematics

In closing, let us revisit a question asked towards the beginning of this article: “What does
it mean to discover new mathematics?” We have now seen an in-depth example. We began
with a survey of the landscape of higher mathematics and a basic introduction to Shannon
entropy. We then began to peel back the layers of entropy one by one, culminating in the
intriguing chain rule. Curiosity compelled us to ask where such a rule fit into the mathe-
matical landscape, and this led us to pursue an interesting connection between entropy and
derivations. Generally speaking, one way to approach such mysteries is to search the math-
ematical literature to see if the mystery has already been solved. If no such solution exists,
then the mathematician is prompted to forge ahead. That was indeed the case for us. And that
discovery—namely, a new way to think about entropy from a pure mathematical perspective—
is the content of [Braz21].

But why is this new perspective worth sharing? Recall that information theory tradition-
ally has little to do with either abstract algebra or topology, as each subject seemingly resides
in separate, distant sectors of the scientific and mathematical landscapes. But now we have
seen in great detail that entropy, algebra, and topology are intricately intertwined with one
another. Recent events also indicate that the work in [Braz1] is merely one of several re-
lated connections between entropy and higher mathematics found in the past several years
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[BB15, EVG15, Mai1g, Bae11]. Perhaps these timely discoveries are a clue that there is more
interesting, more fundamental mathematics waiting to be discovered. And because entropy is
at the heart of it all, it is particularly intriguing to wonder about the new insights that such
mathematics could lend to the study of physics and the natural world. In the words of German

“

physicist Max Plank quoted earlier: “...the external world represents something independent
of us, something absolute which we confront, and the search for the laws valid for this ab-
solute appeared to me the most beautiful scientific task in life.” The beauty of such a task
is especially enriched when the explorer has sure confidence that the answers may indeed be

found.
Colossians 1:16-17
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