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1. Introduction

Consumer drones freely accessing the airspace are 

fundamentally changing aviation and posing new safety 

and security challenges. For this reason, Civil Aviation 

Authorities (CAAs) worldwide have started pushing for the 

adoption of Remote Identification (RID) rules and protocols 

for consumer drones. RID regulations require drones to 

periodically broadcast their telemetry information, enabling 

third-party entities such as law enforcement to identify and 

locate drones and their operators. These regulations began 

to be finalized around 2022, and in the second half of that 

year, the first RID-capable consumer drones became 

available on the market. The support for RID technologies 

will become mandatory and pervasive in the years to come.

One of the main reasons RID regulations and standards 

have been developed is that drones are “low observable” 

objects; they have small radar cross sections, make noise 

that is difficult to detect beyond a certain distance, 

can fly at extremely low altitudes and are highly 

maneuverable and thus can fly under trees and between 

buildings. These characteristics make existing airspace 

monitoring technologies, like radar and vision systems, 

not always suitable for reliably tracking drones. 

RID standards and regulations aim to increase safety and 

security for both drone operators and airspace operations. 

One or more unauthorized drones entering the airspace of 

an airport, military base or other critical infrastructure facility 

could result in huge economic and/or physical damage. For 

example, Gatwick Airport experienced an incident in 2018 

where two drones flying near the airport forced authorities 

to divert approximately 1,000 flights, affecting around 

140,000 passengers with a loss of about £800,000. 

However, another scenario presents itself: imagine if 

a malicious user were able to recreate the impact of 

drones in a no-fly zones—without requiring a real drone. 

Such a situation could be achieved by injecting fake RID 

data into a wireless channel to emulate the presence 

of drones. This could allow threat actors to execute 

pervasive and low effort drone-based attacks in order to 

disrupt critical infrastructure services.

Recognizing the importance of drone RID technologies 

for the future of aviation, Nozomi Networks Labs 

conducted research on their vulnerabilities and risks. 

This white paper details the results of our research, 

which resulted in attack scenarios illustrating how an 

attacker could forge the presence of drones, inject fake 

drone trajectories and disrupt RID functionalities on 

RID protocols. The purpose of this research and of these 

attack scenarios is to highlight the type of risks involved 

in the use of these technologies as currently designed. 

In the following chapters, we introduce current RID 

protocols and share our analysis of two of the most 

widely used: Open Drone ID and DJI’s DroneID. Open 

Drone ID (ODID) is an open-source protocol compliant 

with most widespread RID specifications. DJI is the 

leading consumer drone vendor, and their DroneID RID 

protocol is based on the proprietary Radio Frequency 

(RF) protocol called OcuSync.

Next, we look at ground station receivers, which receive 

the signals broadcast by drones and are potential targets 

of attacks involving RID data spoofing. We found multiple 

vulnerabilities in the DroneScout ds230, one of the first 

commercially available fixed ground station receivers 

compliant with the ODID protocol. We built attack 

scenarios that then exploited these vulnerabilities to 

illustrate the security weaknesses in RID protocol receivers. 

Finally, Nozomi Networks Labs developed a Software 

Defined Radio (SDR) OcuSync signal injector and an 

asynchronous ODID reception and injection framework 

that allowed us to experiment with RID traffic. We 

used these tools to create proof-of-concept attack 

scenarios that showcase how an attacker could forge 

the presence of drones by injecting fake trajectories and 

disrupting RID functionalities.
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2. Drone Remote Identification (RID)

RID protocols established by the CAA mandate consumer 

drones (or more technically Unmanned Aircraft Systems 

[UAS]) to periodically broadcast their telemetry information. 

Dedicated fixed or mobile ground station receivers then 

receive and process this information, enabling third-party 

entities such as law enforcement, critical infrastructure 

managers, other airspace participants, UAS Traffic 

Management (UTM) and UAS Service Suppliers (USS) to 

identify and locate drones and their operators. 

The main goal of RID is to bolster the safety, security 

and responsibility of drone activities, especially when 

drones might be flying near other aircraft or sensitive 

locations. This identification is also a deterrent to 

illicit or unauthorized drone actions like smuggling, 

espionage or attacks.

Our research in this white paper focuses on Direct 

or Broadcast RID,1 its intrinsic weaknesses and the 

vulnerabilities in compliant receivers to showcase the 

risks involved in the use of this technology. Broadcast 

RID specifies the use of wireless technology to 

broadcast RID data to nearby surroundings; an example 

scenario is depicted in Figure 1. Any interested observer 

can use any compliant receiver to capture and visualize 

RID information and the location of surrounding drones 

on a map. Captured data can potentially be forwarded 

to a USS for further elaboration.

The advantage of Broadcast RID systems is that they do 

not require any internet connection or cloud backend 

infrastructure to work. They are designed to make the data 

available to any close receiver. A second RID mechanism, 

Network RID, requires the use of cellular networks (4G, 

5G, etc.) to transmit telemetry data to an authenticated 

server which can then be accessed by authorized 

parties anywhere in the world. Given that Network RID 

Figure 1 - With Direct/Broadcast RID, any interested observer can use any compliant receiver to capture RID information.

Operator

Broadcast UAS

Interested
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Remote ID
Display Application

RID APP

USS
Data

Requests

UA Control Links

USS Interface

Remote ID Requests & Data

Control Link (2-way)

1  Specifically, it is called Direct RID in Europe and Broadcast RID in the United States. For simplicity, we use “Broadcast RID” throughout this white paper.
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Figure 2 - Drones that are in-scope and out-of-scope for RID compliance. 

Out of Scope

In Scope

2. Drone Remote Identification (RID)

specifications are currently a work in progress and that 

there was no public implementation available for testing at 

the time of writing, the research in this white paper focuses 

on Broadcast RID and will not discuss Network RID.2

The type of information required to be broadcast by each 

drone depends on local regulations, which vary by region. 

However, as a rule, all drones must periodically transmit 

the following basic information from takeoff to shutdown:

	y Drone ID or UAS ID (where the ID format and the procedure 

for registering a drone ID is defined by local regulators). 

	y Drone longitude, latitude, altitude, direction and velocity. 

	y Control station (or operator) real-time location and elevation. 

	y Time mark. 

	y Drone class and operation category.

While there are many types of drones, like fixed-wing, 

rotary-wing, hybrid, balloon, rocket or others, as a rule, 

all consumer and commercial drones weighing more 

than 249 grams (0.55 pounds)3 must be compliant 

with RID regulations. Exceptions apply to certain drone 

models operated according to specific guidelines or 

for government, military and other authorized entities. 

Figure 2 provides examples of drones that must be 

compliant with RID rules (In Scope) and drones that are 

exempt (Out of Scope).

A drone can either support RID capabilities through a built-

in module installed or activated by the manufacturer4 or 

with an RID add-on device consisting of transmitters that 

attach to a drone’s body. The latter is especially useful for 

pilots with older or custom-built drones that cannot be 

upgraded to support RID policies and protocols.

2  Network RID will eventually become mandatory in Europe under the U-Space program, while, at the time of writing, there is no Network RID mandate in 

the US. It is considered a technically more complicated approach than the Direct/Broadcast RID, as Network RID requires a reliable and secure channel.
3  Some vendors are also enabling RID functionality on drones weighing less then 249 grams, like DJI’s Mini 3 Pro. Many regulations also state that once 

RID is turned on, it cannot be turned off again (e.g., through a firmware downgrade).
4  Called Standard RID drone in U.S. and C-class certified drone in the EU. Currently, the IETF DRIP (Drone Remote ID Protocol) task force is working to 

define mechanisms to support security in the context of the ASTM RID. 
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2.1 RID Background

2.1.1 RID Standards and Regulations

Europe, the U.S. and Japan are currently the most active 

regions in terms of developing Direct/Broadcast RID 

policies and rules. These three regions share similar 

high-level architecture and RID system rules as all three 

allow the usage of the same RID protocol reference 

implementation, Open Drone ID.

To make sense of all available RID documentation and 

information, one must focus on three aspects:

	y Technical standards: used to define RID transmission 

methods and message formats. The two main 

standards today are the ASTM5 F3411 in the U.S. and 

the ASD-STAN prEN4709-02 in the EU. Both rely on 

wireless protocols in the unlicensed spectrum to 

broadcast the identification and telemetry data from 

UAs to ground observers. In particular, they define 

transport methods over Wi-Fi and Bluetooth. 

	y Regulations: used by local regulation authorities, 

like the Federal Aviation Administration (FAA) in 

the U.S. and the European Aviation Safety Agency 

(EASA) in the EU, to specify RID rules and policies that 

tailor the technical standards according to specific 

local regulatory requirements. For instance, while 

the standards label certain fields as "optional", local 

regulations might deem some of them necessary. In 

such cases, the regulation documents can indicate 

specific deviations from the standards.

	y Reference implementations: example implementations 

of a technical standard designed to be flexible 

enough to be adapted to different regulations. They 

facilitate interoperability between receivers and 

transmitters and, by having a single, carefully tested 

reference implementation shared among vendors, they 

help reduce security bugs in the code. For Broadcast 

RID specifications, the most widely used reference 

implementation is maintained by the Open Drone ID 

(ODID) project, which we discuss in Chapter 3. One of 

the first commercially available fixed ground station RID 

receivers, produced by BlueMark and called DroneScout 

ds230, is internally based on the ODID reference 

implementation library and is discussed in Chapter 4.

Being so recent, these regulations, standards and reference 

implementations are continuously evolving. We advise 

interested readers to refer to official documentation 

from local authorities or drone-remote-id.com, which 

summarizes the most recent news on this subject.

2.1.2 RID Protocol Security Flaws

The goal of UAS-RID regulations is to improve the physical 

safety and security of airspace by providing immediately 

actionable drone telemetry data to regulators and law 

enforcement organizations. However, this industry has 

not yet succeeded in creating reliable workable schemes 

for the global distribution of cryptographic keys. Leaving 

the protocols open was the only choice to guarantee that 

anyone with a qualified ground station could receive, 

decode and interpret RID signals, although the need to 

introduce cyber security measures to protect telemetry 

data was clear to the security professionals involved in 

RID protocol design. While Trusted Platform Modules 

(TPM) can be used to safely store keys on drones, this not 

only increases a drone’s cost but still does not solve the 

problem of distributing the keys. 

This conflict between physical and cyber security 

requirements, together with the fact that drone vendors 

2. Drone Remote Identification (RID)

5  ASTM International: astm.org.

https://drone-remote-id.com/
https://www.astm.org
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were forced to comply with UAS-RID rules in a short 

period of time, led to the design and deployment 

of RID protocols that do not protect telemetry data 

confidentiality and integrity, and do not provide telemetry 

data authentication (Figure 3). This leaves current RID 

protocols open to traffic injection attacks like those we 

discuss in the attack scenarios in Chapter 6. Since the RID 

data is not authenticated, the receivers have no way to 

differentiate between real RID data transmitted by a real 

drone and forged data transmitted by a malicious user.

While we are aware that insecure RID is not a trivial problem 

to solve and that it will require the time and collective 

effort of security experts around the world, we believe it is 

important to bring awareness to issues that may arise from a 

global deployment of RID protocols as currently designed.

2. Drone Remote Identification (RID)

Figure 3 - Current RID protocols lack encryption, authentication and integrity checks, meaning this data cannot be trusted.

Lack of Privacy

Data Cannot be Trusted 

No Encryption

No Authentication

No Integrity Check

2.2 DJI and the OcuSync-Based DroneID Protocol

In the second half of 2022, DJI, the leading drone vendor 

with over 70% of the global market share, introduced 

support for RID regulation and policies into its drones 

though the adoption of the ODID protocol. However, 

prior to the introduction of RID rules, DJI designed and 

deployed DroneID, its own proprietary RID protocol. All 

DJI drones broadcast DroneID telemetry data using DJI’s 

proprietary radio protocol, OcuSync.6 Given that custom 

hardware is required to receive OcuSync signals, DJI also 

started producing and selling proprietary ground station 

receivers, Aeroscopes, specifically designed to detect DJI 

drones in surrounding areas and visualize them on a map.  

The research presented here relied on the DJI Mini 3 Pro 

drone model with firmware version 01.00.0150. We used this 

firmware to perform the experiments, capture RID traffic 

and test the proof-of-concept attack scenarios. Nozomi 

Networks Labs also had the opportunity to test one of 

DJI’s Aeroscope appliances and analyze its behavior from 

a security perspective. Chapter 5 provides more details 

about OcuSync, DroneID RID protocol and the Aeroscope. 

DJI’s proprietary RID protocol suffers from the same 

type of weaknesses as ODID, as it does not protect the 

confidentiality and integrity of drone telemetry data and 

does not provide any form of authentication. This makes 

DroneID subject to the same type of attacks scenarios 

that target ODID, which we describe in Chapter 6.

6 Early generations of DJI drones used 5MHz channels with Wi-Fi modulation to broadcast telemetry data. This channel is no longer supported 

in recent models.
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3. Open Drone ID (ODID) Protocol

The Federal Aviation Administration (FAA) in the U.S., 

Aerospace and Defense Industries Association of Europe 

(ASD) and other regulatory agencies around the world 

are moving towards requiring RID for most drones 

operating in their airspace. The ODID protocol aims to 

provide a standardized, open-source solution for this 

requirement7 by means of a reference implementation 

library for the protocol and various example tools for 

testing reception and transmission of ODID messages. 

Understanding how the ODID protocol works is necessary 

to implement the ODID injection framework and develop 

the attack scenarios that we introduce in Chapter 6. For 

this reason, this chapter describes the main features of the 

ODID protocol, its supported communication methods, 

the format of the specified messages and an example of 

real ODID (RID) data transmitted by a consumer drone.

3.1 ODID Protocol Background

ODID is an initiative aiming to create an affordable and 

reliable RID system for UAS that allows receivers and ground 

stations within range to identify and locate drones and their 

operators. The transmitted data may include information 

such as a drone's ID, current location, direction, speed, 

operator information and other relevant telemetry data. 

As mandated by recent RID regulations and policies, 

telemetry data broadcast by drones using the format 

specified by the ODID project can be used by the general 

public, law enforcement, critical infrastructure managers, 

Air Traffic Control (ATC) systems or even other drones to 

improve situational awareness of the surrounding airspace. 

The accessibility of this protocol thereby increases both 

safety and security and creates accountability for drone 

operators (Figure 4). This system is in some ways analogous 

to the transponder technology used in manned aviation. 

Figure 4 - Open Drone ID broadcasts can be received by law enforcement officers, 
critical infrastructure managers and Air Traffic Control systems.8

7  The project is hosted in a dedicated GitHub organization: github.com/opendroneid.

https://github.com/opendroneid
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Most RID regulations around the world divide 

transmitted information into static and dynamic data, 

where the static data can be broadcast less frequently 

than the dynamic data. The ODID project provides 

the flexibility to create different types of messages 

transporting different types of information, making it 

possible to create messages that only contain static 

data. For example, Figure 5 shows a scenario where a 

drone broadcasts one message transporting static data 

for every three messages transporting dynamic data. 

The static data includes the drone registration number 

and flight information, which does not change during a 

single flight. Meanwhile, dynamic data can include the 

drone’s location (latitude and longitude), which changes 

with high frequency and thus must be broadcast more 

often to allow an ODID receiver (e.g., law enforcement 

officer) to have accurate location information.

The decision to split static and dynamic RID information 

between two different message types transmitted with 

different frequencies is up to the developer of the RID 

module running on the drone. For example, a drone 

vendor could decide to develop RID functionalities 

that include both static and dynamic data in all 

the broadcast RID messages and then configure a 

transmission frequency that is enough to satisfy the 

timing requirements of the dynamic data.8

3. Open Drone ID (ODID) Protocol

Figure 5 - Dynamic RID data, such as a drone’s location, is often shared more 
frequently than static RID data like operator information.9
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8  The disadvantage of this approach is that all the ODID messages transmitted by the drone will be a few bytes longer than necessary.
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Messages transmitted by drones are always 

“connectionless advertisements”, meaning that 

they do not require acknowledgment from the 

receiver. Considering the unreliable nature of wireless 

transmission as a medium (i.e., a transmitted message 

is not guaranteed to be received at destination), 

frequently transmitting dynamic data increases the 

probability that enough messages will reach their 

destination (i.e., RID receivers). 

ODID’s reference implementation core library allows 

developers to implement both the transmission 

and reception functionalities of an RID system. The 

transmission logic, which is in charge of broadcasting 

RID messages, is typically installed on drones or on 

add-on modules9 that must be mounted on drones. 

The reception logic, in charge of monitoring wireless 

channels and decoding the received RID messages, is 

typically installed on receiving equipment like mobile 

phones, tablets or dedicated fixed ground stations. 

The Open Drone ID project focuses exclusively on 

the Broadcast RID method10 with the purpose of 

specifying exactly how a drone must transmit each RID 

message (i.e., how the data contained in the messages 

is encoded and packed) so that a compatible receiver 

system is able to receive, decode and interpret those 

messages. The standard specifies that ODID messages 

containing RID data must be transmitted using either 

Wi-Fi or Bluetooth, making it possible to receive RID 

data using inexpensive hardware already available on 

the market. No other wireless technology is currently 

supported or specified by the standard.  

3.1.1 ODID Communication Methods  
and Technologies

ODID messages can be transmitted using Wi-Fi (IEEE 

802.11), Bluetooth or both. When Wi-Fi is used, the 

ODID transmitter (i.e., the drone) can use either the 

2.4GHz or 5GHz band, although the former is more 

common because it provides a bigger expected 

transmission range and is compatible with more types 

of receiving hardware. Different broadcast modes are 

supported for both Wi-Fi and Bluetooth: Wi-Fi (IEEE 

802.11) Neighbor Awareness Networking (NaN), Wi-

Fi beacon, Bluetooth Low Energy (BLE) (Bluetooth 

4.x compatible) Advertisements and Bluetooth 5.0 

Extended Advertisements. 

This white paper focuses exclusively on the Wi-Fi beacon11 

broadcasting method as, at the time this research was 

carried out, it was the only ODID broadcasting method 

supported by the first RID compliant drone models 

available on the market. In short, with Wi-Fi beacon 

ODID broadcasting, the transmitter encapsulates 

ODID telemetry messages in a vendor specific (0xdd) 

Information Element (IE), with the Organizationally 

Unique Identifier (OUI) set to ASD-STAN (0xfa 0x0b 

0xbc 0x0d) and inserts them within standard Wi-Fi 

beacon frames.

3. Open Drone ID (ODID) Protocol

9  If a drone’s hardware does not support the transmission methods required to be compliant with RID standards, regulations and policies, then 

an external add-on module must be used. See Chapter 2.
10  For the Network RID mechanism there are currently several alternative projects (although they do not appear to be well maintained), namely: 

github.com/interuss and github.com/uastech/standards.
11  Wi-Fi management (type 0) beacon (sub-type 8) frames are the frames periodically transmitted by a Wi-Fi Access Point (AP) to advertise the  

presence and capabilities of a Wi-Fi network to any nearby Wi-Fi device.

https://github.com/interuss
https://github.com/uastech/standards
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3. Open Drone ID (ODID) Protocol

3.2 ODID Message Format and Encoding

ODID protocol message format defines two types of 

“macro” messages: message blocks and message packs. 

Message blocks represent the minimal unit of ODID 

broadcast information and are the messages that contain 

the actual RID information (and other drone-related data). 

Message packs are used to aggregate multiple ODID 

message blocks into a single transmission. 

While the specific wireless technology used for 

broadcasting does not affect message format, it does 

affect the mechanism used for encapsulating and 

transporting the ODID message. In the case of Wi-Fi 

beacon broadcasting method, as we already briefly 

mentioned, the ODID data is transported in a vendor-

specific Information Element (IE) field. This IE field is 

typically found towards the end of the beacon frames and 

its maximum length is 255 bytes. ODID message blocks 

are encoded in an ODID message pack and the resulting 

Vendor Specific IE is formatted as described in Table 1.12  

Table 1 - Wi-Fi beacon: Format of the Information Element containing ODID-specific data.

Byte Offset Length (bytes) Value Description

0 1 0xdd 0xdd represents a vendor-specific Information Element

1 1 0x2 – 0xFF Length of the Information Element (maximum 255 bytes)

2 4 0xFA 0x0B 0xBC 0x0D ASD-STAN identifier

6 1 0x00 – 0xFF ODID message counter that increments with each ODID 
message pack sent and resets back to 0 after 0xFF is reached

7 3 + N * 25 Variable Message pack header + message blocks. A maximum of 9 
message blocks (N) are allowed.

12 We refer the reader to the official Open DroneID specifications for more details on how ODID message encapsulation works with other 

broadcasting methods: github.com/opendroneid/specs.

https://github.com/opendroneid/specs
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3. Open Drone ID (ODID) Protocol

Table 2 - ODID message block format.

Table 3 - ODID message block types.

3.2.1 ODID Message Blocks

An ODID message block is always 25 bytes in length—

the message can be padded with null bytes if needed. 

The block starts with a 1-byte header followed by 24 

bytes of data whose format depends on the block 

message type which is specified in a dedicated 4-bit 

field in the header as shown in Table 2.

The 16- or 32-bit numerical fields that can be present 

in the message block data are always transmitted in 

little endian order, while all other types of data (e.g., 

non-magnitude values, strings, IDs) are transmitted in 

big endian order. ODID specifications provide different 

types of message block types based on the kind of 

information they contain.

The list of currently existing ODID message block 

types is provided in Table 3. A message type of value 

0xFF is considered invalid and, as we will see later, the 

message type 0xF is used for ODID message packs. 

In the following sections we will investigate the most 

important block message types and their fields. We 

refer the reader to the official ODID specifications for 

message blocks not discussed here.

Block Header Block Data

Message Type (4 bits) Protocol Version (4 bits) Message fields base on Message Type

0x1 – 0xF 0x0 <Message Data>

Message Type Message Name Description

0x0 Basic ID Provides ID for the UAS, characterizes the type of ID and identifies the type of UAS

0x1 Location/Vector Provides location, altitude, direction and speed of the UAS

0x2 Authentication Optional message that provides authentication data for the UAS

0x3 Self-ID Optional message that can be used by operators to identify themselves  
and the purpose of an operation

0x4 System Identifies the location of the operator

0x5 Operator Provides the operator ID
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3. Open Drone ID (ODID) Protocol

Figure 6 - ODID Basic ID message block.

The Basic ID message block is used to identify the 

drone and includes the ID Type, UAS Type and the 

Unique ID. Figure 6 shows its packed form in the 

reference implementation.13 The Unmanned Aerial 

System Identifier (UASID) is maximum 20 bytes and 

the actual format and procedure for obtaining one are 

country-specific and defined by local regulators. UASID 

values can be used to identify a specific drone in a 

particular geographic region.

The Location/Vector block message, among other 

things, provides the location, altitude, direction and 

speed of the drone. Figure 7 shows its packed form in 

the reference implementation.14

13  See the reference implementation: github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/

libopendroneid/opendroneid.h#L423 
14 See the reference implementation: github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/

libopendroneid/opendroneid.h#L439

https://github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/libopendroneid/opendroneid.h#L423
https://github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/libopendroneid/opendroneid.h#L423
https://github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/libopendroneid/opendroneid.h#L439
https://github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/libopendroneid/opendroneid.h#L439
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3. Open Drone ID (ODID) Protocol

Figure 7 - ODID Location/Vector message block.

In order to save space and allow all the location data to 

be packed into the 24 bytes available in the message 

block payload, some of the fields in the Location/Vector 

message block (and also System message block which 

we discuss further on) have some encoding techniques 

to either compress the data or allow for more optimal 

and precise resolutions. 

For example, the latitude and longitude values are 

32-bit signed integer values where the actual latitude/

longitude value is encoded by multiplying it by 107. 

This means that to decode the value at the receiver, 

the Latitude and Longitude field values must be 

divided by 107. Let’s consider Nozomi Networks’ offices 

in Mendrisio, Switzerland, which are located more or 

less at latitude 45.878780 and longitude 8.979026. 

Those two values will be encoded in the Latitude and 

Longitude fields of the Location/Vector message block 

respectively as 458787800 and 89790260. We refer the 

reader to official ODID specifications15 for details on how 

the various fields are encoded in the message blocks.

15  See github.com/opendroneid/specs for official ODID specifications.

https://github.com/opendroneid/specs
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Figure 8 - ODID message pack Definition.

3.2.2 ODID Message Packs 

Multiple message blocks can be grouped into a single 

message and encoded into an ODID message pack, 

whose format is shown in Table 4.

The message pack always starts with a 3-byte header 

which, among other things, includes the size of a single 

message block (which is always 25 bytes in the current 

version of ODID protocol) and the number N of message 

blocks that follow the header. The packed form of the 

ODID message pack in Figure 8 shows that the current 

ODID protocol specifies that 9 is maximum number N of 

message blocks transported by a message pack.16

Table 4 - ODID message pack.

ODID Message Pack

Message Pack Header Message Block Message Block ...

Message 
Type (4 bits)

Version
(4 bits)

Single 
Message 

Size
(always 0x16)

(1 byte)

N. Messages 
in Pack

(N)
(1 byte)

25 bytes 25 bytes ...

16  This is due to the size limit of Wi-Fi Beacon IE length.
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Figure 9 - Reference implementation library encoded ODID message data structures.

3.2.3 Open Drone ID Reference Implementation 
Library

The ODID project’s reference implementation library 

implements the encoding and decoding functionalities 

for all the messages specified by the ODID protocol. 

For each ODID message (block and pack), as shown 

in Figure 9, the library provides a data structure 

representing the encoded version of the messages 

(i.e., the messages that are actually transmitted and 

received over the air).17

This library is particularly important because, as we 

will see in the following chapters, it is used by both the 

BlueMark DroneScout ds230 RID ground station receiver 

and the Open Drone ID reception/injection framework 

developed by Nozomi Networks Labs for implementing 

the proof-of-concept attack scenarios presented later in 

this white paper. The reference implementation library is 

open source and available on GitHub and exposes data 

structure types representing all the possible messages 

provided by the ODID protocol.18

For each of these data structures, the library provides the 

corresponding non-encoded version (also called non-

packed or normative form) (Figure 10). These are the data 

structures actually used in the code that implements 

the ODID transmitter or receiver logic because they 

are easier to use for parsing and elaborating drone 

data. For example, strings like UASID which are not null 

terminated in the encoded data structures are instead 

null terminated in the normative form data structures. 

17 The encoded versions of the ODID messages are what is passed to the lower network layer to be transmitted over any of the broadcast 

methods in Open Drone ID and what is received from the lower network layer during reception.
18  See github.com/opendroneid/opendroneid-core-c. This repository provides a C-code function library for encoding and decoding (packing/unpacking) 

Open Drone ID messages, as the format is defined in the ASTM F3411 RID and the ASD-STAN prEN 4709-002 Direct/Broadcast RID specifications.

https://github.com/opendroneid/opendroneid-core-c
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Figure 11 - Open Drone ID reference implementation library encoding functions.

The library also provides the encoding functions 

for mapping the normative form data structures 

representing the ODID messages into their 

corresponding encoded forms. For example, the 

function encodeBasicIDMessage(…) maps the 

normative form of the Basic ID ODID message block 

(ODID_BasicID_data) into its corresponding encoded 

version (ODID_BasicID_encoded) which can be used 

to transmit the data. The list of all available encoding 

functions is shown in Figure 11.

Figure 10 - Reference implementation library normative ODID message data structures.
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Figure 12 - Open Drone ID reference implementation library decoding functions.

Figure 12 shows the corresponding decoding functions 

which are used to map data structures representing 

the encoded ODID messages into their corresponding 

non-packed form. For example, the function 

decodeLocationMessage(…) maps the encoded form 

of the Location/Vector ODID message block (ODID_

Location_encoded) into its corresponding normative 

form (ODID_Location_data).
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Figure 13 - Open Drone ID reference implementation library UAS aggregate data structure.

There is a particularly important decoding function 

called odid_message_process_pack(…)19 which is used 

to parse a raw buffer of bytes (uint8_t *pack) which 

must point to an ODID_MessagePack_encoded and 

map it into an ODID_UAS_Data whose definition is 

shown in Figure 13. This data structure contains the 

normative form of all the data contained in the parsed 

ODID message pack. 

19  Internally this function uses decodeMessagePack(…).
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3.3 Wi-Fi ODID Traffic Capture Example

Now that we have seen how ODID is implemented in the 

reference library, we can look at an example of what real-

world ODID traffic generated by a consumer drone looks 

like when monitoring Wi-Fi channels with nearby ODID 

transmitting drones. Figure 14 presents an example of Open 

Drone ID (RID) data capture on Wi-Fi channel 6 transmitted 

by a DJI Mini 3 Pro running firmware version 01.00.0150, 

which we used throughout this research project.20 The 

Wireshark screenshot shows the ODID messages (protocol 

OPENDRONEID) transmitted by the drone. 

Note that:

	y The drone uses Wi-Fi beacon frames as its 

broadcasting method;

	y In the beacon frames the SSID is set to the string 

“RID-” followed by the UAS ID of the drone21;

	y The ODID messages containing RID data are sent 

with a period that is either ~160ms or ~320ms.

Figure 14 - DJI Mini 3 Pro transmits ODID messages with a period of ~160 or ~320 ms.

20 In this firmware version DJI has enabled ODID (RID) transmission by default, independent of the geographic location of the drone. So, for 

example, it was possible to perform these experiments in Europe where the RID regulation was not yet mandatory.
21 With DJI drones, at the time of writing, it was possible to configure a drone’s UAS ID through the DJI Fly app.
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Figure 15 - I/O graph for ODID messages transmitted by the DJI Mini 3 Pro.

Figure 16 - ODID message pack transmitted by a DJI Mini 3 Pro.

The ODID message periodicity is reflected in the 

corresponding I/O graph (Figure 15) where we can see 

that the tested drone transmitted between 3 and 5 

ODID messages per second.

Going into more detail, Figure 16 shows that for the DJI 

Mini 3 Pro, each beacon frame is transmitting an ODID 

message pack containing five ODID message blocks: 

Basic ID, Location/Vector, Self-ID, System and Operator.
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Figure 17 - Dissection of an ODID message pack transmitted by a DJI Mini 3 Pro.

Finally, a complete dissection (followed by the 

hexadecimal dump) with all the details of the message 

blocks contained in the message pack is shown in 

Figure 17. We can see from the dissection that latitude 

and longitude values, for example, contained in 

the Location/Vector message block have values of 

458787800 and 89790260. In the hexadecimal dump 

this corresponds to the little-endian order bytes “0xd8 

0x8b 0x58 0x1b” and “0x34 0x17 0x5a 0x05”. Also, as 

described in the previous sections, these two values 

are encoded; to obtain the real latitude and longitude 

the receiver must divide them by 107 which results in 

45.87878 and 8.979026. 

Finally, it should be noted that the UAS ID 

contained in the Basic ID ODID message block is 

1581F4XFC226Q0078PRH, which the Mini 3 Pro also uses 

for creating the SSID value of the beacon frame. This is 

not something required by the Open Drone ID protocol 

or the RID regulation, but it characterizes this drone 

model and the firmware version used during testing. 

For more details, we refer the reader to the official Open 

Drone ID documentation and GitHub organization.
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The BlueMark DroneScout ds230 is a fixed ground 

station that receives and parses RID signals based on 

the ODID protocol. It is compliant with recent EU and 

U.S. Direct/Broadcast RID standards and supports all 

the communication technologies required by existing 

regulations. Being one of the first commercially available 

ODID-based ground station receivers, it represents 

an interesting security research target as its internal 

functions —and therefore vulnerabilities—will potentially 

be shared with other receivers that also rely on ODID.

Nozomi Networks Labs completely reverse engineered 

both the hardware and software of the DroneScout ds230 

appliance. This chapter presents the results of our activity 

which include the discovery of multiple vulnerabilities, 

allowing the implementation of new attack scenarios 

such as the possibility of “hijacking” legitimate drone 

trajectories, which we present in Chapter 6.

4.1 DroneScout ds230 Characteristics

The BlueMark DroneScout ds230 appliance, shown 

in Figure 18, is a Broadcast RID outdoor fixed ground 

station receiver22 capable of receiving and interpreting 

telemetry messages broadcast by drones. Internally 

the DroneScout is based on the ODID open-

source framework (see Chapter 3), which makes it 

compatible with both EU and U.S. standards for remote 

identification and tracking (the DIN EN 4709-002 and 

ASTM F3411-22a-RID-B standards respectively).

Figure 18 - BlueMark DroneScout ds230 RID receiver.

22  Also called sensor or radar.
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For RID functionality, the DroneScout appliance is 

equipped with two independent Wi-Fi interfaces and 

one Bluetooth interface with a dedicated antenna. The 

appliance supports all communication mechanisms 

and frequency bands currently required by various RID 

regulators around the world.23 The wireless interfaces 

are configured in monitor mode and continually listen 

for incoming frames containing RID information packed 

according to the ODID protocol specification. We refer 

the reader to the official product manual for any technical 

specification details not covered in this chapter.24

Because RID signals can be broadcast on several 

different frequencies, the wireless interfaces are 

managed to cover as many frequency bands as possible. 

If no ODID payload is detected, both the Wi-Fi radio 

interfaces will continually loop over all Wi-Fi channels, 

switching to a new channel every second. If an ODID 

signal is detected, one Wi-Fi radio will continue hopping 

over all Wi-Fi channels and scanning for new ODID 

signals while the other Wi-Fi interface will only loop over 

Wi-Fi channels where ODID signals have previously been 

detected. A channel is removed from this list if no new 

ODID messages are received for a configurable amount 

of time, set to 60 seconds by default.

The DroneScout ds230 is not a device intended for an 

end user, it is instead designed for system integrators 

who want to integrate the functionalities provided by the 

DroneScout into their own products. Also, the DroneScout 

is not a standalone device; it requires an MQTT broker 

(typically provided by the system integrator) to collect 

detected RID information. Finally, the DroneScout is also 

equipped with a Power over Ethernet interface which 

provides power and allows asset owners to connect it 

to their own networks. The device uses this interface to 

communicate with the MQTT broker.  

From a high-level point of view the DroneScout works 

as follows:

	y It uses its internal wireless interfaces to continuously 

scan both Wi-Fi and Bluetooth channels. From the 

wireless point of view the DroneScout is a completely 

passive device. The wireless interfaces, configured in 

monitor mode, never transmit anything over wireless.

	y When a frame (Wi-Fi or Bluetooth) containing 

RID information (packed as specified by the ODID 

protocol) is detected, it parses the content of the 

ODID message and associates the parsed RID 

information to the source MAC address of the drone 

sending the message.

	y Collected RID information is periodically transmitted 

over the Ethernet interface to the third-party 

managed MQTT broker managed by the system 

integrators or asset owners. The content of the MQTT 

messages is JSON formatted.

4. Reverse Engineering the BlueMark DroneScout ds230

23  The communication mechanisms are Bluetooth 4.x legacy advertisement, Bluetooth 5.0 Extended advertisement, Wi-Fi NaN and Wi-Fi 

beacon. The frequency bands are 2.4GHz, 5.2GHz and 5.8GHz.
24  DroneScout 230 manual is available at: download.bluemark.io/dronescout_sensor_manual_230.pdf

https://download.bluemark.io/dronescout_sensor_manual_230.pdf
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4.2 DroneScout ds230 Hardware 

Looking at the DroneScout ds230’s hardware, Figure 19 

shows the external enclosure of the appliance. The side 

views on the right show a PoE ethernet port and the 

three N-Type antenna connectors.

Opening the enclosure reveals that the DroneScout 

ds230 does not use a custom-made board but is 

instead based on multiple commercial-off-the-shelf 

(COTS) hardware components (Figure 20).

Figure 19 - BlueMark DroneScout ds230 external view.

Figure 20 - BlueMark DroneScout ds230 internals.
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Figure 21 - BlueMark DroneScout ds230 main board.

Figure 22 - BlueMark DroneScout ds230 Wi-Fi SoC.

In particular, the DroneScout uses an Orange Pi3 

(Allwinner SUNXI64) as the main board (Figure 

21). A PoE to USB-C converter is used to provide 

alimentation and ethernet connectivity to the board.

For the Wi-Fi interfaces, Figure 22 shows that the 

ds230 uses two USB dongles based on Realtek 

8812AU/8821AU 802.11ac WLAN chipsets connected to 

the Orange Pi 3 board.
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Finally, the Bluetooth sniffing is handled by a 

development kit based on the ESP32-C3 SoC. As shown 

in Figure 25, the DroneScout uses a NodeMCU series 

ESP-C3-13 development kit25  connected to the Orange 

Pi 3 board through a serial connection (PIN IO8) which 

is used by the ESP32 SoC for transmitting the captured 

RID data to the main board.

Figure 23 - BlueMark DroneScout ds230 lsusb output.

Figure 24 - BlueMark DroneScout ds230 dmesg output.

This can also be confirmed by listing the USB devices 

connected to the main board using the lsusb command 

whose output is shown in Figure 23.

The two wireless interfaces are managed by the kernel 

module 88XXau, confirmed by the output of the dmesg 

command shown in Figure 24.

25  ESP-C3-13-Kit specifications can be found at: docs.ai-thinker.com/_media/esp32/docs/esp-c3-13-kit-v1.0_specification.pdf

Figure 25 - . BlueMark DroneScout ds230 Bluetooth SoC.

https://docs.ai-thinker.com/_media/esp32/docs/esp-c3-13-kit-v1.0_specification.pdf
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Figure 26 - BlueMark DroneScout drivers for Unisoc UWE5622 Wi-Fi SoC.

On the DroneScout there is also a Wi-Fi/Bluetooth 

chipset based on a Unisoc UWE562226 and equipped 

directly on the Orange Pi 3 board. This chipset is 

managed by out-of-tree kernel drivers whose names are 

shown in Figure 26. However, this chip is not used by 

the DroneScout ds230 and its antenna is disconnected.

4.3 DroneScout Firmware Reverse Engineering

In order to understand the internal functioning and 

hunt for potential vulnerabilities, Nozomi Networks 

Labs completely reverse engineered the firmware 

running on the DroneScout ds230 appliance.27

At the time of writing BlueMark does not provide 

a way to download the device firmware directly 

from their website. However, by looking at the file /

root/update.sh28 it was easy to determine that the 

firmware is downloaded from the following endpoint: 

https://download.bluemark.io/dronescout/
firmware/stable/ds230.tar.bz2

The firmware download package does not contain a 

full disk image but just a few configuration files, bash 

scripts and one executable file called dronescout.arm64 

which is the main firmware component. The firmware 

base image is based on an Ubuntu 22.04.1 LTS for ARM 

devices with Linux kernel version 5.15.72. The details of 

the operating system installed on the DroneScout are 

provided in Figure 27.

26 For more information on the Unisoc UWE5622: unisoc.com/cn_zh/home/TJUWLW-56XX-2.
27 Information presented in this section has been extracted by reverse engineering DroneScout firmware version 20220608-1239. It is mostly 

applicable to later firmware versions unless otherwise stated.
28 The DroneScout ds230 filesystem can be freely explored as it can be accessed through SSH using the default credential: username root and 

password bluemark. This is a functionality provided by the vendor and documented in the official product manual. Also, by performing a nma 

scan on the ethernet interface, SSH on port 22 is the only open port.

https://download.bluemark.io/dronescout/firmware/stable/ds230.tar.bz2
https://download.bluemark.io/dronescout/firmware/stable/ds230.tar.bz2
https://www.unisoc.com/cn_zh/home/TJUWLW-56XX-2
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Figure 27 - BlueMark DroneScout ds230 system information.

Most of the files provided as part of the DroneScout 

firmware are located in the /root directory. We list them 

below with brief descriptions:

	y dronescout.arm64 (SHA256: f9a519632273ecafe52- 
661d017876e8ebaddedf626d dc22c66c8e4e991fa 
e3c6): main executable taking care of sniffing wire-

less traffic (Wi-Fi and Bluetooth), channel scanning, 

ODID message parsing and MQTT publishing.

	y dronescout.conf (SHA256: 92af13b5af6b52675e- 
2904d0149e59cbc5b32407d3eb58fd07226ze592 
67d4f): configuration file for dronescout.arm64.

	y remote.sh (SHA256: cd7e885bd951a4139ed75e- 
2631ed066ddf90474ccf1209b32fcefbf01f16daef): 
script for setting up reverse SSH tunnel to remotely 

access the DroneScout when placed behind a router 

or firewall. Disabled by default.

	y remote.conf (SHA256: e58b7170f7323d71341ff3c- 
bd25622121672321544b48b2eac216fdf38b83fab): 
configuration file for remote.sh.

	y run.sh (SHA256: cf00d1556861b69dd68d524ae37-
e1310633ebfb5547d6108c6c122cf6c950cab): script 

for setting up the Wi-Fi and Bluetooth interfaces and 

running dronescout.arm64.

	y start.sh (SHA256: cb3c31a6e0d2633b802056e6b-
cda7a73a503a72ced435a570bded47017c42f1f): 
main script for setting up and starting the system. It 

starts run.sh, wathdog.sh and remote.sh (each in its 

own screen session).
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Figure 28 - BlueMark DroneScout public key found on the device.

	y update.sh (SHA256: 97536f07adffc1327795cc6c- 
fb9b417ba0dd69c113ce50e27eb646c2dacad6c9): 
script for starting the firmware update procedure.

	y watchdog.sh (SHA256: cf3985dbba11be1d020b311c-
08bc4eda5dae8111d80b96ee1f8feedd48682832): 
checks if dronescout.arm64 is still running correctly 

every 10 seconds. If this is not the case, it reboots the 

DroneScout.

	y wlan.conf (SHA256: c6f77e8d2440d7ae8a35f830- 
6473e7c9993c3c2826085c6baed9114dcddeca5a): 
configuration file containing the initial names of the 

Wi-Fi interfaces that are then changed to wlan1 and 

wlan2 during initialization by run.sh.

	y wlan_channels.conf (SHA256: 7e3dd8d174ce554- 
35073887281e51019a6d6621515e0f7dace0551281d-
8be6): configuration file containing the list of Wi-Fi 

channels to scan.

The firmware also comes with a crontab file placed 

in /etc/cron.weekly/reboot which reboots the system 

every week and with the file /etc/rc.local which calls  /

root/start.sh at system boot. The main executable 

dronescout.arm64 is executed as root in a non-

sandboxed environment. 

Also, while investigating the device file system, Nozomi 

Networks Labs found the public SSH key shown 

in Figure 28, likely a leftover from device firmware 

development.

Finally, the ESP32-C3 SoC runs its own customized 

firmware which is in charge of handling the Bluetooth 

sniffing and parsing. 
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Figure 29 - ds230 firmware: configuration file reading.

4.3.1 DroneScout Firmware Main Executable: 
dronescout.arm64

The DroneScout firmware’s main executable is 

called dronescout.arm64. This is the most important 

executable, as it handles all the functionalities of the 

product and is automatically executed when the 

device boots. This executable requires a “license” file 

to work correctly, which is located in /root/.ssh/serial.

license and its content on the analyzed device is “sn: 

82c00007bffb6b5c usb: 0000 0000 check: 0375 86ed”.29

At a high-level, the DroneScout’s firmware operations 

can be divided in two macro blocks:

	y The main function in charge of reading the 

configuration, setting up the system (e.g., configuring 

Wi-Fi interfaces) and spawning multiple threads.

	y Multiple threads that run forever, each in charge of 

its own sub-functionality (e.g., communication with 

MQTT broker, Wi-Fi frame parsing, etc.).

The dronescout.arm64 process starts by reading 

the configuration file (dronescout.conf) and saving 

the various setting parameters in a global data 

structure that is then accessed in various parts of the 

code (Figure 29). We will not go into details, but the 

configuration contains things like IP address and port 

of the MQTT broker, Wi-Fi interface names, thresholds 

for Wi-Fi frame RSSI, etc. and can be used to tweak the 

DroneScout’s behavior.

29 The license checking procedure is straightforward and it is easy to generate “fake” licenses that are accepted by dronescout.arm64.
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Figure 30 - ds230 firmware: mosquitto setup.

Figure 31 - ds230 firmware: Wi-Fi interface setup.

The process then continues by setting up the 

(Mosquitto-based) MQTT stack (Figure 30). In fact, 

dronscout.arm64 acts like an MQTT publisher and 

various options can be configured in dronescout.conf, 

like the MQTT broker host/IP and port, username, 

password and, in case SSL is used, keys and certificates.

Then the two Wi-Fi interfaces are configured to work 

in monitor mode. dronescout.arm64 relies on libpcap 

(statically compiled) for sniffing the Wi-Fi traffic. 

libpcap capture handler is set the same way for both 

Wi-Fi interfaces (see Figure 31):

	y Monitor mode enabled

	y Snapshot length: 524288 bytes

	y Buffer size: 1MB

	y Buffer timeout: 1s



34
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Finally, as shown in Figure 32, the main function of 

dronescout.arm64 starts multiple threads, each in 

charge of handling a specific functionality.  The most 

important threads are:

	y License Thread (license_thread_handler(), 0x407998): 

periodically checks if the license file is valid. The 

period is a random number of seconds each time. 

	y Wi-Fi Sniffing Threads (wlan{1,2}_thread_handler(), 

0x407dd0, 0x407e48): there are two of these, one for 

each Wi-Fi interface. They are in charge of handling 

the Wi-Fi frame sniffing and parsing and possibly the 

parsing of the ODID payload contained in them.

	y Wi-Fi Channel Hopping Thread (wlan_hopping_

thread_handler(), 0x408150): handles the Wi-Fi 

channel scanning. It uses mutexes to synchronize 

with the Wi-Fi sniffing threads.

	y Bluetooth Sniffing Thread (uart_bt_thread_handler(), 

0x409468): handles the communication with the 

external ESP32-C3 SoC and periodically parses the 

JSON data received from the microcontroller.

	y Cleaning Thread (clean_thread_handler(), 0x407708): 

parses and cleans the global data structures 

containing the received RID data every few hours.

	y Logging Thread (log_thread_handler(), 0x408040): 

periodical log of DroneScout operations.

	y Monitor Thread (monitor_thread_handler(), 0x407760): 

periodically checks the DroneScout’s running state 

and send a JSON status message to the MQTT broker.

Figure 32 - ds230 firmware: threads.

30  After the threads have been spawned, the main function enters an infinite loop.
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4.3.1.1 UAS Data Structure

Every time a new ODID message is received by the 

DroneScout, it is parsed by a function provided by the 

ODID reference implementation API and decoded into 

an ODID_UAS_Data data structure (see section 3.2.1). 

Then, this data structure is copied by the function copy_

odid_uas_data_in_global_ll() (0x4065b8) into a global 

linked list which we call g_data. Each entry of this 

linked list is of type global_odid_entry which is defined 

as shown in Figure 33.31

The fields of global_odid_entry are:

	y uasData: a copy of the ODID_UAS_Data data structure.

	y RSSI: the RSSI value of the received frame containing 

ODID data.

	y tx_addr_str: the string on the MAC address that 

broadcasts the frame containing the ODID data.

	y channel: the channel that the frame containing the 

ODID data was received on.

	y rx_type: identifies the type of broadcast message (Wi-Fi 

beacon, Wi-Fi NaN, Bluetooth 4.x legacy advertisement, 

Bluetooth 5.0 extended advertisement).

	y entries_ctr: a counter tracking how much ODID data 

has been received from the tx_addr_str MAC address.

	y odid_ctr: the ODID message counter.

	y timestamp: timestamp in milliseconds of when the 

ODID data was received.

	y last_publish_ts: timestamp in milliseconds of the last 

time the ODID data for this particular tx_addr_str was 

published to the MQTT broker.

	y next: pointer to the next global_odid_entry.

When the ODID_UAS_Data refers to a transmitter device 

(tx_addr_str) not already present in the g_data, a new 

global_odid_entry is created and appended at the end 

of the existing g_data (or put at the head if this is the 

first entry). When the transmitter device (tx_addr_str) 

already exists, no new entries are created. In this case the 

global_odid_entry referring to that particular tx_addr_

str is retrieved from the g_data list. Its global_odid_

entry→uasData field is updated with the info contained 

in the new ODID_UAS_Data. 

Figure 33 - ds230 firmware: reversed UAS Data structure.

31  Note that this definition has been reverse engineered, so a few details could be wrong.
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This means that for a given tx_addr_str no historical 

values are maintained.

Of particular interest is the function log_odid_entry() 

(0x4084c0) (which is called for every ODID_UAS_Data 

received) that does not publish to the MQTT broker the 

new data for a given tx_addr_str if

(global_odid_entry→timestamp -  

global_odid_entry→last_publish_ts)

is less than 500 ms (or 1000 ms depending on the 

configuration). This means that injecting a lot of spoofed 

traffic for a given tx_addr_str is not directly reflected in 

what is published to the MQTT broker. Later in this chapter 

we will show how it is possible to exploit this DroneScout 

firmware behavior to “hijack” legitimate drone trajectories.

4.3.1.2 Wi-Fi Sniffing and Parsing

In the Dronescout’s firmware, Wi-Fi sniffing is handled 

by wlan1_thread_handler() for the “first” Wi-Fi interface 

and by wlan2_thread_handler() for the “second” Wi-

Fi interface. These two functions do exactly the same 

thing: they call pcap_loop() passing wlan_pcap_

handler() (0x408708) as callback function. wlan_pcap_

handler() is the function that actually takes care of 

parsing the sniffed Wi-Fi frames (Figure 34).

Figure 34 - ds230 firmware: Wi-Fi thread handler.
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wlan_pcap_handler() starts by parsing the radiotap 

header (Figure 35). "This is done to extract information 

like the frequency and channel the frame was received 

on and the measured RSSI (frames whose RSSI is below 

a configurable threshold are dropped and not parsed 

by the code that follows). 

Once the radiotap header parsing is complete, the 

function starts parsing the actual Wi-Fi frame (Figure 

36). Without going too far into details, the code 

performs the following actions:

	y Parses and saves the receiver, transmitter and BSSID 

addresses.

	y Continues with the parsing code only if the frame 

Type is 0 (i.e., management).32

	y It then extracts the frame sub-type and continues 

only if the sub-type is beacon (0x08) or action NaN 

Figure 35 - ds230 firmware: radiotap header parsing.

Figure 36 - ds230 firmware: Wi-Fi frame parsing.

4. Reverse Engineering the BlueMark DroneScout ds230
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32 This makes sense considering that the ODID messages can only be contained in beacon or NaN frames which are both management.
33 During our reverse engineering activity, we noticed that the length of the vendor-specific IE (the second byte in each element) is trusted by the code 

and is used for advancing to the next element. It is also used for computing the length of the ODID element that is then passed to function located at 

0x43238c. This means it is possible to inject beacon frames with forged IE lengths and force the code to read content after the actual frame. However, 

during our experiments, we noticed that even if we are able to force the code to read past the actual frame length, the memory read is part of a buffer 

managed by libcap and memory mapped, so it was not possible to cause a segmentation fault that could have led to a Denial-of-Service attack.
34 Both odid_message_process_pack() and ODID_UAS_Data have been introduced in the previous chapter and are part of the ODID reference 

implementation library API.

Figure 37 - ds230 firmware: Wi-Fi frame parsing.

(0xd). Then the code flow changes slightly depending 

on the frame sub-type:

	‐ If the frame sub-type is beacon, the code starts 

parsing the vendor-specific IEs. The code will loop 

over all vendor-specific IEs present in the beacon 

until the end of the frame or until it finds an IE 

that matches the ODID specifications.33 In order to 

be compliant with the specifications, the ODID IE 

must be formatted in the following way:

	· 0xdd: vendor-specific IE.

	· 0xXX: IE length (maximum 255 bytes).

	· 0xFA 0x0B 0xB 0x0D: ASD-STAN specific IE.

	· 0xYY: ODID message counter.

	· 0xF0: ODID message pack.

	· 0x19: each message block in the message pack 

must have a length of 25 bytes.

	· 0x0N: number of message blocks in the 

message pack (maximum 9),

	· Then 25 * N bytes (25 bytes for each ODID 

message block).

	‐ Instead, if the frame sub-type is NaN, with the help 

of function parse_odid_nan() (0x430418) (Figure 

37), the code checks that the mandatory values in 

the frame are set as defined in the specification.

	y The code continues by passing the content of the ODID 

message pack to function odid_message_process_

pack() (0x43e38c) which fills and returns an ODID_UAS_

Data data structure containing the received ODID data.34

	y At this point, as discussed in section 4.3.1.1, the obtained 

ODID_UAS_Data data structure is passed to function copy_

odid_uas_data_in_global_ll() and inserted into g_data.

	y The updated entry in g_data is then filled with 

additional information like a timestamp, the 

transmitter address, RSSI, channel, counter and 

reception type (see Figure 33).

	y Finally, the Wi-Fi Sniffing Thread synchronizes with 

the Wi-Fi Channel Hopping Thread to update the list 

of channels that must be monitored by the “second” 

Wi-Fi interface.
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35  The firmware running on the ESP32 SoC handles the differences between Bluetooth 4.x legacy advertisement and Bluetooth 5.0 extended 

advertisement making the difference between the two communication mechanisms transparent to dronescout.arm64.

4.3.1.3 Bluetooth Sniffing and Parsing

As already discussed, Bluetooth sniffing in the 

DroneScout ds230 is handled by an ESP32-C3 SoC.35 As 

we focused on Wi-Fi ODID broadcasting and injection 

in this research, we will not detail how Bluetooth 

sniffing works on the DroneScout. However, for a high-

level overview of how this functionality works:

	y The ESP32-C3 SoC runs a custom firmware 

responsible for sniffing Bluetooth advertisements (4.x 

legacy and 5.0 extended).

	y When an advertisement with an ODID payload is 

detected, the custom firmware extracts the ODID 

RID information and prepares a JSON message that 

will be transmitted to the main board through the 

UART interface.

	y On the main board, dronescout.arm64 is in charge of 

setting up the UART communication and receiving 

and parsing the JSON data generated by the custom 

firmware running on the ESP32-C3 SoC.

	y From the JSON, a properly encoded stream of 

bytes is extracted and passed to the function 

decodeOpenDroneID() (0x43aa84). This function is 

part of the ODID reference implementation API and 

returns an ODID_UAS_Data data structure. From here 

on, the code proceeds in the same way as it does for 

Wi-Fi (i.e., copy_odid_uas_data_in_global_ll(), etc.).

4.4 DroneScout ds230 Vulnerabilities

While reverse engineering the DroneScout ds230 

appliance we found three distinct vulnerabilities, listed 

below. The manufacturer BlueMark Innovations has, 

upon discovery, solved the vulnerabilities in firmware 

version 20230605-1350 released on June 5, 2023.

Critical Risk High Risk Medium Risk

CVE-2023-31191: 
Information Loss or Omission (CWE-221)

Base Score:

9.3
 
CVSS 3.1 Vector:  
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:C/C:N/I:H/A:H

CVE-2023-31190: 
Improper Authentication (CWE-287)

Base Score:

8.1
 
CVSS 3.1 Vector:  
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

CVE-2023-29156: 
Information Loss or Omission (CWE-221)

Base Score:

4.7
 
CVSS 3.1 Vector:  
VSS:3.1/AV:A/AC:H/PR:N/UI:N/S:C/C:N/I:L/A:L
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36  More information about this CVE can be found in this blog published by Nozomi Networks Labs: nozominetworks.com/blog/nozomi-

networks-discovers-three-vulnerabilities-affecting-bluemark-dronescout-ds230-remote-id-receiver.

Two of the vulnerabilities we discovered (CVE-2023-

31191 and CVE-2023-29156) could allow an attacker to 

spoof RID information, forcing the DroneScout ds230 

to drop RID information transmitted by legitimately 

communicating drones. Consequentially, an attacker 

could inject fake locations associated with the 

legitimate drone detected by the DroneScout.	  

Apart from the technicalities which are discussed in 

the next sections, the difference between the two 

vulnerabilities is that CVE-2023-21156 is probabilistic 

and the attack’s success rate is around 90%, which is 

why this CVE is classified as medium risk. Meanwhile, 

CVE-2023-31191, classified as critical, is deterministic and 

attack success is guaranteed when it is exploited.

CVE-2023-31190 demonstrates the capability to install 

malicious firmware updates on the DroneScout 

appliance. The crafted update could contain arbitrary 

files which, in turn, could lead the attacker to gain 

administrative privileges on the underlying Linux 

operating system. We will not discuss this vulnerability 

in here.36 Instead, we will focus on the other two 

vulnerabilities, which are more related to the RID 

functionalities of the DroneScout. 

4.4.1 Vulnerability Analysis: CVE-2023-29156

With this vulnerability, an attacker can force the 

DroneScout receiver to drop real RID information 

and instead generate and transmit JSON encoded 

MQTT messages containing fake RID information. 

Consequently, the system integrator running MQTT 

broker will have no access to the RID information of the 

real drones. To trigger the vulnerability, the attacker 

must inject ODID messages with spoofed source MAC 

addresses at the right time in order to overwrite the 

in-memory RID information stored by the DroneScout 

main executable (dronescout.arm64). This CVE affects 

the DroneScout ds230 appliance firmware 20211210-

1627 and later versions with default configuration.

As introduced in the previous sections, the behavior 

of dronescout.arm64 can be tweaked by modifying 

the configuration file dronescout.conf. We are 

interested in the option “transmit_mode” under section 

“mqtt”. When this option is set to 1, as in the default 

configuration, dronescout.arm64 performs a throttling 

of the MQTT messages and does not generate and 

publish an MQTT message for each ODID message 

received and correctly parsed. 

Instead, the executable behaves as follows: when a 

new ODID message is received from a legitimate drone 

D with MAC address MD, the behavior follows the 

sequence presented in section 4.3.1.2, “Wi-Fi Sniffing and 

Parsing”. In short, the RID data (RIDD) contained in the 

message is parsed into a structure of type ODID_UAS_

Data (defined by the ODID framework). Then RIDD and 

MD are passed to function copy_odid_uas_data_in_

global_ll (note that MD is used by dronescout.arm64 for 

identifying D). An example of this is shown in Figure 38, 

which reports a snippet of function wlan_pcap_handler 

(0x408708) that handles the sniffed Wi-Fi frames.

https://www.nozominetworks.com/blog/nozomi-networks-discovers-three-vulnerabilities-affecting-bluemark-dronescout-ds230-remote-id-receiver
https://www.nozominetworks.com/blog/nozomi-networks-discovers-three-vulnerabilities-affecting-bluemark-dronescout-ds230-remote-id-receiver
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The function copy_odid_uas_data_in_global_ll (0x4065b8) 

copies RIDD into a global linked list that contains an 

entry for each known MD (i.e., a drone from which an 

ODID message was previously received). A snippet of 

this function is shown in Figure 39: if the global linked 

list already contains an entry for MD, then that entry is 

updated with the new RIDD. Otherwise, a new entry for the 

previously unknown MD address is created and filled with 

the new RIDD. This means that for a given MD (i.e., drone), the 

DroneScout does not keep a history of the received RIDD. 

Instead, only the more recent RIDD is kept in memory. In the 

following we call RIDM the most recent RIDD for entry MD.

Figure 38 - ODID message parsing for Wi-Fi.

Figure 39 - ds230 firmware: copy_odid_uas_data_in_global.

4. Reverse Engineering the BlueMark DroneScout ds230
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Then, each entry in the global linked list has two fields 

containing timestamps (see Figure 33): “timestamp”, 

which is the timestamp in milliseconds of when RIDM 

was last updated (which is more or less the time when 

the latest ODID message was received from MD) and 

“last_publish_ts” which is the timestamp of the last 

RIDM transmitted to the MQTT broker (i.e., when RIDM 

is published over MQTT, the “timestamp” field of entry 

MD is copied over its “last_publish_ts”. This is shown in 

Figure 40).

Finally, once the global linked list has been updated, 

the function log_odid_entry (0x4084c0) is called. This 

function, among other things, decides when to generate 

and transmit a new JSON message containing RIDM 

to the MQTT broker. In Figure 40, lines 20-29 of the 

decompiled code show that, when option “transmit_

mode” is set to 1, the function does not always publish 

RIDM over MQTT. Instead, RIDM is dropped (i.e., the 

function returns) if it was last published less than 500 

milliseconds before. Below is the code snippet of interest:

Figure 40 - ds230 firmware: MQTT throttling.

4. Reverse Engineering the BlueMark DroneScout ds230

entry_timestamp = g_odid_e_p >timestamp;

  if (((long)(entry_timestamp - g_odid_e_p->last_publish_ts) < 500) ||

       (499 < (long)(now - entry_timestamp))) {

      return;

  }
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In other words, when RID data received from a certain 

MAC address MD is published over MQTT, all the RID 

data received from the same MAC address in the 

following 500 milliseconds is discarded and never 

published by the DroneScout. This means that an 

attacker can force the DroneScout to never publish real 

RIDD by following these steps:

	y Create an ODID message with spoofed source MAC 

address MD and containing crafted RID data RIDD1;

	y Inject the ODID message 500ms or more after RIDM 

has been published over MQTT and before D transmits 

its next ODID message containing the real RIDD.

If the condition above is satisfied, what happens in 

dronescout.arm64 is the following:

	y ODID message transmitted by the attacker and 

containing crafted RIDD1 is received,

	y Crafted RIDD1 is used to update RIDM,

	y RIDM is put in a new JSON message transmitted to 

the MQTT broker,

	y ODID message transmitted by D and containing real 

RIDD is received,

	y Real RIDD is used to update RIDM,

	y RIDM is NOT published over MQTT (i.e., RIDD is discarded).

If the attacker repeats the steps above, the MQTT 

broker of the system integrator using DroneScout 

will never receive real RIDD transmitted by drone D. In 

Chapter 6 we will see an example of attack scenario 

where this vulnerability is exploited and what kind of 

impacts it can have.

4.4.2 Vulnerability Analysis: CVE-2023-31191

The effect of this vulnerability is the same as the previous 

one: its exploitation can force the DroneScout receiver 

to drop real RID information and instead generate and 

transmit JSON encoded MQTT messages containing fake 

RID information. Consequently, the system integrator 

running the MQTT broker will have no access to the 

RID information of the real drones. This CVE affects the 

DroneScout ds230 appliance firmware 20230104-1650 

and later versions with default configuration.

The difference is that with this vulnerability the attacker 

does not need to rely on the DroneScout’s internal 

unknown timer states. Instead, the attacker only needs 

to inject high power messages (e.g., by using directional 

antennas) containing RID information on Wi-Fi channels 

adjacent to the ones used by real drones.

This vulnerability was made possible by a new 

algorithm introduced in DroneScout firmware version 

20230104-1650 that, as stated in the official release 

notes: “implement[s] an algorithm to suppress WLAN 

transponder signals on neighboring channels in case 

the RSSI is very strong. (If for instance a transponder 

is detected on channel 6 at -45 dBm, it will also be 

detected at channel 4, 5 7 and 8. The algorithm will 

suppress those detections on adjacent channels.)” 

In firmware 20230104-1650 the algorithm has been 

added to function wlan_pcap_handler() (0x408a80) 

and a decompiled snippet is shown in Figure 41.

4. Reverse Engineering the BlueMark DroneScout ds230
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When a new drone (let’s call it D) with source MAC 

address MD is detected by the DroneScout (i.e., the 

DroneScout captures ODID messages transmitted by 

D), dronescout.arm64 creates an in-memory global 

linked list entry (see Figure 33) indexed by MD. Among 

other things, this list contains: 

	y MD->channel: the Wi-Fi channel C where the ODID 

messages transmitted by D have been captured. 

	y MD->RSSI: the Wi-Fi frame reception RSSI. 

When a new Wi-Fi frame containing an ODID message 

is received from MAC address MD on channel C1 with 

RSSI R, the adjacent channel suppression algorithm 

implements the following logic: 

	y If C1 is an adjacent channel (i.e., ((MD->channel – C1) + 

3) < 7) and the reception RSSI R is greater than the last 

RSSI registered for MD (i.e., (R – MD->RSSI) > 6), then 

MD->channel is set to C1, MD->RSSI is set to R and the 

new ODID message is accepted and used to fill the RID 

information in the global entry corresponding to MD. 

	y Otherwise, the new ODID message is accepted only if 

C1 is the same as C (i.e., MD->channel). In other words, 

the new Wi-Fi frames are accepted only if received on 

the same channel that was previously registered for MD. 

Figure 41 - ds230 firmware: adjacent channel suppression algorithm.

4. Reverse Engineering the BlueMark DroneScout ds230
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The description above is a simplified version of 

the algorithm which handles other details like the 

timestamps of the ODID messages received from MD 

and the case of a first ODID message received from a 

specific drone D.  Additional details have been omitted 

as they do not impact the vulnerability discussed here. 

An attacker can exploit the algorithm described above 

with the following procedure: 

	y Create an ODID message with spoofed source MAC 

address MD containing crafted RID data.

	y Inject the ODID message with the spoofed source 

MAC address on an adjacent channel Ca (e.g., if the 

drone D is transmitting on channel 6, the attacker 

can transmit on channel 8). 

	y Transmit the Wi-Fi frames with high enough power 

that they are received by the DroneScout with an 

RSSI Ra that satisfies the condition discussed above 

(i.e., ((Ra – MD->RSSI) > 6)). This can be achieved 

by using a transmitter amplifier or a high gain/

directional antenna. 

If the conditions above are satisfied, when the 

DroneScout receives the ODID message spoofed by 

the attacker it will set MD->channel to Ca and MD->RSSI 

to Ra. From this moment forward it will start dropping 

the ODID messages received from drone D on channel 

C and the MQTT broker will never receive real RID 

data transmitted by drone D. As we mentioned in the 

analysis of the previous CVE, we will see an example of 

attack scenario where this vulnerability is exploited and 

what kind of impacts it can have in Chapter 6.

4. Reverse Engineering the BlueMark DroneScout ds230
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5. DJI, OcuSync and DroneID Protocol

Before the introduction of RID standards, rules and 

policies, DJI, which owns roughly 70% of the global drone 

market, developed and deployed its own proprietary 

RID protocol called droneID. The telemetry information 

transported by droneID37 is similar to what is contained in 

ODID messages. However, in contrast to ODID, DJI’s RID 

protocol is broadcast by its drones using a radio protocol 

called OcuSync38 which requires specialized hardware in 

order to be received and decoded. 

OcuSync39 is a proprietary and undocumented40 protocol 

designed and developed by DJI for the purpose of 

providing a better communication range with respect to 

the standard Wi-Fi transmission technology. Nowadays, 

all modern drones and related equipment from DJI 

support OcuSync as a communication technology. To 

enable end users (who are mostly military and critical 

infrastructure) to detect its drones, DJI also developed a 

specialized device, called Aeroscope, designed specifically 

to receive droneID protocol transmitted on top of 

OcuSync and visualize the detected drones on a map. 

As part of our research, Nozomi Networks Labs analyzed 

the behavior of the Aeroscope appliance and reverse 

engineered the OcuSync signal and the droneID 

protocol transmitted on top of it. From this analysis, 

we developed an injection framework based on 

Software Defined Radios (SDRs) for injecting OcuSync-

based telemetry data (i.e. droneID packets). Given 

that OcuSync telemetry packets suffer from the same 

security weaknesses found in the ODID protocol (they 

are neither authenticated nor encrypted) the injection 

framework allowed us to develop attack scenarios 

against DJI’s Aeroscope that resemble those based on 

ODID used against the DroneScout.

5.1 DJI Aeroscope Appliance

The Aeroscope is a specialized device developed by 

DJI which uses SDR-based hardware for receiving 

and decoding droneID telemetry packets transmitted 

on top of OcuSync Radio Frequency (RF) signals. DJI 

produces two models of this device: a stationary unit 

and a mobile unit (which has since been discontinued). 

Nozomi Networks Labs had the opportunity to test and 

analyze the behavior of the mobile unit.

37 This includes the status, speed, altitude of the drone, user identification code and license information, GPS position of the drone and the 

takeoff, landing and operator positions.
38 In this white paper, with OcuSync we refer both to the radio frequency (RF) signal at the physical layer and to the protocol transported on top 

of the RF signal.
39  This research is based on OcuSync version 3.
40  We used the paper “DJI droneIDs are not encrypted” by Conner Bender (https://arxiv.org/pdf/2207.10795.pdf) and the dji_droneid GitHub 

project as starting points for our activity.

https://arxiv.org/pdf/2207.10795.pdf
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The DJI Aeroscope mobile unit is based on an Android 

tablet with dedicated SDR hardware that is able to 

detect all DJI telemetry signals. Figure 42 shows a 

picture of the Aeroscope mobile unit.

The Android tablet on the mobile Aeroscope unit is 

customized by DJI and provides a simple user interface 

to execute the drone monitoring application or show 

documentation. The drone monitoring application is 

composed of a world map and an information panel. When 

the application is restarted the map is clean. A sound plays 

every time a new drone is detected and the map updates 

with live drone positions, flight paths, operator and home 

(landing) position. After some time, the old drones are 

removed from the display to avoid clutter. Figure 43 shows 

an example of a map on the Aeroscope’s drone monitoring 

application with two icons reporting detected drones.

Figure 42 - A mobile Aeroscope unit used during Nozomi Networks Labs experiments, 
consisting of an Android tablet with dedicated USB hardware.

Figure 43 - DJI Aeroscope map interface showing the detected drone locations.

5. DJI, OcuSync and DroneID Protocol
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When one of the drones visualized on the map is selected, 

corresponding information is shown in a panel that appears 

at the bottom of the map. The “List” button (bottom left of 

Figure 44) allows a user to see a list of previously detected 

drones. Selecting a drone from this list will show it on the 

map with captured information and flight path (right of 

Figure 44). The drone’s movement can be played back 

using the play button or a sliding bar control.

Figure 44 - DJI Aeroscope, example showing the list of drones (left) and a detailed view of one of them (right).

5. DJI, OcuSync and DroneID Protocol

5.2 Ocysync Communication Methods and Technologies

DJI uses the OcuSync protocol for different types of 

communications, including video streaming from 

the drone to the Remote Controller (RC), sending 

commands from the RC to the drone and broadcasting 

telemetry data from the drone. The OcuSync RF signal 

at the physical layer uses a different modulation 

scheme depending on the type of information 

transported. The rest of this section focuses on our 

analysis of the OcuSync signal used to broadcast 

telemetry packets and analysis of the format of the 

telemetry data (droneID) it contains.41

41  In particular, our analysis is based on the OcuSync telemetry signal broadcast by the DJI Mini 3 Pro drone.
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The OcuSync telemetry signal is modulated using an 

Orthogonal Frequency Division Multiplexing (OFDM). 

Several parameters must be known to correctly decode 

or encode the telemetry. The signal bandwidth is 10 

MHz, while the duration is around 0.65 milliseconds and 

is broadcast on a frequency that can hop on 2.4 GHz or 

5 GHz ISM bands. The hopping logic is unknown, but it 

seems to be related to channel quality. Table 5 shows the 

center frequencies where the DJI telemetry signal can be 

spotted. These frequencies have been confirmed by our 

RF spectrum observation of DJI Mini 3 Pro transmissions.

5.2.1 OcuSync Message Format and Encoding

OcuSync signal structure differs between DJI drone 

models. Figure 45 shows the spectrogram of one 

telemetry signal sent by the DJI Mini 3 Pro drone.

The telemetry signal is characterized by two synchronization 

symbols based on the Zadoff-Chu sequence with root 

of 600 (ZC600) and 147 (ZC147). The signal structure is 

composed by a fixed number of OFDM symbols with 

two of them carrying the ZC600 and ZC147 sequences.

5. DJI, OcuSync and DroneID Protocol

Center Frequency of Telemetry Bands

2.4 GHz 2.3995 2.4145 2.4295 2.4445 2.4595 2.4745

5 GHz 5.7415 5.7565 5.7715 5.7865 5.8015 5.8165 5.8315

Table 5 - OcuSync channel center frequencies.

Figure 45 - Spectrogram of DJI Mini 3 Pro telemetry signal (10 MHz bandwidth, 643 microseconds).
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There can be eight or nine symbols in a telemetry packet 

depending on the DJI drone model. Table 6 shows 

the two possible symbol sequences composing an 

OcuSync telemetry packet. The case with eight symbols 

is a special case where the first symbol is missing. The 

DJI Mini 3 Pro uses the eight-symbol packet format. 

The fourth symbol contains a ZC sequence with root 

set to 600 (ZC600) and the sixth symbol contains a ZC 

sequence with root set to 147 (ZC147).

Each symbol is composed of a cyclic prefix (CP) followed 

by the OFDM symbol bitstream. The cyclic prefix is a 

copy of the last samples of the OFDM symbol to the 

beginning of the same symbol. The size of each OFDM 

symbol is fixed at 1024 samples but the length of the 

CP changes depending on the symbol index. There can 

either be a short CP with a duration of 4.69 microseconds 

or a long CP with a duration of 5.2 microseconds. These 

durations are the same as those used in LTE standard for 

normal and Extended CP. The duration of each OFDM 

symbol is about 66.67 microseconds (which corresponds 

to a 15KHz subcarrier spacing).

Table 7 shows the sample lengths of each cyclic prefix 

and OFDM symbol for the case of an OcuSync telemetry 

packet with nine symbols with the sampling rate is set 

to 15,360,000 Sample/s.

The total length of a telemetry signal is about 643 

microseconds (or 9,880 samples with 15,360,000 Sample/s).

5. DJI, OcuSync and DroneID Protocol

Count 1 2 3 4 5 6 7 8 9

9 symbols S1 S2 S3 ZC 600 S5 ZC 147 S7 S8 S9

8 symbols - S2 S3 ZC 600 S5 ZC 147 S7 S8 S9

Count 1 2 3 4 5 6 7 8 9

cyclic 
prefix 80 72 72 72 72 72 72 72 80

OFDM 
symbol 1024 1024 1024 1024 1024 1024 1024 1024 1024

Table 6 - OFDM symbols and Zadoff-Chu sequences in OcuSync telemetry signals.42

Table 7 - OFDM symbols and cyclic prefixes durations in OcuSync telemetry signals.

42  Source paper “DJI drone IDs are not encrypted" available at arxiv.org/pdf/2207.10795.pdf.

https://arxiv.org/pdf/2207.10795.pdf
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5.2.2 Telemetry Signal Detection and Extraction

In order to detect the presence of an OcuSync telemetry 

signal broadcast by a DJI drone, the following three 

condition must be fulfilled:

1.	 The cross-correlation peak between the signal and 

a Zadoff-Chu (ZC) sequence with root 600 is above a 

threshold (see Figure 46)

2.	The cross-correlation peak between the signal and 

a Zadoff-Chu (ZC) sequence with root 147 is above 

a threshold.

3.	The difference in samples between the two correlation 

offsets is comparable with the expected distance of 

2 OFDM symbols ( 2(1024 + 72) = 2,192 samples with 

15,360,000 Sample/s).

The threshold must be empirically selected depending 

on the level of channel noise.

The correlation peak of the ZC600 sequence is near 

the fourth block of symbols. Starting from the sample 

offset where the correlation peak is detected, the 

beginning of the telemetry packet signal is detected 

by subtracting the length of the first three symbols 

(3*1024+80+2*72). Then the whole telemetry signal is 

extracted starting from the start to the end estimated 

using the total length of 9,880 samples (nine symbols 

9*1024+7*72+2*80).

5. DJI, OcuSync and DroneID Protocol

43 The cross-correlation 𝑓 ∗ 𝑔 is a signal processing to compute the similarity of two data series 𝑓 and 𝑔 in function of the relative 

displacement between them. 

 

𝑓 ∗ 𝑔 =  ∑ 𝑓[𝑚]𝑔[𝑚+𝑛]   

 

Where 𝑓 ∊ ℂ , 𝑔 ∊ ℂ   and (𝑓[𝑚]) complex conjugate of 𝑓[𝑚]

Figure 46 - Zadoff-Chu sequence correlation peaks on a signal with eight symbols (DJI Mini 3 Pro.

m=-∞

∞
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5.2.3 Telemetry Signal Decoding

Depending on the precision in the frequency tuning of 

the SDR Card, the captured signal can present some 

frequency offset. In order to correctly decode the signal, 

the frequency offset must be removed and the signal 

must be centered in the frequency space. After the 

frequency correction, the signal can be safely filtered 

using a 10 MHz low pass filter. Then the samples are 

separated into the nine OFDM symbols with their 

relative cyclic prefix replicas, as shown in Figure 47. 

These replicas are used to perform a coarse frequency 

offset adjustment.

The first symbol (unused by DJI Mini 3 Pro), the fourth 

symbol (ZC600) and the sixth symbol (ZC147) are 

ignored. All other symbols are decoded as Quadrature 

Phase Shift Key (QPSK) modulated bits. The resulting 

bitstream is descrambled and the turbo codes are 

removed. The final bitstream contains a CRC code that 

is useful to check the validity of the extracted data.

5. DJI, OcuSync and DroneID Protocol

Figure 47 - OcuSync: centered signal (with symbol blocks) and filtered signal.
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5.2.4 Telemetry Packet Data Structure

The overall structure of an OcuSync telemetry packet is 

shown in Table 8. 

The first field (Payload length) contains the length 

in bytes of Payload type and data. The second field 

(Payload type) contains the type of the structure 

contained in Payload data. The type can assume two 

different values: 0x10 when Payload data contains 

telemetry data or 0x11 when Payload data contains 

license plates. The last field contains a 16-bit CRC 

computed from the first field to the end of Payload data 

and can be used to check for possible decoding errors.

5. DJI, OcuSync and DroneID Protocol

Byte Offset Data Type Value Description

0x00 uint8 - Payload length (N)

0x01 uint8 0x10 or 0x11 Payload type

0x02 N * uint8 - Payload data

N+1 Uint16 - CRC 16 bit

Table 8 - High-level OcuSync telemetry packet structure.

Table 9 shows an example of OcuSync packet content 

transmitted by a DJI Mini 3 Pro drone. The payload type 

is 0x10, as expected for a telemetry packet. The byte at 

offset 0x02 is the protocol version number – for the DJI 

Mini 3 Pro it is always 2.
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For telemetry packet protocol version 2, the python 

unpack format string is '<BBBHH16siihhhhhhQiiiiBB19s'. 

The GPS timestamp field contains the Unix epoch time 

multiplied by 1000 to reach millisecond granularity. The 

UUID field is a numerical string encoded in ASCII while 

the drone serial number is an alphanumerical field. 

The GPS coordinates can be extracted multiplying the 

longitude or latitude int32 value by  180  . 

5. DJI, OcuSync and DroneID Protocol

Byte Offset Data Type Value Description

0x00 uint8 0x58 payload length

0x01 uint16 0x10 packet type

0x02 uint8 0x02 version

0x03 uint16 0xD3 0x03 sequence number

0x05 uint16 0xF6 0x3F status

0x07 char[16] “ABCD1234EFGH5678” serial number

0x17 uint32 0x12 0x7B 0x07 0x00 drone longitude

0x1A uint32 0x8B 0x8E 0x55 0x00 drone latitude

0x1E uint16 0xF8 0x02 altitude above sea

0x21 uint16 0xFE 0xFF height from ground

0x23 uint16 0x03 0x00 speed north

0x25 uint16 0x06 0x00 speed east

0x27 uint16 0xF2 0xFF speed up

0x29 uint16 0x88 0xBE yaw

0x2B uint64 0x45 0xF7 0x3F 0xCE 0x84 0x01 0x00 0x00 GPS timestamp

0x33 uint32 0x2B 0x8E 0x55 0x00 pilot latitude

0x37 uint32 0x22 0x7B 0x07 0x00 pilot longitude

0x3B uint32 0x14 0x7B 0x07 0x00 home longitude

0x3F uint32 0x81 0x8E 0x55 0x00 home latitude

0x43 uint8  0x49 model

0x44 uint8 0x13 length of UUID string

0x45 chars[] “ABCD1234EFGH5” UUID

Table 9 - Example of OcuSync telemetry packet content.

π 107
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5. DJI, OcuSync and DroneID Protocol

5.3 Creating Fake DJI Telemetry Packets

Nozomi Networks built an OcuSync telemetry data 

injection framework based on the scripts made available 

by the open source dji_droneid project. This allowed us 

to artificially create OcuSync telemetry packets, giving 

the user complete control over the data written into the 

telemetry packet structure. The output generated by 

these scripts can be given as input to any SDR card able 

to output 10Mhz signals over 2.4 GHz or 5 GHz bands. 

Figure 48 reports the spectrum characteristics of the 

fake signals generated by these scripts.

Figure 48 - Spectrum and Zadoff-Chu correlation peaks of a fake telemetry signal 
(left) and fake telemetry signal in time and frequency (right).
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5. DJI, OcuSync and DroneID Protocol

5.3.1 Replay of OcuSync Telemetry Packets

Beyond generating artificial OcuSync telemetry packets, 

another thing a potential attacker can do is capture 

(with an SDR) a legitimate OcuSync telemetry packet 

transmitted by a real DJI drone and later use the captured 

samples to replay it. For example, with a bladeRF SDR 

card, an OcuSync signal can be captured using the 

following commands (through the bladerf-cli tool):

In the example above, the 10MHz signal is captured 

using 2.3995 as a central frequency and with a sample 

rate of 15.36 samples/s. The captured samples are 

then saved in the file replay.sc16 which uses a SC16 

Q11 (signed complex 11bit) raw binary format where 

each sample requires 32 bits (4 bytes): 16 bits for the 

I component and 16 bits for the Q component (i.e., 

61.44MB of data is required for each second of capture). 

At this point the file can be processed to extract the 

single telemetry packets, each one using more or less 

40KB of data (39,520 bytes).

Otherwise, the attacker can replay the previously 

captured signals (saved in file replay.sc16) using the 

following commands:

Nozomi Networks Labs performed several experiments 

demonstrating that OcuSync telemetry data injected 

using replay techniques is actually received and 

correctly decoded by the Aeroscope; the Aeroscope 

map will show the drones that were present when the 

original signals were captured. 

Our experiments also showed that the Aeroscope 

always considers the telemetry data valid, even when 

the drone location contained in the injected telemetry 

data is several thousand kilometers away from the 

actual position of the Aeroscope.

set frequency rx1 2.3995Ghz

set samplerate rx1 15.36Mhz

set bandwidth rx1 10MHz

set agc rx1 on

rx config file=replay.sc16 n=10G

rx start

set frequency tx1 2.3995Ghz

set samplerate tx1 15.36Mhz

set bandwidth tx1 10MHz

tx config file=replay.sc16

tx start

tx wait
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6. DroneScout ds230 Attack Scenarios

Nozomi Networks developed two frameworks that 

would allow us to implement attacks exploiting both 

the weaknesses in current RID standards as well as the 

vulnerabilities we discovered in ground station receivers. 

The first framework is based on standard Wi-Fi interfaces 

for receiving, parsing, and injecting ODID messages 

containing RID data. The second is based on SDR cards 

for receiving, decoding, encoding and injecting OcuSync 

signals containing DJI droneID protocol data. 

The frameworks we developed would allow a potential 

attacker to inject crafted ODID and OcuSync telemetry 

data into ground station receivers. This fake data could 

be used to achieve different effects such as forging the 

presence of fake drones or hijacking the trajectories 

of legitimately flying drones, thereby impacting the 

security and reliability of RID systems. 

This chapter introduces both our ODID injection 

framework and OcuSync telemetry data injection 

framework, then presents proof-of-concept attack 

scenarios designed to highlight the risks involved 

in RID systems as currently designed. The technical 

descriptions of the presented attacks will mostly focus 

on ODID protocol. However, except for differences 

in radio technologies and injection mechanism, the 

attacks similarly impact the DJI Aeroscope and its 

proprietary droneID protocol.

6.1 ODID Injection Framework

This injection framework takes advantage of both 

intrinsic ODID protocol weaknesses and vulnerabilities 

in the DroneScout ds230 ground station receiver, which 

we described in Chapter 4. In order to capture and 

analyze ODID traffic transmitted by consumer drones44  

and perform injection attacks, we created a python 

framework built on top of the ODID project’s reference 

implementation library.45

The official ODID reference implementation library 

is implemented in C programming language. To 

create the required Python bindings, we leveraged 

the Binder project46 to automatically generate 

as much bindings code as possible; we manually 

developed the missing code for parts of the reference 

implementation library that Binder was not able 

to support. Using Python programming language 

allowed us to quickly create different experimental 

ODID reception and injection prototypes.

44   Specifically, for all our experiments we used DJI Mini 3 Pro drones equipped with firmware version 01.00.0150. With this firmware the drone 

transmitted Wi-Fi beacon frames containing Open Drone ID data by default, independent of the geographic location of the drone. So, for 

example, it was possible to perform experiments in Europe where, at the time of writing, it was not mandatory for a drone to transmit RID data.
45  See section 3.3.3 in this white paper and github.com/opendroneid/opendroneid-core-c. 
46  Binder is a tool for automatic generation of Python bindings for C++11 projects using Pybind11 and Clang LibTooling libraries. See github.com/

RosettaCommons/binder.

https://github.com/opendroneid/opendroneid-core-c
https://github.com/RosettaCommons/binder
https://github.com/RosettaCommons/binder
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The resulting framework supports the following features:

	y Support for multiple independent Wi-Fi interfaces 

to allow simultaneous ODID traffic monitoring and 

injection on different Wi-Fi channels47;

	y Real time asynchronous Wi-Fi traffic sniffing;

	y Real time asynchronous ODID message injection;

	y Support for different types of ODID (RID) oriented 

attacks like single drone emulation, multiple drone 

emulation, drone copycat (where the framework 

monitors for the presence of legitimate drones and 

injects identical ODID data but with fake locations), 

drone cloud (where the framework creates a cloud 

of emulated drones surrounding the location of a 

legitimate drone), DroneScout timer attack (which 

exploits CVE-2023-29156) and DroneScout adjacent 

channels attack (which exploits CVE-2023-31191);

	y Drone visualization on a map. For this part, the 

framework leverages a locally deployed OpenStreetMap 

tiling server as a backend and a modified version of 

tar109048 for the frontend visualization.

We used this framework to implement all the 

proof-of-concept attack scenarios presented in the 

following sections.

6.2 OcuSync Telemetry Data Injection Framework

This Ocusync telemetry data injection framework was 

developed to receive and decode OcuSync signals 

containing DJI’s proprietary telemetry data transmitted 

by the Mini 3 Pro drone, as well as perform OcuSync 

signal injection attacks against the DJI Aeroscope 

appliance. To do so, we created a python framework 

that directly controls an SDR card to perform the 

required tasks. 

In particular, the framework has been fined tuned to 

work with the BladeRF SDR board. The framework can 

use one or more of these SDR cards to scan all possible 

wireless channels in search of DJI’s OcuSync telemetry 

signals. The framework can also create parallel 

execution threads to create and transmit OcuSync 

signals containing forged telemetry data packets. 

For example, it can be configured to inject telemetry 

packets forging the presence of a DJI drone in a fixed 

and pre-selected location or to inject multiple telemetry 

packets, making multiple drones appear around the 

position of the most recently detected legitimate DJI 

drone (through OcuSync based telemetry). 

47  For our experiments we used multiple Alfa AWUS036ACH USB Wi-Fi dongles. However, any Wi-Fi network interface supporting monitor and 

injection mode is compatible with the framework.
48  Web interface application originally designed for use with ADS-B decoders readsb / dump1090-fa. See github.com/wiedehopf/tar1090.

6. DroneScout ds230 Attack Scenarios

https://github.com/wiedehopf/tar1090
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49  The same attack scenarios also apply to DJI’s proprietary RID protocol and work against the Aeroscope. In this case the attacker must inject 

DroneID telemetry data using an SDR card capable of injecting OcuSync signals.

6. DroneScout ds230 Attack Scenarios

6.3 Attack Scenarios

Nozomi Networks Labs developed five different proof-of-

concept attack scenarios targeting RID protocols (ODID 

and DJI’s proprietary RID protocol) and compatible 

ground receivers (the DroneScout and Aeroscope). The 

attacks presented can be divided into two macro groups: 

1.	 Attacks that target the intrinsic weaknesses of 
current RID protocols. For example, the lack of 

data authentication and encryption, as presented 

in Chapter 2 of this document. These attacks afflict 

any RID receiver and are independent of the actual 

ground station implementation.

2.	Attacks that take advantage of vulnerabilities 
present in the ground station receivers. The attacks 

affecting the DroneScout ds230 ground station 

receiver presented in the Chapter 4 are an example. 

These attacks are not as portable as those in the 

first group because they are specific to each ground 

station and rely on vulnerabilities that can eventually 

be patched. However, they represent an interesting 

case study because they allow the attacker to 

obtain results that would not be possible just from 

leveraging the weaknesses of current RID protocols. 

What follows is a brief description of the five attack 

scenarios developed by Nozomi Networks, divided into 

the two macro groups discussed above:

	y Generic RID attacks (receiver implementation 

independent)49:

	‐ Single drone forging: this scenario showcases 

an attacker injecting ODID traffic to forge the 

presence of a single drone flying in a random 

trajectory in the airspace around the ground 

station receiver.

	‐ Multiple drone forging: similar to the previous 

scenario, but in this case the attacker injects ODID 

messages to emulate the presence of an arbitrary 

number of drones flying in random trajectories in 

the airspace around the ground station receiver.

	‐ Drone cloud: this scenario involves the attacker 

monitoring the airspace for ODID messages 

coming from real drones. When the real drone 

target is detected, the attacker injects ODID traffic 

to emulate the presence of fake drones flying in 

the airspace surrounding the legitimate drone.

	y Ground station-specific attacks:

	‐ DroneScout timer attack: this scenario exploits 

CVE-2023-29156. The attacker injects spoofed 

ODID messages with the right timing to overwrite 

a legitimate drone’s trajectory with a fake 

trajectory. In optimal conditions and using multiple 

attackers, the reliability of this attack can go above 

90%, which we discuss below.

	‐ DroneScout adjacent channels attack: this 

scenario exploits CVE-2023-31191. The attacker injects 

high power spoofed ODID messages on a carefully 

selected Wi-Fi channel to overwrite a legitimate 

drone’s trajectory with a fake trajectory. The attack 

can achieve 100% reliability through the use of 

directional antennas and a high gain transmitter.
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For all the presented proof-of-concept attacks targeting 

ODID or the DroneScout, we used the following equipment:

	y Target (legitimate): DJI Mini 3 Pro drone with 

firmware version 01.00.0150.

	y Attack box: Intel PC running our in-house developed 

ODID reception/injection framework and equipped 

with two ALFA AWUS036ACH USB Wi-Fi dongles.

	y ODID ground station receiver: DroneScout ds230. As 

already discussed, the DroneScout is not a standalone 

device. So, we set up our own MQTT broker based 

on Mosquitto to receive the data captured by the 

DroneScout and leveraged our framework to visualize 

the real and fake drones on a map.

For DJI’s proprietary RID protocol based on OcuSync 

and the Aeroscope, we used:

	y Target (legitimate): DJI Mini 3 Pro drone with 

firmware version 01.00.0150.

	y Attack box: Intel PC or MacBook running our in-

house developed OcuSync reception/injection 

framework connected to a BladeRF SDR card.

	y Ground station receiver: Aeroscope mobile unit. 

In contrast to the DroneScout, the Aeroscope is a 

standalone unit equipped with a monitor capable of 

visualizing detected DJI drones on a map.

In the following sections we assume that the attacker is 

positioned in such a way that the RID injected traffic is 

received by the ground stations. 

The attacker can increase the reception rates of the 

injected wireless traffic by positioning themselves 

“close enough” to the ground station receivers, or in 

a location where they have line-of-sight towards the 

receivers, or by using high power transmitter or high 

gain directional antennas.
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6.3.1 Attack Scenario 1: Single Drone Forging

Scenario Description Impact

The attacker injects Wi-Fi beacons containing 

ODID message packs that emulate the presence 

of a single drone flying in the airspace surrounding 

the DroneScout ds230 ground station receiver. 

The attack takes advantage of the fact that RID 

(ODID) data is not authenticated, and the ground 

station receiver has no way to discern forged RID 

data injected by an attacker from real RID data 

that is usually transmitted by a drone.

The DroneScout ds230 parses the injected ODID 

messages as if they are transmitted by a real 

drone and transmits the processed data to the 

MQTT broker. 

The final user will see a drone appearing on the 

map as if a real drone is positioned in the reported 

location while, in reality, there are no drones flying 

in the monitored airspace.

Figure 49 - Attack scenario 1: Forging of a single drone.
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Here is a step-by-step description of the attack whose 

effects are shown in Figure 49:

	y At the beginning (top left in the figure) no one is 

transmitting RID data, so the DroneScout does not 

detect any beacon frames containing ODID messages 

and does not transmit any data to the MQTT broker. 

The final user sees a map without any drone.

	y The attacker selects an appropriate Wi-Fi channel. 

The channel selection logic can be based on different 

metrics such as how much a channel is occupied or 

detected noise levels. In general, it is better to choose 

channels on the 2.4GHz band because they allow the 

Wi-Fi transmitted frames to reach longer distances.

	y The attacker generates a random MAC address M 

that will be used as source address for the Wi-Fi 

frames that are going to be injected. (Remember 

from Chapter 4 that the DroneScout uses the beacon 

source MAC address as drone identifier.)

	y The attacker starts injecting Wi-Fi beacon frames 

containing an ODID message pack on the selected 

channel. The frames use M as source address. The 

interval between each beacon frame can be chosen 

arbitrarily by the attacker (in our PoC we used 160ms 

which is the same period used by the DJI Mini 3 Pro). 

In each subsequent ODID message pack, the attacker 

modifies latitude, longitude, altitude and speed to 

make the drone appear to follow a random trajectory.

	y The DroneScout captures the first beacons 

containing ODID message packs. The ODID data 

is not authenticated, so the DroneScout accepts 

and parses it. It creates a new entry DM for drone 

with MAC address M (see Chapter 4 for details on 

DroneScout internals) and associates the RID data 

contained in the ODID message to this entry (RIDM). 

Then it transmits a new JSON message containing 

RIDM to the MQTT broker.

	y The user sees a drone appearing on the map (top 

right in the figure).

	y The DroneScout keeps receiving and accepting the 

beacon frames containing ODID data injected by the 

attacker. The DroneScout periodically (every 500ms 

by default) transmits a JSON message containing the 

updated RID data for the drone with MAC address  

M (RIDM) to the MQTT broker.

	y The user sees the drone following the random 

trajectory generated by the attacker (bottom image 

in Figure 49). The user has no way to tell if the drone 

is real or not just by looking at the map. They can 

attempt to visually confirm the presence of the drone, 

however this is not always feasible since drones are 

small and can easily fly at low altitudes or behind 

obstacles, making it extremely hard to see them. Even 

assuming the user can visually confirm the presence 

of the drone, it is possible to make their life even 

harder by emulating a vast number of drones. This is 

the attack scenario explored in the next section.

The same attack scenario can also be replicated in the 

case of DJI’s proprietary RID protocol. In this situation, 

the attacker uses the SDR card to inject OcuSync 

signals containing forged telemetry packets. The 

Aeroscope will accept the injected telemetry data as 

valid and the forged drone will appear on the map on 

the Aeroscope’s built-in display. Figure 50 shows the 

effect of this attack scenario against the Aeroscope. In 

this example, the attacker injected forged DJI telemetry 

data to make a drone flying over the Bern airport 

appear on the map.
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Figure 50 - Attack scenario 1 in case of OcuSync: forging a single drone over the Bern airport.

6.3.2 Attack Scenario 2: Multiple Drone Forging

Scenario Description Impact

The attacker injects Wi-Fi beacons containing 

ODID message packs that emulate the presence 

of an arbitrary number of drones flying in the 

airspace surrounding the DroneScout ds230 

ground station receiver. Each emulated drone 

follows an independent random trajectory. 

As in the previous case, the attack takes 

advantage of the fact that RID (ODID) data is not 

authenticated, and the ground station receiver 

has no way to discern forged RID data injected 

by an attacker from real RID data that is usually 

transmitted by a drone.

The DroneScout ds230 parses the injected ODID 

messages as if they are transmitted by real 

drones and transmits the processed data to the 

MQTT broker. 

The final user will see multiple drones appearing 

on the map as if real drones are positioned in the 

reported locations, while in reality there are no 

drones flying in the monitored airspace. In this case 

it will be much more difficult, if not impossible, for 

the user to visually confirm the data reported on 

the map (e.g., tell if all the reported drones are fake 

or if there is at least one real drone).
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Figure 51 - Attack scenario 2: Forging of multiple drones.

Here is a step-by-step description of the attack whose 

effects are shown in Figure 51:

	y At the beginning (top left in the figure) no one is 

transmitting RID data and the final user sees a 

map without any drones (the same as the previous 

attack scenario).

	y The attacker selects an appropriate Wi-Fi channel 

(see attack scenario 1 for a discussion on channel 

selection). In this case the attacker could also decide 

to use multiple Wi-Fi channels and emulate different 

drones on different Wi-Fi channels. This would make 

the attack more realistic. However, in our PoC, to keep 

things simpler, we used a single Wi-Fi channel for all 

emulated drones.

	y For each drone i that they want to emulate, the 

attacker generates a random MAC address Mi. Given 

that the MAC address is used by the DroneScout to 

identify a drone (i.e., associate the received RID data 

to the right drone) it is important that each emulated 

drone has its own unique MAC address.
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	y The attacker starts injecting beacon frames containing 

ODID messages. For each drone i the attacker must 

periodically (e.g., every 160ms) inject a separate beacon 

frame with source address Mi. Also in this case, for 

each drone and for each subsequent ODID message 

associated with that drone, the attacker modifies the 

latitude, longitude, altitude and speed to make the 

drone appear to follow a random trajectory.

	y The DroneScout captures the first beacons 

containing ODID message packs. The ODID data is 

not authenticated, so the DroneScout accepts and 

parses it. It creates a new entry DMi for each drone 

with a MAC address Mi (see Chapter 4 for details on 

DroneScout internals) and associates the RID data 

contained in the ODID message to this entry (RIDMi). 

Then it transmits a new JSON message containing 

RIDMi to the MQTT broker. 

	y The user sees a drone appearing on the map (top 

right in Figure 51).

	y The DroneScout keeps receiving and accepting the 

beacon frames containing ODID data injected by 

the attacker.

	y When a new ODID message is received from a MAC 

address Mi that has not been seen before, the user 

will see a new drone appear on the map (middle left 

and right in Figure 51).

	y When a newly received ODID message arrives from 

a known MAC address Mi the user will see a drone on 

the map moving. Each drone has its own independent 

trajectory (bottom left and right in the figure).

	y In this case the user has no way to tell if the reported 

drones are real or not just by looking at the map. The 

user may be aware of being under attack by visually 

confirming that there are not so many drones flying 

around. However, it can be hard to visually confirm 

whether at least one of the drones reported on the 

map is real.

The same attack scenario can also be replicated in the 

case of DJI’s proprietary RID protocol. The attacker 

uses the SDR card to inject OcuSync signals containing 

forged telemetry packet to fake the presence of 

multiple drones. The effect of this attack scenario 

against the Aeroscope is shown in Figure 52. All the 

forged OcuSync telemetry packets injected by the 

attacker are considered valid by the Aeroscope and the 

corresponding drones are visualized on the map.

Figure 52 - Attack scenario 2 in case of OcuSync.
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6.3.Attack Scenario 3: Drone Cloud

Scenario Description Impact

This scenario assumes there is a real (legitimate) 

drone flying in the airspace monitored by the 

DroneScout receiver. 

The attacker is interested in creating confusion 

by making an arbitrary number of fake drones 

appear to be flying around the real drone and 

following the same trajectory.

The DroneScout receives and parses both ODID 

messages transmitted by the real drone and ODID 

messages injected by the attacker. 

The user sees a cloud of drones surrounding the 

legitimate drone on the map, making it difficult to 

determine the actual location of the real drone.

Figure 53 - Attack scenario 3: cloud of drones.
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Here is a step-by-step description of the attack whose 

effects are shown in Figure 53:

	y As in the previous scenarios, at the beginning (top left 

in the figure) no one is transmitting RID data and the 

final user sees a map without any drone reported.

	y Then an operator starts flying their own legitimate 

drone. The drone periodically transmits ODID 

messages in Wi-Fi beacon frames containing real RID 

data. Those messages are captured and parsed by the 

DroneScout that transmits the corresponding JSON 

messages to the MQTT broker. The DroneScout’s user 

sees the legitimate drone appearing on the map and 

following a certain trajectory (top right in Figure 53).

	y The attacker, with Wi-Fi monitoring capabilities, 

receives the ODID messages transmitted by the 

real drone. Then for each drone i that they want to 

emulate (the number of drones to inject for creating 

the cloud is configurable), they generate a random 

MAC address Mi.

	y For each drone they want to emulate, the attacker 

injects a beacon frame with source address Mi  

containing an ODID message whose latitude, longitude 

and latitude are near (where near is configurable, e.g., 

20 meters) to the last location reported in the last 

captured ODID message coming from the real drone.

	y The user sees a cloud of drones surrounding the 

legitimate drone (bottom left in Figure 53). 

	y For each newly captured ODID message coming from 

the real drone, the attacker injects an ODID message 

for each address Mi, updating the location information 

to maintain the emulated drones near the real drone.

	y The user sees the cloud of drones following the same 

trajectory as the real drone (bottom right in Figure 

53), making it difficult to identify the exact location of 

the real drone.

The same attack scenario can also be replicated in the 

case of DJI’s proprietary RID protocol. In this situation, 

the attacker uses the SDR card to inject OcuSync 

signals containing forged telemetry packets. The 

Aeroscope will accept the injected telemetry data as 

valid and the forged drone will appear on the map on 

the Aeroscope’s built-in display. Figure 54 shows the 

effect of this attack scenario against the Aeroscope. In 

this example, the attacker injected forged DJI telemetry 

data to make a drone flying over the Bern airport 

appear on the map.

Figure 54 - Attack scenario 3 in the case of OcuSync.
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6.3.4 Attack Scenario 4: DroneScout Timer (CVE-2023-29156)

Scenario Description Impact

This scenario assumes there is a real drone flying in 

the airspace monitored by the DroneScout receiver. 

The attacker injects, at precise times, spoofed ODID 

messages, using the MAC address of the real drone as 

source address. This injection forces the DroneScout to 

drop RID data transmitted by the real drone and only 

report the false, injected RID data to the MQTT broker.

Note: This proof-of-concept attack exploits the 

DroneScout ds230’s vulnerability identified by 

CVE-29156. We refer the reader to Chapter 4 for 

a technical description of how the vulnerability 

works and how it can be exploited.

The user sees a drone on the map, which is a 

legitimate drone flying in monitored airspace, 

however the trajectory followed by the real drone 

is different than the one visualized on the map. 

The attacker can use this scenario to achieve the 

false prosecution of an innocent operator, for 

example, by making a legitimate drone appear to 

be in a no-fly zone. 

Analogously, an attacker could make a drone in a 

no-fly zone appear to be outside of the no-fly zone.

Figure 55 - Attack scenario 4: DroneScout timer. 
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Here is a step-by-step description of the attack whose 

effects are shown in Figure 55:

	y An operator starts flying their own legitimate drone D 

with MAC address MD. The drone periodically transmits 

ODID messages in Wi-fi beacon frames containing real 

RID data RIDM. Those messages are captured and parsed 

by the DroneScout that transmits the corresponding 

JSON messages to the MQTT broker. The DroneScout’s 

user sees the legitimate drone appearing on the map and 

following a certain trajectory (top left in Figure 55).

	y The attacker, with Wi-Fi monitoring capabilities, receives 

the ODID messages transmitted by the real drone. The 

attacker creates ODID messages with spoofed source 

MAC address MD containing crafted RID data RIDD1. In 

our PoC, the crafted RID data RIDD1 is generated in such 

a way that the drone appears to be moving west. The 

attacker then injects these messages in such a way that 

each is injected 500ms or more after RIDM has been 

transmitted to the MQTT broker and before D transmits 

its next ODID message containing the real RIMD (see 

Chapter 4 to understand why this is done in this way). 

	y The user sees the real drone pointing west on the 

map (top right in Figure 55).

	y When the attacker stops injecting the ODID 

message, the user sees the actual position of the real 

drone again (bottom left in the figure). In real attack 

scenarios the attacker does not have to stop the 

injection. In the PoC this was done to demonstrate 

that the real drone was not actually flying west.

	y When the attacker starts injecting the ODID messages 

again, the user sees the real drone pointing west again 

(bottom right in the figure).

As explained in the previous chapter, for this attack to 

work the attacker must inject the ODID messages with 

crafted RID data with precise timing (500ms or more 

after RIDM has been transmitted to the MQTT broker and 

before D transmits its next ODID). The problem here 

is that the attacker does not know the internal state of 

DroneScout timestamps and timers. This means that 

the attacker does not know the right times to inject the 

spoofed ODID messages, so they can only try to predict 

the right times. This makes the attack probabilistic. 

In order to increase the chance of success, the attacker can 

increase the number of injected ODID messages and inject 

them on multiple Wi-Fi channels at once. Preliminary non-

optimized experiments performed with a single channel 

injection strategy showed that it is quite easy to achieve an 

attack success rate above 90%. However, when the predicted 

injection time of the attacker is wrong, the actual location 

of the drone will appear on the map for a few instants. This 

example is shown in Figure 56, where the attacker was 

injecting ODID messages to make the drone appear like it 

was going west but at a certain point the attack failed and the 

location of the drone briefly jumped back to its real position.

Figure 56 - Attack scenario 4: DroneScout timer attack is not 100% reliable.
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6.3.5 Attack Scenario 5: DroneScout Adjacent Channels (CVE-2023-31191)

Scenario Description Impact

This scenario assumes there is a real drone flying in the 

airspace monitored by the DroneScout receiver. The 

attacker injects, with precise timing, spoofed ODID 

messages, using the MAC address of the real drone 

as source address. This forces the DroneScout to drop 

RID data transmitted by the real drone and only report 

the RID data injected by the attacker to the MQTT 

broker. This attack scenario and impact are identical to 

the previous attack scenario, however, in this case the 

attack is 100% reliable if a high-power transmitter or 

high gain directional antennas are used.

Note: This proof-of-concept attack exploits the 

DroneScout ds230 vulnerability identified by 

CVE-31191. We refer the reader to Chapter 4 for 

a technical description of how the vulnerability 

works and how it can be exploited. 

The user sees a drone on the map, which is a 

legitimate drone flying in monitored airspace, but 

the trajectory it is following in reality is different 

than what is visualized on the map. 

The attacker can use this scenario to achieve the 

false prosecution of an innocent operator, for 

example, by making a legitimate drone appear to 

be in a no-fly zone. 

Or, similarly, the attack could be used to make a 

drone in a no-fly zone appear to be outside the 

no-fly zone.
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Figure 57 - Attack Scenario 5: DroneScout adjacent channels.

Here is a step-by-step description of the attack whose 

effects are shown in Figure 57:

	y An operator starts flying their own real and legitimate 

drone D with MAC address MD. The drone periodically 

transmits ODID messages in Wi-Fi beacon frames 

containing real RID data RIDM. Those messages are 

captured and parsed by the DroneScout, which 

transmits the corresponding JSON messages to 

the MQTT broker. The DroneScout’s user sees the 

legitimate drone appearing on the map and following 

a certain trajectory (top of Figure 57). The beacon 

frames containing ODID data are received by the 

DroneScout with power MD->RSSI.

	y The attacker creates ODID messages with spoofed 

source MAC address MD and containing crafted RID 

data RIDD1. In our PoC, the crafted RID data RIDD1 

is generated in such a way that the drone appears 

moving west. The attacker then injects the messages 

with spoofed source on an adjacent channel Ca 

(e.g., if the drone D is transmitting on channel 6, 

the attacker can transmit on channel 8). Also, the 

beacon frames containing RIDD1 must be transmitted 

with high enough power that they are received by 

the DroneScout with an RSSI Ra that satisfies the 

condition ((Ra - MD->RSSI) > 6) (see Chapter 4 to 

understand why this is done in this way). 

	y The user sees the real drone pointing west on the 

map (middle of Figure 57).

	y When the attacker stops, the real location of the 

drone is revealed (bottom of the figure).
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7. Conclusion

Unfortunately, policy requirements making drone RID 

systems “immediately actionable” led to the deployment 

of RID protocols that do not protect telemetry data 

confidentiality nor guarantee telemetry data integrity 

and authentication. This makes current RID systems 

open to injection attacks. Moreover, vulnerabilities 

in ground station receivers, like the ones we found 

affecting the DroneScout ds230, open the possibility 

of more sophisticated types of attacks, making the 

situation even worse.

In this research we studied how RID ground stations 

in charge of receiving drone telemetry data can be 

abused by a malicious user. By leveraging both RID 

system intrinsic weaknesses and the vulnerabilities 

we found on ground station receivers, we identified 

attack scenarios where an attacker could emulate the 

presence of fake drones, spoof legitimate telemetry 

data, inject fake drone trajectories and, ultimately, 

disrupt RID functionalities. 

When critical infrastructure facilities are involved 

(airports, military bases, industrial areas, etc.), these 

attacks become particularly serious because they can 

lead to the disruption of critical operations. We believe 

that this work is important because it highlights the type 

of risks that a final user, like a law enforcement agency 

or a critical infrastructure provider, could face if they 

decided to rely exclusively on RID systems to monitor for 

the presence of drones in the surrounding airspace, or to 

make security and safety related decisions.

Drone RID regulations and standards, which require 

drones to periodically broadcast their telemetry 

information, will play an essential role in the future 

of aviation. This is true both in terms of airspace 

security and safety as drones allow entities such as law 

enforcement and critical infrastructure authorities to be 

aware of the drones flying surrounding a certain area. 

RID systems, as currently designed, should not be used 

as the one and only source of information for taking 

security and safety sensitive decisions.
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