
A novel likelihood-based model to estimate 
SARS-CoV-2 viral titer from next-generation 
sequencing (NGS) data

ABSTRACT
Objectives The quantitative level of a pathogen present in a host is a major driver of infectious disease 
(ID) state and outcome. However, the majority of ID diagnostics are qualitative. Next-generation 
sequencing (NGS) is an emerging ID diagnostics and research tool that can be used to provide insights such 
as tracking transmission and identifying novel strains. 

Methods We built a novel likelihood-based computational method that uses NGS data generated by 
hybrid capture (Twist Bioscience) to quantify viral titer. We used de-identified clinical specimens tested for 
SARS-CoV-2 using qRT-PCR and SARS-CoV-2 hybrid capture (Twist Bioscience). A subset of samples were 
also tested using the ARTIC platform. Given the proportion of the genome covered at varying depths for a 
single sample as input data, our model estimated the Ct of that sample as the value that produces the 
maximum likelihood of generating the observed hybrid capture NGS genome coverage data.

Findings The model fit on 119 training samples produced a good fit to the 28 testing samples, with a 
coefficient of correlation (r2) of 0.8. The accuracy of the model was high (mean absolute percent error of 
~10.5%), meaning our model is able to predict the Ct value of each sample within a margin of ±10.5% 
on average. Because of the nature of the commonly used ARTIC protocol, we found that all quantitative 
signals in this data were lost during PCR amplification and the model is not applicable for quantification of 
samples captured this way. The ability to model quantification is a major advantage of the hybrid capture 
protocol over ARTIC and other PCR-amplification protocols.

Conclusion To our knowledge, this is the first model to incorporate sequence data mapped across the 
genome of a pathogen to quantify the level of that pathogen in a clinical specimen. This has implications in 
ID diagnostics, research, and metagenomics.
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LIMITATIONS AND FUTURE WORK
Next step will be to increase the number of samples we are using for training and testing our model. Future 
studies are needed to collect clinical metadata in relation to the viral titer that enable monitoring of disease 
outcome, therapeutic and vaccine responses.

CONCLUSIONS
In this study we present a novel method to estimate viral titer of SARS-CoV-2 using NGS data 
incorporating coverage across the viral genome. We built a robust model using a likelihood approach, 
and we were able to calculate 95% confidence intervals for our Ct value estimates, which we found 
capture 100% of our laboratory test sample Cts. To our knowledge, this is the first quantitative model for 
SARS-CoV-2 NGS data. This new approach allows for simultaneous detection of genetic variants and viral 
quantification in one single assay.  

There are only a handful of studies that have used NGS data to quantify pathogens. These studies have 
focused on quantifying human immunodeficiency virus (HIV) and human papillomavirus (HPV), and been 
limited to correlating the number of viral sequence reads to viral titer (PCR cycle threshold or Ct value). 
This approach can only approximate viral titer with wide confidence intervals and is undermined when 
read duplication during PCR amplification results in uneven genome coverage.

ALGORITHM

STUDY DESIGN
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Sample collection and extraction De-identified nasopharyngeal (NP) specimens were collected and 
processed under the IRB numbered Pro00042824 (Advarra). RNA from NP specimens were isolated and 
purified by manual extraction using Direct-zol DNA/RNA MiniPrep kit (250µl input volume, Zymo 
Research, Irvine, CA). 
qPCR RT-qPCR was performed using four different SARS-CoV-2 assays, CDC  SARS-CoV-2 Assay (N1, 
N2 target), Roche Cobas SARS-CoV-2 Assay (Orf1ab and E gene), GenArraytion COVID-19 Real-Time 
Assay and BGI RT-PCR kit.
SARS-CoV-2 NGS Assay Extracted and purified RNA samples were converted to cDNA TruSeq 
compatible libraries using Twist Library preparation kit, and libraries were pooled in 8-plex 
hybridization reactions for enrichment with the SARS-CoV-2 research panel.

ARTIC SARS-CoV-2 NGS Assay A subset of RNA samples were processed with an amplicon based 
approach using the NEBNext® ARTIC SARS-CoV-2 FS Library Prep Kit (Illumina®) workflow.

Sequencing All enriched library pools were spiked with 1% PhiX and sequenced on an Illumina NextSeq 
550 platform using a NextSeq 500/550 High Output kit (Illumina, San Diego, CA) set to 150bp 
single-end reads.

COVID-DX The COVID-DX Pipeline included removal of low-quality reads, alignment to SARS-CoV-2 and 
off-target human and microbial genomes, extraction of mapped reads, modeling of coverage using a 
sliding window to determine presence/absence of the SARS-CoV-2 virus, genetic variant calling, viral 
clade estimation, and phylogenetic tree generation. COVID-DX combined Cromwell, WDL, Docker, and 
GATK Best Practices on the Microsoft Azure cloud. 
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Model fitting We fit deterministic sigmoidal functions to percent genome coverage at varying levels of depth using formula 
[Equation 1] where aj is the exponential rate of increase at depth j, bj is the inflection point of the function at depth j, yi,j is the 
coverage of sample i at depth j, xi is the Ct value of sample i, and the carrying capacity of the sigmoidal function is one. The 
sigmoidal function is subtracted from one to model Ct value, which has an inverse logarithmic relationship with viral titer. We 
also implemented a Gaussian-shape to the standard deviation of the error profile to this function, such that variation would be 
highest at the inflection point and lowest at the tails of the sigmoidal function, using formula [Equation 2], where bj is the 
inflection point of the sigmoidal function at depth j, x* is the Ct value, sj is the standard deviation of the Gaussian curve at 
depth j, and sj is the standard deviation of the normally-distributed error profile around the value x* at depth j. The 
deterministic sigmoidal function was first fit to the data using nonlinear least-squares and the “port” algorithm in R. To minimize 
the effect of outliers, a random sampling consensus (RANSAC) algorithm was implemented; further, only coverage values in the 
range (0.0001, 0.9999) were used such that the algorithm would fit to the points in the middle of the sigmoidal curve and not 
at the asymptotes. Finally, a normally distributed error profile with Gaussian-shaped standard deviation was fit using maximum 
likelihood estimation (MLE). The likelihood equation [Equation 3] was maximized using the “Brent” method in R with the value of 
s constrained with boundaries (1,10) to avoid incorrectly inflated error profiles and flattened sigmoidal curves. Separate 
functions were fit to coverage values at varying levels of read depth j to adequately capture differentiation at both high and 
low Ct values.

IMPLEMENTATION
Model selection Our training set consisted of 80% randomly selected samples 
from our full data set (n=119). In order to perform the cross-validation and 
depth selection, we first fit our model (Equations 1-3) to every depth value 
between 1 and 150,000 one at a time to five subtraining sets selected using 
random subsampling (a further 80% split to the training data, n=95). This 
resulted in r2 values for each depth from 1 to 150,000 for each of the five 
cross-validations. Of these, we performed our two selection methods: mRMR 
filtering and logarithmic interval selection. Each selection method was 
performed to select between 3 and 20 depth values to use in the final model 
for testing. This resulted in the comparison of a total of 36 models (Figure 1) 
five separate times. The selected depths for each of the 36 models were those 
that were included in the likelihood estimator of Ct values (Equations 4-6) used 
on each of the five validation sets. To evaluate each model, we calculated the 
r2 value and the MAPE of the Ct estimates of the validation sets (the remaining 
20% in each cross) compared to the laboratory-measured Ct values. Models 
were ranked according to r2 and MAPE values and the model with the best 
rank sum was chosen as the best model. Our final model was the one that used 
the logarithmic interval selection method to select 19 depths, which resulted in 
an average r2 value of 0.625 and MAPE of 11.88% across the five validation 
sets. The final model included depth set [2, 4, 8, 15, 18, 41, 87, 119, 275, 
364, 665, 1962, 2189, 4788, 10193, 13292, 31542, 81041, 82391].

Training The entire training set (n=119) was fit to these depths using Equations 
1-3. 

Testing The random sample of 20% of our sequenced samples that were 
initially withheld as a final independent testing set (n=29) was then tested on 
this model using Equations 4-6. Samples with laboratory-measured Ct values 
less than the minimum Ct value or greater than the maximum Ct value within 
the training set (<13.19 and >39.40) were excluded (n=1). Our final model 
resulted in a r2 value of 0.80 and a MAPE of 10.5%. 
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Estimation of Ct values To compile all of the coverage models at different levels of read depth into a single estimator of Ct, we again used a likelihood-based method. Given the parameters 
estimated for the sigmoidal function and error profile during model fitting, we calculated the likelihood that a particular Ct value would generate the set of observed coverage values for a 
sample at the levels of read depth chosen for the models. For each depth model, this was calculated by estimating the probability pj* of generating the observed value of coverage at depth j, 
yi,j, for any value Ct* according to the distribution yi,j ~ Normal(y*, s(x*)), with the standard deviation of the normally distributed error calculated at x*, [Equation 4]. Finally, the negative 
log-likelihood (NLL*) was calculated by finding the negative log-product of all pj* for all depth levels {j1, … jn}, [ Equation 5]. To find the value Ctest with the highest likelihood of generating 
the observed data Yi, this function was minimized using the optimize function in R. Again, only values in the range (0.0001, 0.9999) were included to minimize the effect of asymptotic values on 
the estimate. Confidence intervals were estimated by finding the Ct values to the left and the right of Ctest such that a likelihood ratio test (LRT) compared to Ctest was significant with p £ 0.05, 
such that [Equation 6]. This value was estimated using the uniroot function in R.

Given the proportion of the genome 
covered at varying depths for a 
single sample as input data, our 
model estimates the Ct of that 
sample as the value which produces 
the maximum likelihood of 
generating the observed genome 
coverage data. We propose that 
such an algorithm in combination 
with genome variant identification 
will have important implications for 
cohorting clinical patients, monitoring 
disease and response to therapy, 
and supporting critical studies of 
vaccine and therapeutic efficacy 
against numerous SARS-CoV-2 
variants. 

Above: Results of the final model fit to the testing data. Each point is shown with lines representing 95% 
confidence intervals. The dotted line is the 1:1 line. The laboratory-measured Ct (“true” Ct) is shown on the 
x-axis and the Ct value estimated by the model is shown on the y-axis. The final model resulted in an R2 
value of 0.80 and a MAPE of 10.5%.


