
Stress & Strain Monitoring

Typical applications include:

- Structural Monitoring
- Bridge Monitoring
- Dam Monitoring
- Pipeline Stress Analysis
- Excavation Propping Monitoring
- Component Stress Analysis
- Material Stress Analysis

Commonly used instrumentation detailed below:

- Foil Strain Gauge
- Concrete Mounted Vibrating Wire Strain Gauge
- Spot Weldable Vibrating Wire Strain Gauge
- Arc Weldable Vibrating Wire Strain Gauge
- Optical Strain Gauge

Foil Strain Gauge

Variables measured

Range Accuracy

Resolution

System operation

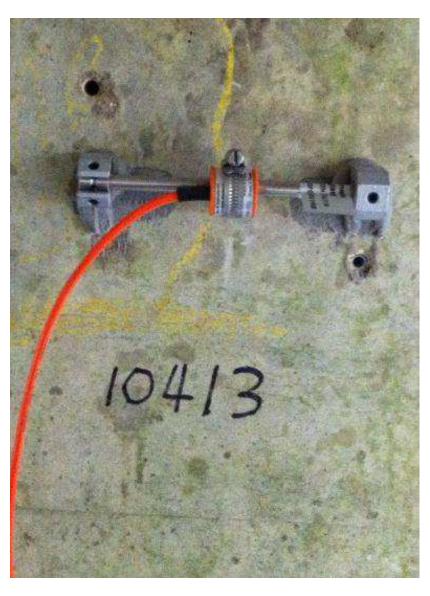
Data access
Reading frequency

access

Strain (µE)

up to ±50,000με ±3με (1% full scale)

1μ8


Automated

Remotely or on site

Sub second

Additional Information:

- Suited for use on short to long term projects.
- Highly accurate.
- Can be bonded to almost any material.
- Numerous types of foil gauges available for different requirements (i.e. uniaxial, biaxial, triaxial, torsion, shear etc.)
- Foil strain gauges consist of a thin wire filament in a grid formation, which acts as a resistor. As the material monitored elongates or contracts the shape of the measurement grid changes which alters the resistance across the strain gauge.

Vibrating Wire Strain Gauge

Variables measured Strain (με) Range 3000 με

Accuracy $\pm 3\mu E$ ($\pm 0.1\%$ full scale)Resolution $1\mu E$ (0.033% full scale)Repeatability $\pm 2\mu E$ ($\pm 0.067\%$ full scale)

System operation Automated

Data access Remotely or on site

Reading frequency > 10 seconds

Additional Information:

- Suited for use on short to long term projects.
- Cheap, simple & reliable.
- Good long term electrical stability (long lead length).
- Mount to concrete with anchors & spot or arc weld to metal.
- Within the sensor, a high carbon steel wire is held between a fixed point and a moveable point. The wire is plucked / excited via a magnetic coil adjacent to the wire and the resulting frequency is measured by the coil. Changes to the strain in the wire relate to a change in the frequency readings taken.

More detail available if required:

• Optical strain gauges

Please get in touch if you would like more information.