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Neural networks for geophysicists and their application 
to seismic data interpretation

Abstract
There has been a surge of interest in neural networks for the 

interpretation of seismic images over the last few years. Network-
based learning methods can provide fast and accurate automatic 
interpretation, provided that there are many training labels. We 
provide an introduction to the field for geophysicists who are 
familiar with the framework of forward modeling and inversion. 
We explain the similarities and differences between deep networks 
and other geophysical inverse problems and show their utility in 
solving problems such as lithology interpolation between wells, 
horizon tracking, and segmentation of seismic images. The benefits 
of our approach are demonstrated on field data from the Sea of 
Ireland and the North Sea.

Introduction
Deep neural networks (DNNs) have revolutionized computer 

vision, image processing, and image understanding (e.g., Deng 
et al., 2009; Krizhevsky and Hinton, 2009; Ronneberger et al., 
2015; Goodfellow et al., 2016). In particular, deep convolutional 
networks have solved long-standing problems such as image 
classification, segmentation, debluring, denoising, and more. Most 
of the applications are based on supervised learning — we are 
given some data and corresponding interpretation or labels. The 
goal of the network is to empirically find the connection between 
the data and labels.

Seismic interpretation can be viewed as a type of image under-
standing in which the 3D image is the seismic cube, and inter-
pretation of the seismic data (e.g., horizons, faults, etc.) are the 
labeled features that need to be recovered. Using deep convolution 
networks is therefore a straightforward extension of existing 
neural-network technology. It has been studied recently by many 
authors (e.g., Poulton, 2002; Leggett et al., 2003; Lowell and 
Paton, 2018; Waldeland et al., 2018; Wu and Zhang, 2018; Zhao, 
2018; Peters et al., 2019a, 2019b).

However, while it seems straightforward to use such algo-
rithms, there are some fundamental differences between vision-
related applications to seismic processing. First, and maybe most 
importantly, is the amount of labeled or annotated data available. 
While in computer vision, labeled data are easy to obtain, it is 
much more difficult to do so for seismic applications. Second, 
while labeled data are likely to be correct in vision, it is much 
more uncertain in seismic interpretation. For example, when 
viewing an image, it is usually obvious if an object such as a car 
exists within a frame. On the other hand, two geologists may 
argue about the existence or the exact location of a particular fault 
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or a deep horizon. This makes data for the seismic problem biased. 
Third, even for labeled data, in most applications, the data are not 
fully labeled and only small portions have been annotated. Finally, 
while most vision data are 2D, seismic data are typically 3D and 
therefore should be learned in 3D when possible. This makes 
using graphical processing units challenging due to memory 
restrictions, especially when the networks are deep and wide.

In this paper, we review and discuss some recent work that 
we and others have done to tackle some of the challenges when 
attempting to use deep networks for problems that arise from 
seismic interpretation. In particular, we address DNNs from a 
geophysicist’s point of view in terms of network design and opti-
mization. We show that the network can be interpreted as a 
forward problem, while learning can be interpreted as the inverse 
problem. Any geophysicist that is familiar with the process of 
modeling and inversion can understand the process and draw 
from previous experiences.

In the rest of the paper, we give background information about 
deep networks. In particular, we discuss the connection between 
deep networks to differential equations and show that the machine 
learning problem is similar to other well-studied problems in 
geophysics such as full-waveform inversion or electromagnetic 
forward and inverse problems. This should make it easy for any 
geophysicist with such background to understand and contribute 
to the field. We then discuss two different applications that can 
be tackled using this framework. First, we explain how DNNs 
can interpolate lithology, given sparse borehole information and 
seismic data. Next, we show how networks can predict multiple 
horizons including branching horizons. We then summarize the 
paper and discuss and suggest future applications.

Deep neural networks — A geophysicist’s view
Suppose we are given data D and the corresponding label map 

C. If there is a physical basis to obtain C from D, then we should 
use it. For example, assume that D is a velocity model and C is a 
seismic cube. In this case, we can use the wave equation to obtain 
C from D. However, such a physical mapping is unavailable for 
many problems in science and engineering. Since there is no 
physical basis to recover C from D, we turn to an empirical 
relationship. Many empirical models work well for different 
applications. For problems where D and C have spatial interpreta-
tion, DNNs have been successful in capturing the information 
and generating empirical relationships that hold well in practice.

A deep network is a chain of nonlinear transformations of 
the data. In particular, we turn to recent work (He et al., 2016; 
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Haber and Ruthotto, 2017; Chang et al., 2018) that uses residual 
networks that have the form:

Y j +1 = Y j −K j
Tσ K jY j + Bj( ), j = 1,...n  with Y1 = D.       (1)  

Here, Yj is state, Kj is convolution kernel, Bj is bias vector, and σ(.) 
is a nonlinear activation function. Examples of point-wise activa-
tion functions are the sigmoid, hyperbolic tangent, or ReLU 
function: ReLU K jYj +Bj( ) = max 0,K jYj +Bj( ) . It is crucial that 
the activation functions are nonlinear, otherwise the entire network 
would simplify to a linear operator. In this work, we use the ReLU 
function, which sets all negative values in its input to zero. This 
is equivalent to projection onto the space of positive numbers — a 
halfspace. We thus see that every network state Y depends on the 
previous network state and a nonlinearly transformed version of 
the convolved and shifted previous network state.

Given the network (equation 1), we push the data forward 
through n layers to obtain Yn. Given Yn, it is possible to predict 
the label C by simply multiplying Yn by a matrix W:

C =WYn .                                     (2)

Let us review the process from a geophysicist’s point of view 
and show that it is equivalent to many other forward problems in 
geophysics. To this end, the deep network (equation 1) can be 
viewed as a discretization of a physical process (e.g., the wave or 
Maxwell’s equations). From this point of view, Yj is the field (e.g., 
acoustic or electromagnetic), and Kj and Bj are model parameters 
such as seismic velocity or electric conductivity. Just like in any 
other field, when considering the forward problem, we assume that 
we know the model parameters, and therefore we can predict the 
fields Y. The classification process in equation 2 can be interpreted 
as projecting the fields to measure some of their properties. A similar 
process in geophysics is when W is a projection matrix that measures 
the field at some locations, that is, in receiver positions.

It is important to stress that the network presented in 
equation 1 is just one architecture that we can use. For problems 
of semantic segmentation, it has been shown that coupling a few 
of these networks, each on a different resolution, gives much 
better results than using a single resolution. The idea behind such 
networks is plotted in Figure 1. We refer the reader to Ronneberger 
et al. (2015) for more detail on efficient network architectures 
that deal with data with multiple scales.

In general, the model parameters Kj and Bj are unknown in 
practice and need to be calibrated from the data. This process is 
similar to finding the seismic velocity model or electric conductivity 
from some measured geophysical data. To this end, we assume 

that we have some observed labels Cobs. The learning problem can 
be framed as a parameter estimation problem or an inverse problem, 
where we fit the observed labels by minimizing an objective 
function, for example the ℓ1-norm that we use for the horizon 
prediction example later in this work:

min
θ
!C θ( )−Cobs ! 1 +αR θ( ) .                       (3)

Here, we introduce the cumulation of model parameters 
θ = K1,…K n ,B1,…Bn{ }  and a regularization term R θ( ). Most 
literature assumes that R θ( ) is a simple Tikhonov regularization 
or, in the language of deep learning, weight decay:

R θ( ) = 12 ! K j !F
2 + ! Bj !

2

j
∑ .                      (4) 

As we will show next, such basic regularization may not be suf-
ficient for problems that arise from seismic applications, and we 
review other more appropriate regularization for the problems 
presented here.

Depending on the applications, we may also require a different 
objective function than the ℓ1 objective (equation 3). For the 
lithology interpolation example presented later, which is classifica-
tion based, we use the multiclass cross-entropy loss. We note that 
different objective functions have very similar structure in terms 
of input, output, what parameters we learn, and how we 
can regularize.

While we have emphasized similarities between the training 
problem and other geophysical problems, at this point, it is 
worthwhile pointing out two fundamental differences between 
deep learning and geophysical inverse problems. First, and most 
important, in geophysics we are interested in the model θ. Such 
a model generally has some physical attributes that we are 
interested in. The model typically represents velocity, conductiv-
ity, porosity, or other physical properties. In machine learning, 
on the other hand, the model parameters do not have an obvious 
physical meaning (that we know of), and therefore it is hard to 
know what is a “reasonable” model. Second, optimizing the 
objective function in equation 3 is typically done using stochastic 
gradient descent (Bottou and Bousquet, 2008), whereas quasi-
Newton and Gauss-Newton methods are more common in 
seismic and electromagnetic nonlinear geophysical inverse 
problems. In the following sections, we show how we use the 
setting discussed earlier to solve a number of practical problems 
that arise in seismic interpretation.

Applications to seismic interpretation
In this section, we discuss the application of deep networks 

to two seismic applications. All applications share the same forward 
propagation process, and the main difference is the way we set 
up the loss function (misfit) and regularization. We find it rather 
remarkable that similar network architectures work for such 
different problems. This emphasizes the strength of deep learning 
applied to seismic interpretation.

Figure 1. A number of resnets with scales h (original image), 2h (coarse image), 
and 4h. The networks are coupled by restriction and prolongation and are used to 
deal with data at different resolutions.
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One common feature that most geophysical problems share 
is that the labels Cobs are not present for the whole seismic image. 
For example, it is common to have part of the image labeled but 
not all of it. Another example is that we know only part of a 
horizon. This is in stark contrast to most computer vision problems 
where the images are fully labeled. This difference results from 
the technical difficulty and expertise that is needed to label seismic 
data. While most nonspecialists can identify a car in an image, 
an expert may be needed to classify a seismic unit. However, we 
note that most applications in geophysics share this type of sparse 
measurement. For example, we never have a fully observed wave-
field when considering the full-waveform inversion, and the misfit 
is calculated only on the observable point (where we record the 
data). We therefore modify common loss functions in DNN 
training to return the misfit only from the locations where the 
image is labeled.

Interpolation of lithology between wells using seismic data
Consider some boreholes, and assume that geologic lithology 

is observed within the boreholes. Our goal is to use lithology 
information from the wells to interpret the seismic image 
(Figure 2a).

Specifically, we illustrate the benefits of being able to train 
on sparse labels (such as in Figure 2c) and predict fully annotated 
images (Figure 2b).

When minimizing the loss (equation 3) discussed earlier, 
artifacts typically appear in the prediction. These artifacts are a 
result of the lack of labels everywhere. To overcome this problem, 
we propose to add new regularization terms to the loss. This 
regularization penalizes unwanted oscillations in the 
prediction maps.

Note that the true label images we hope to predict are blocky 
(Figure 2b). Such an end result is obtained as follows. If we seek 
to classify our seismic image into, for example, six geologic units, 
the network output consists of six images (see Figure 3a for an 
example of the predicted probability for one class). Each of the 
six output images conveys the probability of that particular class 
being present at each pixel. The sum over all six output probability 
images for each pixel is 1. This implies that the underlying 
probability of each lithological unit should be smooth. The 
probability of a particular class changes smoothly from low to 
high across the interface if the network is well trained. When 
there are not many labeled pixels available, for example, only in 
a few boreholes, the predicted probabilities are often highly 
oscillatory and result in erratic classifications that do not look 
geologically plausible.

We propose to mitigate a lack of labels everywhere by using 
the prior knowledge that the prediction per class should be smooth. 
This type of prior information fits in the neural-network training 
process as a penalty function on the output of the network. To 
this end, consider solving an optimization problem of the form:

L C θ( ),C obs( ) = ℓ C θ( ),C obs( ) +αR Yn θ( )( ) .       (5) 

We minimize the multiclass cross-entropy ℓ1 plus a regularization 
term. The regularization R .( )  is chosen as

Figure 2. (a) A slice from a 3D seismic model. This is an example of an input for 
the network. (b) A fully annotated label image where each color indicates a rock/
lithology type of interest. We do not use full labels as the target for our networks 
because they are time consuming to generate. (c) An example of a type of label 
that we use in our examples. The information corresponds to the lithological units 
derived from logs in two wells. The white space is not used to measure the misfit 
or compute a gradient; it is unknown information not used for training the network.

Figure 3. (a) Prediction for a single class and (b) maximum predicted class 
probability per pixel. Both are the result of training including regularization on the 
network output. 
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R C( ) = 12 !∇hYn θ( ) !2 ,                         (6) 

where ∇h is a discrete gradient matrix (Haber, 2014) that can be 
implemented using convolutions with kernels of ±1. This means 
we apply quadratic smoothing regularization to the last network 
state (i.e., the output probability maps). This is different from 
standard Tikhonov regularization in geophysical inverse problems 
or weight-decay regularization on the convolutional kernels in 
neural networks. In the current case, the regularization applies 
to state that represents an image that we know should be smooth. 
Tikhonov and weight-decay regularization apply to the model 
parameters. We thus see that the concepts that apply to model 
parameters in geophysical inversion are analogous to the network 
state in network-based image interpretation.

Note that regularization always applies to the full network 
output. The output is a full image regardless of sparse sampling 
of data and/or labels. We can still subsample to introduce ran-
domization or for computational reasons.

To apply the objective and regularization tools presented so 
far, we train a network using the loss function defined in equation 5 
with quadratic smoothing regularization (equation 6) applied to 
the network output. The prediction in Figure 3a is smooth, and 
the maximum predicted class probability per pixel in Figure 3b 
is a good approximation to the true map as verified by Figure 4. 
Without regularization, the prediction contains many 
oscillatory artifacts.

Horizon tracking by interpolation of scattered picks
Our second application is tracking a horizon from a small 

number of horizon picks (seed points) in a few large seismic images. 
Horizon tracking using neural networks has seen a few time 
periods of varying activity (Liu et al., 1989; Harrigan et al., 1992; 
Kusuma and Fish, 1993; Veezhinathan et al., 1993; Alberts et al., 
2000; Huang et al., 2005). Algorithms that are not based on 
learning have also made progress (see Wu and Fomel [2018] for 
recent work that combines and extends multiple concepts on 
deterministic horizon tracking).

It was shown previously (Peters et al., 2019a) that it is possible 
to track a single horizon using U-net-based networks and loss 
functions that compute losses and gradients based on the sparse 
labels only. Therefore, there was no need to work in small patches 
around labeled points or manually generate fully annotated label 
images. Here, we answer two follow-up questions. (1) Can we 

Figure 4. The predicted segmentation from Figure 3b (using network output 
regularization) overlaid on the seismic input data. 

Figure 5. (a) One of the data images. (b) A label image. About 10 columns per image 
are known; the network never uses the white space. The labels are the convolutions 
of a Gaussian kernel with the horizon picks. (c) Network output with training and 
testing picks. (d) Color-coded network horizon prediction on top of the data.
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train a network to track more than one horizon simultaneously? 
(2) How do networks deal with multiple horizons that merge and 
split? These two questions warrant a new look at the automatic 
horizon tracking/interpolation problem because results with 
merging horizons are rarely published. Especially since there is 
a renewed surge of interest in using neural networks for seismic 
interpretation, we need to test the promise of networks against 
the more challenging situation posed in these two questions.

We demonstrate our method using a 3D seismic data set from 
the North Sea. One of the 100 slices is shown in Figure 5a. An 
industrial partner provided us the horizon x-y-z locations, picked 
by seismic interpreters because their auto-tracking algorithms had 
difficulty tracking the deeper horizons. We create a label image by 
convolving the horizon picks (seed points) with a Gaussian kernel 
in the vertical direction. This procedure adds a sense of uncertainty 
to the pick. We use approximately 10 locations per slice for training, 
as shown in Figure 5b. Only the colored columns are used to train 
the network; in the white space, it is unknown if and where the 
horizon is. The loss function only uses information in the known 
label columns. We see that there are two horizons of interest that 
merge near the right side of the figure and also get close to each 
other at the left end. We train a single network to predict both 
horizons simultaneously using the nonlinear regression and opti-
mization approach detailed in Peters et al. (2019a). The network 
design is as described earlier in this work.

Figure 5c displays the network output, which ideally is the 
true horizon everywhere convolved with the Gaussian kernel that 
we used to generate training label images. The training and 
evaluation picks are plotted on top and validate that the network 
is able to predict both horizons accurately including the point 
where they merge. In Figure 5d, we show the network output 
prediction plotted on top of the seismic data to provide some more 
insight. The color coding corresponds to the grayscale intensity 
of the previous figure. The colors and vertical spread indicate how 
“sure” the network thinks it is about the prediction.

From the results, we conclude that we can train a single 
network to simultaneously predict the location of multiple horizons 
that merge and branch. The symmetric convolutional U-net variant, 
with the same network architecture as in the previous example, 
trained by a partial loss function on a small number of known 
horizon x-y-z locations, achieves excellent results. Data augmenta-
tion and regularization, as described earlier, can reduce the number 
of required training x-y-z picks.

Conclusions
In this paper, we introduced DNNs from an inverse problem 

point of view. We have shown that the network can be considered 
as the forward problem and the training as the inverse problem. 
We have explored the connection between deep networks to other 
geophysical inverse problems. We believe that approaching the 
learning problem in this way allows us to better understand the 
role of data fitting, regularization, the stability of the network 
itself, the propagation of noise within the network, and the 
associated uncertainties — all topics that have received ample 
treatment in geophysical inverse problems.

We demonstrated the capability of deep networks to deal with 
problems that arise from seismic interpretation. In our experience, 
neural networks can do exceptionally well for such problems, 
given some thought about appropriate regularization and loss or 
misfit functions. The similarities and differences between the 
neural networks and geophysical inverse problems, sometimes 
subtle, should offer a bridge to better understand the potential 
and success of neural networks for geophysical interpretation.

When solving a particular problem, it is important to realize 
that geophysical problems are very different from common vision 
problems. The availability of accurate training data is key to 
training the network, and this can be difficult to obtain in many 
applications. Another important aspect is the size of the data. 
While vision problems are typically 2D, many geophysical prob-
lems are 3D. We believe that new algorithms should be developed 
to deal with the size of geophysical images as well as with the 
uncertainty that is an inherent part of geophysical processing. 

Data and materials availability
Data associated with this research are confidential and cannot 

be released.
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