
Entangled Rollups: Multi-chain Interoperability Without Bridges

ZKM Research∗

Feb 2024 - Version 1.0

Abstract

Interoperability in blockchains is often implemented using a trusted bridge, a separate centralized
or partially decentralized intermediary which validates and transfer the cross-chain messaging. In this
work, we implement an interoperability protocol by judiciously entangling the underlying primitives
under standard security assumptions of zkRollups, leveraging our state-of-the-art recursive zkVM.
The Entangled Rollup protocol is trustless, and a step toward addressing liquidity fragmentation as
well as simplifying the user and developer experience as major adoption barriers of the multi-chain
world.

1 Introduction

1.1 Motivation: multi-chain interoperability

The complex set of trade-offs in the security, deployment and interactions costs, applications, and
community of different blockchain infrastructures has resulted in the rapid proliferation of blockchain
infrastructures such as layer 1s, layer 2s, and appchains. While this multilayer world of blockchain in-
frastructures undeniably provide value to the blockchain industry and users, it had introduced significant
challenges in terms of liquidity fragmentation as well as cost of onboarding for developers and users.

Cross-chain bridges [14], such as Wormhole [4] and Axelar, try to address this issue by enabling cross-
chain transfer of assets and general message passing by introducing multisigning committees for validat-
ing the cross-chain transactions. However, high fees for users, costs of the network, centralization of the
external committee, and introduction of wrapped assets has been the major blockers to their adoption.

Recently, several projects are developing zero knowledge (ZK) [11] bridging solutions, including Succinct
Labs, zkIBC (Electron Labs), and zkBridge (Polyhedra Network). These initiatives utilize zkSNARKs
[13, 7] to enhance bridge designs. Central to their success is a light client protocol for efficient blockchain
interaction and state synchronization.

Some works propose slightly different designs that integrate zkRollup [8, 9] concepts into bridges. This
approach faces challenges such as the need for larger circuit sizes than rollups and reducing on-chain

∗Ming Guo, Lucas Fraga, Stephen Duan, Jeroen van de Graaf, Pavel Sinelnikov, Lynn Zhong, Peyman Momeni (e-mail:
first name dot first letter of last name at zkm dot io)

1

https://www.zkm.io/


storage and computational overhead, which are key to the effective functionality of ZK bridges. While
integrating zero-knowledge proofs (zkProofs) into bridge designs significantly enhances decentralization
and security, it introduces computational challenges, primarily due to the larger circuit sizes required.

In this paper we go in a different direction by exploring the subsistence of zkRollup architectures. We
propose the concept of “entangled rollups” which allows multi-chain interoperability without relying on a
separate entity. This architecture addresses challenges such as liquidity fragmentation while introducing
less complexity for developers and users to deploy and interact.

Entangled rollups are deployed on all blockchain infrastructures, and their states are synced through
state-of-the-art recursive zero-knowledge proofs. It is worth mentioning that the vision for entangled
rollups is not limited to interoperability and asset transfer as this design enables a wide range of multi-
chain applications and protocols which can leverage access to underlying infrastructures and ecosystems.

1.2 Outline of the paper

In Section 2, we introduce the necessary building blocks of Entangled Rollups to the general reader. In
Section 3 we present our new approach, which we subject to an informal security analysis in Section 4.
Section 5 discusses the properties we obtain, Section 6 draws a comparison with similar projects, while
Section 7 contains the conclusion.

2 Background

2.1 Smart Contracts

Smart contracts are decentralized applications on blockchain networks, designed for automatic and de-
terministic execution logic. Their code specifies the execution logic, leading to predictable and consistent
outcomes without human intervention.

Running on decentralized blockchains rather than centralized servers, smart contracts offer impartial,
efficient, and secure outcomes, free from tampering. Their operation without central authority eliminates
single points of failure and lowers attack risks, making them suitable for automating agreements across
multiple parties with benefits like reduced risk, cost savings, and increased transparency.

Introduced by Ethereum, smart contracts have become foundational in Web3, fueling developments
in decentralized finance (DeFi) [15], non-fungible tokens (NFTs) [12], gaming and more applications
demonstrating their vital role in evolving decentralized applications.

2.2 zkRollups

zkRollups are layer 2 solutions that enhance the scalability of layer 1s by batching off-chain transactions
and proving the correct execution of the batched transactions using zero-knowledge proofs that can be
further verified in a smart contract on the underlying layer 1.

2



On-chain verifiability of the generated ZKPs removes the absolute blind trust in sequencers and ensures
the correct execution of batched transactions.

The main components for zkRollups solutions include:

• On-chain Contracts are essential for operation, including a primary contract for rollup blocks and
a verifier contract for checking zero-knowledge proofs, securing transactions processed off-chain.

• Off-chain Virtual Machine (VM) handles transaction processing and state maintenance off-
chain to create ZK proofs for state transitions that are verified on-chain using a smart contract.

zkRollups offer a secure, efficient scaling method by utilizing Ethereum for data integrity and security,
thus ensuring on-chain data availability and validity of state changes. Therefore zkRollups have emerged
as one of the most secure mechanisms for implementing L1-L2 interoperability.

Note that here (and throughout this paper) the zk-prefix refers to the succinctness property, and not to
the privacy property of these techniques. Though technically speaking this is an abuse of terminology,
this usage of the term ’zero knowledge’ has become standard practice in the field.

2.2.1 Implementing zkRollups with zkMIPS

One of the most important applications for ZKM’s off-chain VM, zkMIPS, is the design of zkRollups.
zkMIPS is capable of producing zkProofs for the correct execution of any program inside a standard
MIPS VM. The produced zkProof can be optionally converted to any smart-contract friendly format,
allowing the final proof to be verified on-chain. In the specific case of zkRollups, this feature can be
used to verify the correct execution of a program that validates block-transitions.

Given a MIPS program and a proper input to it, zkMIPS compiles the execution of this program under
this input into a Plonky2 [1] proof. If the proof is destined to be verified on-chain, one final procedure
can convert the Plonky2 proof into a Groth16 [10] proof. The final Plonky2 proof size and time are
adjustable, while the Groth16 proof size and time depend on the statement (Plonky2 proof verification)
being proved, meaning the final on-chain proof can be as small as we need it to.

To improve efficiency of on-chain proof verification we do the following: during off-chain proof generation
both the MIPS program and its inputs are written in a succinct representation of the initial memory state
over which the VM starts running. In practice, this means that any program can be verified on-chain
given a proper representation of its initial state, allowing for any program to be verified on-chain with
roughly the same amount of resources. in particular, the succinct memory representation is a Merkle
root with memory pages as Merkle node and, in the case of Ethereum, the main on-chain verification
resource is gas.

2.3 Cross-chain interoperability

Cross-chain technology enables interoperability between distinct blockchain networks, allowing for seam-
less transfer of data and assets. To accomplish this goal, it must address the challenge of different
blockchains operating with unique rules and protocols. See [14] for a good example.

The key functionalities of cross-chain interoperable solutions include:

3



• Data Sharing enables cross-chain communication, essential for developing applications that in-
tegrating data from multiple blockchains.

• Asset Swap allows for the transfer of digital assets across blockchain platforms, increasing asset
liquidity and flexibility, which greatly improve UX.

• Scalability and Performance Enhancement utilizes the strengths of various blockchains for
improved functionality and performance, facilitating more efficient system throughput.

2.4 Interoperability Trilemma of Blockchain Bridges

In trying to achieve interoperability through cross-chain bridges, we want to reconcile three fundamental
properties: trustlessness, extensibility, and generalizability. [6]

• Trustlessness refers to the need for cross-chain bridges to offer the same security guarantees as
the underlying blockchain Layer 1, without introducing additional trust assumptions. This means
that users do not need to place extra trust in any intermediaries or third parties in order to ensure
the security and reliability of the entire system.

• Extensibility refers to the ability to connect and interact with other blockchain networks. This ca-
pability allows for the free flow of assets and data between different blockchains, thereby enhancing
flexibility and efficiency of the entire blockchain ecosystem.

• Generalizability refers to the cross-chain bridge’s capacity to handle more generic applications.
This includes not only common transactions, but also a wide array of applications like smart
contracts, NFT transfers, authentication, etc. By supporting a broader range of applications,
bridges enhance their practical value.

To achieve efficient and secure cross-chain bridge interoperability, one needs to find a proper balance
between these three properties.

3 Our proposal: Entangled rollups

3.1 Key insight: entangling two rollups

Our key contribution is this: zkRollups can be seen as an interoperability mechanisms between L1s
and L2s, allowing us to implement the functionality of a cross-chain bridge but without creating one.
To understand how this is possible, suppose we have two different blockchains called A and B respectively,
each with two layers called Layer 1A/2A and Layer 1B/2B respectively. In addition to this, suppose
there exist zkMIPS-based zkRollups from Layer 2A to Layer 1A and from Layer 2B to Layer 2B.

Since the protocol and entities that implement the rollup for A and B are similar, it is possible to
entangle these rollups, meaning we can deposit from one chain to any other chain in the same rollup
network. For instance, Layer 2A can withdraw funds to Layer 1B instead of to its ‘parent’ Layer 1A, as

4



(a) Two L1/L2 blockchains (b) Two entangled L1/L2 blockchains

Figure 1: Entangling blockchains

well as Layer 1A can deposit funds to Layer 2B instead of to its ‘child’ Layer 2A. In the same way, Layer
2A can transfer funds to its counterpart Layer 2B through a withdrawal followed by a deposit, as well
as Layer 1A can transfer funds to its counterpart Layer 1B through a deposit followed by a withdrawal.

The key component to this feature is the existence of a general-purpose proving mechanism common
to all zkRollups, meaning a proof can be produced for one blockchain and verified on another. In this
context, since every transaction on one Layer 2 will be eventually rolled-up to its respective Layer 1, the
proof generated for any transaction in this chain can be accordingly rolled-up to any other chain.

This Entangled Rollup can be used to trigger actions on one chain based on actions that happened on
another chain, using a zk proof for some action on the second chain to justify actions triggered on the
first one. We call the chain where the trigger action occurred the Source chain (or Src chain/L1/L2),
and the chain where the result action will occur the Destination chain (or Dest chain/L1/L2).

We assume that every party engaged in Dest L2 trusts the entities implementing its own zkRollup
mechanism and therefore the zk proofs, so there is no need to verify the cross-chain transaction coming
from Src L2. Note that the entities implementing the zkRollup will only bring this transaction to Dest
L2 if it exists on Src L2. However, we cannot assume every party engaged in Dest L1 trusts these L2
entities, so a cross-chain transaction arriving to Dest L2 must be verified on-chain, together with its
Src L2 counterpart. These two proofs (from Src and Dest L2) can be combined and verified on-chain
(Dest L1) in the same contract call that executes the zkRollup of the Dest L2 side of the cross-chain
transaction.

One possible pair of actions that can be implemented is the minting (or unlocking) of some asset on
Dest L2 based on the burning (or locking) of some asset on Src Layer 2, allowing for the implementation
of cross-chain bridging features without any significant architectural modification. In this specific use
case, the Dest L2 state validation algorithm must be modified to allow minting subjected to a successful
Src Layer 2 state validation. To this end, the Src Layer 2 state validation proof generated during its
rollup process can be used during the Dest L2 state validation proof generation to mint (or unlock)

5



assets on the Dest L2.

The choice between burning/minting or locking/unlocking is up to the rollup designer, but impacts every
cross-chain transaction involving the blockchain. The burning/minting approach can be implemented
through a fixed burning address (e.g. a null address or any randomly generated address to which no
private key is known) to send assets being transferred to other blockchains, and a special function
on the rollup contract to mint assets being transferred from other blockchains. On the other hand,
the locking/unlocking approach can be implemented through smart contracts responsible for holding
assets transferred to other blockchains and releasing assets transferred from other blockchains.

We call a smart contract which implements the locking/unlocking functionality for cross-chains transac-
tions a Shadow Contract, since it ‘follows’ the behavior of other blockchains involved in the Entangled
Rollup network. Collectively, the set of Shadow Contracts from all blockchains involved in the Entangled
Rollup act as a liquidity provider for the network. For this reason, we consider the locking/unlocking
approach more didactic and choose it as the default for the rest of this document.

One advantage of Entangled Rollups over bridges is that no new nodes have to be created, as all off-
chain nodes involved already exist and participate in the involved zkRollups by assumption. Besides, its
functionality is completely general by design because transaction data is handled and proven off-chain
by the same nodes that operate the rollups. In the remainder of this section we provide more details
about Entangled Rollup, starting with an extensive step-by-step description of cross-chain transaction.

3.2 A step-by-step description

In a zkRollup architecture, off-chain sequencer and prover nodes sequence transactions and generate ZK
proofs for every new L2 batch, respectively. In the Entangled Rollup architecture, these nodes continue
to exist but now there are also relayer nodes to pass cross-chain transactions and ZK proofs to other
blockchains involved in the transactions. In this setting, an L1-L1 cross-chain transaction is processed
in the steps described below and illustrated in Figure 2 (since the sequencer, prover, and relayer nodes
act together to keep the Entangled Rollup working, we refer to them in the diagram simply as ZKM
nodes).

1. Src Account submits a deposit transaction tx1 to Rollup Contract on Src L1.

We require tx1 to be formatted in a way to specify Dest L2, the asset that must be minted
on the Dest L2 transaction and the data that must be carried on the Dest L1 transaction.

2. The deposit transaction tx1 is processed, which requires that:

(a) ZKM relayers read tx1 from Rollup Contract on Src L1.

(b) ZKM relayers pass tx1 to Src L2 via Rollup Contract.

3. Rollup Contract on Src L2 mints the deposited asset and triggers the cross-chain transaction by
locking this value, i.e. submitting a transaction tx3 to Shadow Contract on Src L2.

We require tx3 to be formatted in a way to represent any data attached to tx1.

4. The cross-chain transaction is processed, which requires that:

6



(a) ZKM relayers read tx3 from Shadow Contract on Src L2.

ZKM provers produce a proof zk4 for the block containing tx3.

(b) ZKM sequencers rollup tx3 to Rollup Contract on Src L1 by passing zk4 to it.

Rollup Contract updates the Src L2 state if zk4 passes the on-chain verification.

(c) ZKM relayers pass tx3 to Dest L2 via Shadow Contract.

5. Shadow Contract on Dest L2 mints the transferred asset and concludes the cross-chain transaction
by releasing this asset, i.e. submitting a transaction tx5 to Shadow Contract on Src L2.

We require tx5 to be formatted in a way to represent any data attached to tx3.

6. The withdraw transaction tx5 is processed, which requires that:

(a) ZKM relayers read tx5 from Rollup Contract on Dest L2.

ZKM provers produce a proof zk6 for the block containing tx5 and attach zk4 to it.

(b) ZKM sequencers rollup tx5 to Rollup Contract on Dest L1 by sending zk6 to it.

7. Rollup Contract on Dest L1 concludes the withdrawn transaction by releasing the withdrawn
asset, i.e. submitting a transaction tx7 to Dest Account if zk6 passes the on-chain verification.

We require tx7 to be formatted in a way to carry any data attached to tx5.

Figure 2: Entangled Rollup scheme

What makes this design possible is zkMIPS proving architecture. By design, all input data (including the
program being proven and its parameters) are encoded in a succinct representation of the initial state

7



over which the input program is initialized, as described in Section 2.2.1. As a result, the final on-chain
verifier must checks two things: whether the correct transaction data is encoded into the right memory
location, and the proof itself. This way, the zkMIPS on-chain verifier embedded in the rollup contract
on Dest L1 can verify the correctness of tx3 (resp. zk4), tx5 (resp. zk6), their equivalence and a few
more properties by retrieve public proof parameters stored in the contract. These public parameters
must be updated every time a change happens in Src L1, Src L2 or Dest L2 state transition functions.
For details of the properties these proofs must show and how they can be composed, see Appendix A.

4 Informal security analysis

The security of the asset transfer procedure involving ZK proofs, Rollup contracts, and Shadow Contracts
across Source (Src) and Destination (Dest) chains, as outlined, depends on several foundational principles
of blockchain security and cryptography. In essence, it is anchored in (a) the principles of ZK proofs
for verification, (b) the transparent control of assets through Shadow Contracts, and (c) the rigorous
adherence to asset conservation laws, all of which collectively form a robust framework for secure and
verifiable asset transfers across blockchain networks. In this section we break down the key steps of the
procedure described in Section 3, and assess its security.

Security of Src Chain Rollup Withdrawal Through ZK Proofs The use of a single proof system in
steps 2b and 2c ensures the withdrawal from the Src Rollup is secured under the same cryptographic as-
sumptions. This uniformity allows both L2 contracts to independently verify the proof without additional
requirements. Thus, integrity of withdrawal is cryptographically linked to the ZK proof validity.

Security of Dest Chain Rollup Deposit Through ZK Proofs Similarly, the deposit into the Dest
Chain Rollup steps 5a and 5b is secured by reusing the zkMIPS proof system. This shared proof
ensures that the deposit is cryptographically consistent with the withdrawal, maintaining cross-chain
asset integrity. As a consequence, the asset transfer is secure and verifiable, with deposit legitimacy tied
to the proof integrity, thus preventing double-spending and asset manipulation during the transfer.

Control by Shadow Contract The fact that the native token is controlled exclusively by the Shadow
Contract adds an additional layer of security. This transparent control within the decentralized framework
ensures that unauthorized control of the token is impossible under standard cryptographic assumptions.

Withdrawal and Deposit Verification The procedure of withdrawal and deposit verification is a
critical component of the asset transfer mechanism, ensuring the integrity and conservation of assets
across different layers and networks. This mechanism involves several key steps and principles:

• Verification procedure: The Src Shadow Contract on Dest L1 plays a pivotal role in verifying
the withdrawal of an asset from the Src L2 to the Shadow Contract on Src L1. This step is crucial
for maintaining the traceability and integrity of the asset as it moves across layers.

8



• Closed Loop of Asset Transfer: By verifying the withdrawal before initiating the deposit, the
system creates a closed loop that ensures every asset leaving the Src L2 has a corresponding entry
on the Dest L2. This verification procedure prevents the duplication of assets and ensures that
the total supply remains constant, adhering to the principle of asset conservation.

• Conservation of Assets: The principle of asset conservation is upheld through this meticulous
verification procedure. By ensuring that each asset withdrawn is matched with an equivalent asset
deposited, the system prevents the creation or destruction of assets in the transfer procedure. This
is crucial for maintaining the balance and value of assets across different blockchain networks.

• Security Implications: The verification procedure ensures asset conservation and enhances the
overall security of the asset transfer mechanism. By requiring proof of withdrawal before a deposit
can be made, the system minimizes the risk of unauthorized or fraudulent transfers.

5 Desirable properties: back to the Interoperability Trilemma

Entangled Rollups represent a novel Layer 2 to Layer 2 interoperability protocol, effectively addressing
the properties listed in the trilemma of cross-chain interoperability in blockchain technology.

Trustlessness: Entangled Rollups possess a trustless nature, a feature inherited from its zkRollup
architecture. It relies solely on a shared sequencer, which we assume to be decentralized. This property
is crucial to ensure that the protocol operates without the need for additional trust in a single authority
or intermediary (bridge), and is fundamental to enhancing the security and integrity of cross-chain
transactions.

Extensibility: In terms of extensibility, the Entangled Rollup Protocol benefits significantly from its
shared sequencer pool. This property allows for scalable and efficient interactions between different Layer
2 platforms. The shared sequencer pool enables a seamless and streamlined procedure for managing and
verifying transactions across multiple chains, thereby facilitating a more connected and interoperable
blockchain ecosystem.

Generalizability: Our architecture is not confined to specific types of transactions or data. Instead,
it offers a far-reaching range of applications:

• Entangled Rollups can to bridge any Ethereum-native token, including ERC20 and ERC721 tokens.

• Entangled Rollups allow compatibility with various blockchain standards and protocols. Whether
it is Ethereum or other newer blockchain platforms, Rollup bridges can effectively facilitate the
transfer of data and assets between these diverse systems.

• Entangled Rollups are capable of processing and transferring a variety of data types, including the
execution of multi-chain smart contracts, the exchange of authentication information, the transfer
of NFTs, among others.

9



To put it differently, ZKM’s Entangled Rollups enable deploying smart contracts in all ecosystems in just
one click. This enables developers to have access to liquidity, to users, and to unique technical features
of the underlying ecosystems without going through the learning curve and costs of deployment on each
of them separately. Moreover, Entangled Rollups can enable smart contracts of the same application
on different ZKM nodes to sync their states with each other in a fast and efficient way, thus offering
possibilities for designing new DeFi protocols.

6 Comparison with related interoperability approaches

Multi-chain rollup proposed by [5] introduce a zkRollup architecture which requires to deploy the con-
tracts on multiple L1 blockchains and L2 networks at the same time, thus is called a multi-chain zkRollup.
In simple terms, a multi-chain rollup deployed on all ecosystems, and these instances of these rollups
should be synced together as the ZK verification part for all instances is only done in a single primary
chain.

Even though this design shares a similar vision with ZKM, the main difference is that zkProof verification
of each ZKM instances are done independently whereas [5] is verifying all zkProofs in a primary chain
and syncing them in an additional step. While this design may introduce optimizations, it introduces
an additional synchronization round which requires two cross-chain messages through a light client
network. The light client network itself should be powered by cross-chain message passing solutions
such as LayerZero or Chainlink, which introduces additional security assumptions and significant delays.

Optimistic cross-chain orders proposed by [3] supports cross-chain trading, allowing users to swap assets
across various blockchains through settlement oracles and cross-chain messaging protocols. The system’s
security largely depends on the architecture of the oracles used: centralized oracles introduce a single
point of failure and reduced security, while decentralized, committee-based oracles enhance security but
may slow down transactions, affecting user experience negatively. It also uses an off-chain Request For
Quote system (RFQ) to set the initial prices for Dutch orders by gathering price quotes from multiple
fillers. This approach could favor the execution of swaps at the lowest quoted price, which might open
up arbitrage opportunities, raising questions about the quoting system’s fairness, potentially favoring
certain participants unfairly.

Compared to our solution, it encounters more pronounced challenges, such as heightened security risks,
longer operational delays, and complications arising from performance issues and arbitrage-related pricing
imbalances. Despite its pioneering method of facilitating cross-chain transactions, the reliance on oracles
and the RFQ system might undermine [3]’s effectiveness and security, making it potentially less robust
and efficient than our solutions.

Aggregation layer proposed by [2] aims to establish a universal state across all chains by employing
recursive ZK proofs, which include proof aggregation, optimistic batch confirmation, and atomic cross-
chain interactions. These batches, which are verified within minutes, are subsequently posted to the
Ethereum blockchain at intervals ranging from 30 to 60 minutes. This infrequent posting schedule
inherently causes delayed cross-chain messaging, leading to significant latency issues.

Optimistic batch confirmation is used as a strategy to alleviate these latency concerns. However, in-
tegrating multiple systems introduces potential for numerous unforeseen complications. For example,

10



partial rollbacks could precipitate system failures; moreover, malicious transactions on blockchains char-
acterized by low gas fees might engender transaction congestion on other blockchains. Consequently,
considering the possibility of blockchain reorganizations (reorgs) subsequent to each proof generation,
coupled with the substantial expense associated with generating these proofs, the security and practi-
cality of such design is questionable.

7 Conclusion

In this paper we presented a novel multi-chain interoperability architecture called Entangled Rollups.
The key idea of Entangled Rollup is the re-utilization of the zkRollup architecture, the foundation for
designing a Layer 2 to Layer 1 interoperability. By applying the same principles to different L1 and L2
one can guarantee that the integrity and security of transactions are maintained across layers and ensure
that data and asset transfers are both secure and verifiable, without the need to introduce an additional
trusted entity (bridge).

We want to emphasize that this first Version 1.0 presents one possible architecture for Entangled Rollups.
We are aware that other, similar scenarios exist and intend to elaborate on them in future versions of
this paper.

References

[1] Plonky2. https://github.com/0xPolygonZero/plonky2.

[2] Polygon aggregation layer. https://docs.polygon.technology/learn/agglayer/.

[3] Uniswapx. https://uniswap.org/whitepaper-uniswapx.pdf.

[4] Wormhole. https://wormhole.com.

[5] zklink - a multi-chain rollup infrastructure based on zero-knowledge technology.
https://zk.link/zkLink-whitepaper.pdf.

[6] Bhuptani a. a new paradigm for crosschain communication.
https://medium.com/connext/optimistic-bridges-fb800dc7b0e0. 2023.

[7] Thomas Chen, Hui Lu, Teeramet Kunpittaya, and Alan Luo. A review of zk-snarks. arXiv preprint
arXiv:2202.06877, 2022.

[8] Rex Fernando and Arnab Roy. Poster: Wip: Account zk-rollups from sumcheck arguments. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
pages 3594–3596, 2023.

[9] Vincent Gramoli, Len Bass, Alan Fekete, and Daniel W Sun. Rollup: Non-disruptive rolling upgrade
with fast consensus-based dynamic reconfigurations. IEEE Transactions on Parallel and Distributed
Systems, 27(9):2711–2724, 2015.

11

https://github.com/0xPolygonZero/plonky2
https://docs.polygon.technology/learn/agglayer/
https://uniswap.org/whitepaper-uniswapx.pdf
https://wormhole.com
https://zk.link/zkLink-whitepaper.pdf
https://medium.com/connext/optimistic-bridges-fb800dc7b0e0


[10] Jens Groth. On the size of pairing-based non-interactive arguments
https://eprint.iacr.org/2016/260.pdf.

[11] Jens Groth. Short non-interactive zero-knowledge proofs. In Advances in Cryptology-ASIACRYPT
2010: 16th International Conference on the Theory and Application of Cryptology and Information
Security, pages 341–358. Springer, 2010.

[12] Logan Kugler. Non-fungible tokens and the future of art. Communications of the ACM, 64(9):19–
20, 2021.

[13] Alexandre Miranda Pinto. An introduction to the use of zk-snarks in blockchains. In Mathemat-
ical Research for Blockchain Economy: 1st International Conference MARBLE, pages 233–249.
Springer, 2020.

[14] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang, Yongzheng Jia, Dan
Boneh, and Dawn Song. zkbridge: Trustless cross-chain bridges made practical. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, pages 3003–3017,
2022.

[15] Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley. Decentralized finance (defi). Journal of
Financial Regulation, 6:172–203, 2020.

A Properties proven in cross-chain transactions

A.1 Properties proven on source Layer 2

Given a Src L2 chainSrcL2, a shadow contract address shadowSrcL2, an asset assetSrcL2, an amount
amountSrcL2 and a list of inputs inputSrcL2, the zkProof zk4 from Page 6 must prove:

1. there exists txSrcL2 such that

it mints and transfers amountSrcL2

of assetSrcL2

with inputSrcL2

to shadowSrcL2

on chainSrcL2;

2. txSrcL2 was included in some Src L2 block blockSrcL2;

3. blockSrcL2 was processed and generated some Src L2 state stateSrcL2.

In proving txSrcL2, ZKM provers must provide the data that characterizes this transaction, namely
amountSrcL2, assetSrcL2 and inputSrcL2. The algorithm that verifies this transaction characterizes
chainSrcL2 and shadowSrcL2, and the public parameters for the zkProof that proves it are already
stored in the rollup contract on Src L1, so there is no need to provide this information. In proving
blockSrcL2 and stateSrcL2, ZKM provers must provide other transactions included in blockSrcL2 as
well as any other data required for the state transition function of that specific zkRollup architecture.

12

https://eprint.iacr.org/2016/260.pdf


A.2 Properties proven on destination Layer 2

Given a Dest L1 chainDestL2, a rollup contract address rollupDestL2, an asset assetDestL2, an amount
amountDestL2 and a possibly empty list of inputs inputDestL2, the zkProof zk6 from Page 7 must prove:

1. there exists txDestL2 such that

it mints and transfers amountDestL2

of assetDestL2

with inputDestL2

to rollupDestL2

on chainDestL2;

2. txDestL2 was included in some Dest L2 block blockDestL2;

3. blockDestL2 was processed and generated some Dest L2 state stateDestL2.

In proving txDestL2, blockDestL2 and stateDest2, ZKM provers must provide the same data described
in Appendix A.1 for txSrcL2, blockSrcL2 and stateSrcL2. However, since zk6 must contain zk4 as an
attachment, it should also include a zkProof to show txDestL2 is equivalent to txSrcL2, meaning:

1. amountSrcL2 of assetSrcL2 corresponds to amountDestL2 of assetDestL2;

2. inputSrcL2 corresponds to inputDestL2, i.e.

inputSrcL2 includes a field ‘destL2’ with an unique identifier for chainDestL2, and

every other field included in inputSrcL2 corresponds to inputDestL2.

In proving txSrcL2 and txDestL2 are equivalent, the correspondence between amounts of assets involved
can be proven in many different way up to rollup designer choices, while the correspondence between
inputs is more straightforward to implement but requires the unique identifier for chainDestL2 to be
agreed by rollup designers of every rollup entangled in the cluster. Optionally, to ensure consensus
about stateSrcL2 was achieve, one could attach to zk6 a zkProof showing the following properties:

1. stateSrcL2 was rolled-up in some Src L1 transaction txSrcL1;

2. txSrcL1 was included in some Src L1 block blockSrcL10 ;

3. blockSrcL10 was processed and generated some Src L1 state stateSrcL10 ;

4. stateSrcL10 achieved consensus, meaning

n Src L1 blocks blockSrcL10 , ..., blockSrcL1n−1 were processed after it and

n Src L1 states stateSrcL10 , ..., stateSrcL1n−1 were generated from them.

In proving stateSrcL2 consensus, ZKM provers must provide the data required for the state transition
function of Src L1 architecture. Since this transition function is respective to Src L1 and not to Src
L2, all L2s implemented over Src L1 can have state consensus verified by the same proof parameters.
Furthermore, since zkMIPS features efficient parallel verification, verifying zk6, zk4, their equivalence
proof together and stateSrcL2 consensus proof takes roughly the resources as verifying zk6 alone.

13


	Introduction
	Motivation: multi-chain interoperability
	Outline of the paper

	Background
	Smart Contracts
	zkRollups
	Implementing zkRollups with zkMIPS

	Cross-chain interoperability
	Interoperability Trilemma of Blockchain Bridges

	Our proposal: Entangled rollups
	Key insight: entangling two rollups
	A step-by-step description

	Informal security analysis
	Desirable properties: back to the Interoperability Trilemma
	Comparison with related interoperability approaches
	Conclusion
	Properties proven in cross-chain transactions
	Properties proven on source Layer 2
	Properties proven on destination Layer 2




