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INTRODUCTION 

 
Electromagnetic logging-while-drilling (LWD) data uses an 
array of multiple transmitter and receiver coils placed behind 
the drill bit to collect information about the electrical 
properties of the drilling environment (Sviridov et al., 2014; 
Dupuis and Denichou, 2015; Wu et al., 2018). This 
information is routinely inverted in one or two dimensions to 
recover a picture of the resistivity distribution around the 
borehole and to simplify the interpretation process (Abubakar 
et al., 2008, Bakr et al., 2017, Thiel and Omeragic, 2018). 
These lower-dimensional tools can provide excellent results 
when changes in the earth’s resistivity are also limited to one 
or two dimensions. However, these approaches can fail 
significantly when applied in the presence of 3D structures. 
 
Modeling and inverting the data that are generated by these 
tools presents several challenges. First, one must be able to 
model the data, that is, solve Maxwell’s equations in a 3D 
inhomogeneous medium to simulate the response and 
sensitivities of the tool. Second, the data must be inverted in 
such a way as to produce a geologically meaningful model. If 
these inversions are performed with the goal of guiding the 
drilling process, the inversion results must be computed 

quickly. Ideally, the inversions should complete at the same 
rate at which new data are being acquired by the system. 
Finally, to make these completion times possible, new data 
must be injected into the inversion in an intelligent fashion to 
optimally use the previously completed computations. 
 
In this work, we describe our approach to overcoming each of 
these challenges. The methodology is then applied to a simple 
synthetic example to demonstrate its viability. Finally, a case 
study for tri-lateral well placement in a mature reservoir in the 
Norwegian Continental shelf is presented. 

 
METHODOLOGY 

 
In this section, we discuss the methods applied in the solution 
of the forward and inverse problems. 
 
Forward Modeling Methodology 
 
The LWD and induction logging problem involves imaging a 
narrow and long volume within the earth. An efficient 
discretization uses small cells in the vicinity of the borehole 
and larger cells further away. We use octree meshes that have 
been successfully applied for other adaptive electromagnetic 
inversions (Haber and Schwarzbach, 2014). Using this style of 
mesh provides several benefits over fully unstructured meshes. 
In particular, unlike a fully unstructured mesh, the 
interpolation of models and fields from one octree to another 
is a trivial operation. 
 
The quasi-static approximation of Maxwell’s equations is 
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where E and B are the electric field and magnetic flux 
respectively, - = -3 is the magnetic permeability and is 
assumed to be constant, ω is the angular frequency, σ is the 
conductivity, and s is the source. The electrical resistivity is 
the inverse of conductivity, 4 = /

5
. Boundary conditions are 

applied to the tangential components of the electric 
conductivity or its curl. The indices j = 1, . . ., nw and k = 1, . . ., 
ns imply that we have nw frequencies and ns sources to 
describe the complete forward problem. In the forward 
problem, we assume that σ is known and aim to solve for E 
and B for all sources and frequencies. A typical survey can 
contain tens of frequencies and (depending on borehole 
length) a few hundred or even thousands of source locations. 
Considering all frequencies and sources, this can amount to 
having to solve hundreds, if not thousands, of discrete 
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Maxwell’s equations to simulate the complete data set. Using 
one mesh that contains the complete borehole would be too 
computationally expensive to be practical. Thus, we decouple 
the forward meshes from the inverse mesh and one another, 
and discretize every frequency and location on its own mesh. 
Figure 1 provides an example of such a mesh. In this example, 
more than 500,000 cells describe the full-length of the 
borehole, but only 30,000 cells for the discretization of the 
forward problem with a single transmit location. 
 

 
 
Figure 1. Cross-section of the octree mesh discretizes the 
conductivity around a borehole (a) The global mesh holds 
the entire inversion model (b). A local mesh is refined only 
in the area of a single measurement location. 
 
The discrete analogue of Maxwell’s equations on the 
staggered forward meshes is 

	
67%*89%*(-./)7%* + '(%9%*(<*0)=>%* = −'(%1* 

 
Here, C is the discretization of the curl operator, 9%*(-./)	is a 
face mass matrix for the permeability, 9%*(<*0)	is an edge 
mass matrix for the conductivity, and u is the discrete electric 
field. The matrix <* projects the fine scale conductivity onto 
the coarse forward mesh, and the j and j indices imply that 
each mesh has its own operators. 
 
Because the individual linear systems are independent of one 
another, they can be solved using a direct solver in parallel, 
which, for the smaller meshes requires only a few seconds 
(depending on the computational architecture) on individual 
processors. Using modest computational hardware, with 40 
cores, we can solve the complete forward problem for all 
sources and frequencies in a few seconds. This is crucial for 
obtaining real-time solutions for LWD data. 
 
Inverse Modeling Methodology 
 
To perform the 3D inversion, we minimize a combination of 
data misfits and regularization 
 

min
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Here, m = log(σ) is the log-conductivity, Qjk is a matrix that 
projects the curl of E to the measuring location and 
orientation, djk is the data that is measured for the jth 
frequency and kth source, K$% is the inverse covariance matrix 
for the data, and R(m) is the regularization with a trade-off 
parameter a. The regularization is designed to encourage 
smooth results close to a pre-defined reference model. It is 
expressed as  

J(@) = ILB@ −@MNOB
H
+ BP(Q, S)T(@ −@MNO)B

H 
 
Here, G is a finite difference matrix that represents the 
gradient, mref is a reference model that contains the best guess 
for the conductivity, and S(θ,φ) is a rotation matrix. If the 
media under consideration is layered and the layers coincide 
with the direction of the mesh, then S = I. Otherwise, if we 
have a priori knowledge of the media’s orientation, then we 
choose S such that smoothness is used in the direction of the 
layers. 
 
The optimization problem is solved using a Gauss-Newton 
method to take advantage of matrix-vector products; 
sensitivities are thus never computed explicitly. Because direct 
methods are used for the solution of the forward problem, the 
factorizations of the forward matrices can be stored, and the 
sensitivity calculation is completed in seconds using parallel 
computations. Thus, a single Gauss-Newton step requires a 
few seconds, and the 3D inversion is complete in a matter of 
minutes.  
 
Real-Time Inversion 
 
One of the unique attributes of the LWD imaging problem is 
that data are meant to be inverted in real time, beginning with 
very little data. The model is slowly built up as new data 
become available. Continually updating a model as data are 
added is a classical control and data-assimilation problem. 
Here, we use an extension of non-linear Kalman filtering, 
which is a common approach from the weather-prediction 
field. Assume we have data for p sources and frequencies and 
have solved the optimization problem to obtain a model mp. 
Consider now adding new data and recovering the next model 
m p+1. An efficient way to consider the previously collected 
data is to modify the regularization, as discussed in Fohring 
and Haber (2016), so that 
 

J(@) = ILB@ −@UB
H
+ BPVQ, S,@UWT(@ −@U)B

H 
 
The reference model in the regularization is replaced with the 
model obtained in the last inversion. Note that we are also able 
to add new orientation information based on previous models.  

 
SYNTHETIC EXAMPLE 

 
In this section, the technique is demonstrated on a synthetic 
example of a simple 3D reservoir model that includes varying 
dips, strikes, faults, and folding, and includes resistivities 
ranging from 1 to 50 Wm. Figure 2 shows the true model, with 
the simulated well path shown by the dashed white line. The 
layers are flat-lying in the north-south direction at x = 1600 m, 
but the dip gradually increases to 30° to the north (into the 
page) at x = 1800 m and then slowly changes to 30° to the 
south (out of the page) at x = 2200 m. 
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Figure 2. Vertical cross-section of the synthetic resistivity 
model. The simulated well path is shown by the dashed 
white line. 
 
LWD data were simulated for three transmitter-receiver 
spacings (25, 50, and 100 ft) at five frequencies ranging from 
1 to 16 kHz, with logging depths approximately every 3 m 
(approximately 10 ft) along the deviated well trajectory. 
Gaussian noise with a standard deviation of 5% of the 
channels value plus 10-8 V/A was added to the simulated 
response. During inversion, data from 15 logging depths were 
inverted at a time. The global mesh was discretized with a 
total of 576,550 cells. The local modeling meshes were 
discretized as 0.5 m cubes in the proximity of the transmitters 
and receivers, and the cell size increased with distance from 
the wellbore. The global model was initiated with a 
homogeneous, 10-Wm whole-space. No additional a priori 
information was included in the model objective function.  
 
Figure 3 presents slices taken from the inversion result parallel 
to the direction of drilling at three different stages of logging. 
In this case, visualization of the inversion model is clipped to 
50 ft radius around the wellbore. The evolution of the 
inversion model can be easily observed, with recovery of the 
formation resistivity and structure improving as additional 
data are acquired. Figure 4 shows slices taken from the 
resulting model at the same three points perpendicular to the 
direction of drilling. The dashed black lines indicate the true 
location and dip of the layer boundaries at these three 
locations. The inversion provides excellent recovery of the 
true model. 
 

 
Figure 3. Slices of the inversion result taken at three points 
during the inversion. The location of the leading 
transmitter is shown with the dotted black line. 
 
In terms of computational performance, the inversion was run 
on a single cluster node with 24 cores and 512 GB of memory. 
The inversion required 13.9 hours to run, with an average 
inversion runtime of 226 seconds per logging depth. Even 
with the increased model complexity, this is still well within 

the expectation of 300 seconds (5 minutes) for additional data 
of this type of sensor. 
 

 
Figure 4. Slices of the inversion result taken perpendicular 
to the direction of drilling at the same three locations 
shown in Figure 3. The dashed black lines show the true 
location and dip of the layer boundaries. 

 
CASE STUDY 

 
The ultra-deep electromagnetic LWD data for three branches 
of a multi-lateral well drilled on the Norwegian Continental 
Shelf were inverted using the 3D inversion process. Real-time 
1D inversions were analyzed to assist in the well placement 
operation; however, it was clear that, although this was 
sufficient to assist in well placement in terms of corrections to 
inclination, there was the potential for significant changes in 
the geology to the sides of the wellbore that could not be 
assessed using the 1D inversion alone. In addition, where a 1D 
inversion is used to represent a 3D geological structure, the 
changes in resistivity to the sides of the wellbore can affect the 
1D inversion itself, resulting in a distortion of the represented 
geology. 
 
The target for these wells was a complex turbidite reservoir 
consisting of heterolithic sands resulting from the depositional 
environment and the potential for complex fluid contacts. In 
this subsurface environment, the potential existed for 
significant changes in resistivity to the sides of the borehole 
that would not be accounted for in a 1D inversion. 
 
Ultra-deep azimuthal resistivity images available from the tool 
run in this reservoir enabled changes in resistivity a significant 
distance to the sides of the borehole to be assessed and 
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changes in resistivity tracked (Clegg et al., 2018). This 
enabled a simplified assessment of the distribution of fluids 
and formations to the sides of the borehole (Figure 5). 
Although this is a simplified picture, it enables an independent 
assessment of the 3D inversion results. 
 

 
Figure 5. 2 and 8 kHz azimuthal resistivity images and 1D 
inversion canvas for the main bore of the tri-lateral well. 
 
If changes in resistivity were simply above and below the tool, 
as represented in the 1D inversion, then the azimuthal 
resistivity images would be symmetrical. However, it is clear 
that many of the changes in resistivity occur to the sides of the 
well, as demonstrated by the non-symmetrical nature of the 
images.  
 
An inversion perpendicular to the well would capture some of 
these lateral changes, but is still a simplification of what is a 
complex 3D structure. A 3D inversion is required to 
accurately represent this complex geology (Figure 6).  
 

 
Figure 6. 3D inversion results for all three laterals. The 
channel that has resulted in significant erosion of the 
reservoir has been interpreted from the ultra-deep 
electromagnetic data. 
 
The complex nature of the turbidite deposits is clear from the 
1D inversions; however, it is the 3D results that provide a 
deeper understanding of the reservoir. In the initial parts of the 
three lateral wells, the data show that, in many places, the 
resistivity is offset to the sides of the well path (Figure 7). This 
is also evident in the azimuthal resistivity images. 
 
In the latter parts of the well, the 3D inversion results reveal a 
complex reservoir morphology, suggesting channel or possibly 
injectite structures (Figure 8). 
 
The 1D inversion and azimuthal resistivity images show a 
simplification of what is a very complex geology. The 3D 
inversion results provide a much clearer picture.  
 
In real-time well placement operations, the 3D inversion will 
enable improved geosteering that takes into account both 

lateral changes and changes above and below the wellbore. 
 

Figure 7. Top: azimuthal resistivity image, showing high 
resistivity to the left of the well; middle: 1D inversion 
canvas; and bottom: 3D inversion results, which also show 
high resistivity distributed to the left of the wellbore. 
 

Figure 8. Channel-like structures toward the toe of the 
main bore. Top: 8 kHz azimuthal resistivity image; 
bottom: top-down and side views of the 3D inversion 
results.  
 

CONCLUSIONS 
 
In this work, we have developed a method for real-time 
inversion of LWD data that uses a mesh decoupling approach 
to reduce the cost of the forward and inverse computations. In 
addition, we have used new data assimilation algorithms to aid 
in further computational reductions as new data are recorded. 
A simple experiment shows that such data can be successfully 
inverted in real time, even on modest computational hardware.  
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