
1
WHITE PAPER

Not the Drones You're Looking For

WHITE PAPER

Not the Drones
You're Looking For
Spoofing Drone Locations by Manipulating
Remote ID Protocols and Communications

2
WHITE PAPER

Not the Drones You're Looking For

Table of Contents

1. Introduction	 4

2. Drone Remote Identification (RID)	 5

2.1 RID Background	 7
2.1.1 RID Standards and Regulations 	 7

2.1.2 RID Protocol Security Flaws 	 7

2.2 DJI and the OcuSync-Based DroneID Protocol	 8

3. Open Drone ID (ODID) Protocol	 9

3.1 ODID Protocol Background	 9
3.1.1 ODID Communication Methods and Technologies	 11

3.2 ODID Message Format and Encoding	 12
3.2.1 ODID Message Blocks	 13

3.2.2 ODID Message Packs 	 16

3.2.3 ODID Reference Implementation Library	 17

3.3 Wi-Fi ODID Traffic Capture Example	 21

4. Reverse Engineering the BlueMark DroneScout ds230	 24

4.1 DroneScout ds230 Characteristics	 24

4.2 DroneScout ds230 Hardware 	 26

4.3 DroneScout Firmware Reverse Engineering	 29
4.3.1 DroneScout Firmware Main Executable: dronescout.arm64	 32

4.4 DroneScout ds230 Vulnerabilities	 39
4.4.1 Vulnerability Analysis: CVE-2023-29156	 40

4.4.2 Vulnerability Analysis: CVE-2023-31191	 43

5. DJI, OcuSync and DroneID Protocol	 46

5.1 DJI Aeroscope Appliance	 46

5.2 OcuSync Communication Methods and Technologies	 48
5.2.1 OcuSync Message Format and Encoding	 49

5.2.2 Telemetry Signal Detection and Extraction	 51

5.2.3 Telemetry Signal Decoding	 52

5.2.4 Telemetry Packet Data Structure	 53

5.3 Creating Fake DJI Telemetry Packets	 55
5.3.1 Replay of OcuSync Telemetry Packets	 56

3
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios	 57

6.1 ODID Injection Framework	 57

6.2 OcuSync Telemetry Data Injection Framework	 58

6.3 Attack Scenarios	 59
6.3.1 Attack Scenario 1: Single Drone Forging	 61

6.3.2 Attack Scenario 2: Multiple Drone Forging	 63

6.3.3 Attack Scenario 3: Drone Cloud	 66

6.3.4 Attack Scenario 4: DroneScout Timer (CVE-2023-29156)	 68

6.3.5 Attack Scenario 5: DroneScout Adjacent Channels (CVE-2023-31191)	 70

7. Conclusion	 72

4
WHITE PAPER

Not the Drones You're Looking For

1. Introduction

Consumer drones freely accessing the airspace are

fundamentally changing aviation and posing new safety

and security challenges. For this reason, Civil Aviation

Authorities (CAAs) worldwide have started pushing for the

adoption of Remote Identification (RID) rules and protocols

for consumer drones. RID regulations require drones to

periodically broadcast their telemetry information, enabling

third-party entities such as law enforcement to identify and

locate drones and their operators. These regulations began

to be finalized around 2022, and in the second half of that

year, the first RID-capable consumer drones became

available on the market. The support for RID technologies

will become mandatory and pervasive in the years to come.

One of the main reasons RID regulations and standards

have been developed is that drones are “low observable”

objects; they have small radar cross sections, make noise

that is difficult to detect beyond a certain distance,

can fly at extremely low altitudes and are highly

maneuverable and thus can fly under trees and between

buildings. These characteristics make existing airspace

monitoring technologies, like radar and vision systems,

not always suitable for reliably tracking drones.

RID standards and regulations aim to increase safety and

security for both drone operators and airspace operations.

One or more unauthorized drones entering the airspace of

an airport, military base or other critical infrastructure facility

could result in huge economic and/or physical damage. For

example, Gatwick Airport experienced an incident in 2018

where two drones flying near the airport forced authorities

to divert approximately 1,000 flights, affecting around

140,000 passengers with a loss of about £800,000.

However, another scenario presents itself: imagine if

a malicious user were able to recreate the impact of

drones in a no-fly zones—without requiring a real drone.

Such a situation could be achieved by injecting fake RID

data into a wireless channel to emulate the presence

of drones. This could allow threat actors to execute

pervasive and low effort drone-based attacks in order to

disrupt critical infrastructure services.

Recognizing the importance of drone RID technologies

for the future of aviation, Nozomi Networks Labs

conducted research on their vulnerabilities and risks.

This white paper details the results of our research,

which resulted in attack scenarios illustrating how an

attacker could forge the presence of drones, inject fake

drone trajectories and disrupt RID functionalities on

RID protocols. The purpose of this research and of these

attack scenarios is to highlight the type of risks involved

in the use of these technologies as currently designed.

In the following chapters, we introduce current RID

protocols and share our analysis of two of the most

widely used: Open Drone ID and DJI’s DroneID. Open

Drone ID (ODID) is an open-source protocol compliant

with most widespread RID specifications. DJI is the

leading consumer drone vendor, and their DroneID RID

protocol is based on the proprietary Radio Frequency

(RF) protocol called OcuSync.

Next, we look at ground station receivers, which receive

the signals broadcast by drones and are potential targets

of attacks involving RID data spoofing. We found multiple

vulnerabilities in the DroneScout ds230, one of the first

commercially available fixed ground station receivers

compliant with the ODID protocol. We built attack

scenarios that then exploited these vulnerabilities to

illustrate the security weaknesses in RID protocol receivers.

Finally, Nozomi Networks Labs developed a Software

Defined Radio (SDR) OcuSync signal injector and an

asynchronous ODID reception and injection framework

that allowed us to experiment with RID traffic. We

used these tools to create proof-of-concept attack

scenarios that showcase how an attacker could forge

the presence of drones by injecting fake trajectories and

disrupting RID functionalities.

5
WHITE PAPER

Not the Drones You're Looking For

2. Drone Remote Identification (RID)

RID protocols established by the CAA mandate consumer

drones (or more technically Unmanned Aircraft Systems

[UAS]) to periodically broadcast their telemetry information.

Dedicated fixed or mobile ground station receivers then

receive and process this information, enabling third-party

entities such as law enforcement, critical infrastructure

managers, other airspace participants, UAS Traffic

Management (UTM) and UAS Service Suppliers (USS) to

identify and locate drones and their operators.

The main goal of RID is to bolster the safety, security

and responsibility of drone activities, especially when

drones might be flying near other aircraft or sensitive

locations. This identification is also a deterrent to

illicit or unauthorized drone actions like smuggling,

espionage or attacks.

Our research in this white paper focuses on Direct

or Broadcast RID,1 its intrinsic weaknesses and the

vulnerabilities in compliant receivers to showcase the

risks involved in the use of this technology. Broadcast

RID specifies the use of wireless technology to

broadcast RID data to nearby surroundings; an example

scenario is depicted in Figure 1. Any interested observer

can use any compliant receiver to capture and visualize

RID information and the location of surrounding drones

on a map. Captured data can potentially be forwarded

to a USS for further elaboration.

The advantage of Broadcast RID systems is that they do

not require any internet connection or cloud backend

infrastructure to work. They are designed to make the data

available to any close receiver. A second RID mechanism,

Network RID, requires the use of cellular networks (4G,

5G, etc.) to transmit telemetry data to an authenticated

server which can then be accessed by authorized

parties anywhere in the world. Given that Network RID

Figure 1 - With Direct/Broadcast RID, any interested observer can use any compliant receiver to capture RID information.

Operator

Broadcast UAS

Interested
Observer

Remote ID
Display Application

RID APP

USS
Data

Requests

UA Control Links

USS Interface

Remote ID Requests & Data

Control Link (2-way)

1 Specifically, it is called Direct RID in Europe and Broadcast RID in the United States. For simplicity, we use “Broadcast RID” throughout this white paper.

6
WHITE PAPER

Not the Drones You're Looking For

Figure 2 - Drones that are in-scope and out-of-scope for RID compliance.

Out of Scope

In Scope

2. Drone Remote Identification (RID)

specifications are currently a work in progress and that

there was no public implementation available for testing at

the time of writing, the research in this white paper focuses

on Broadcast RID and will not discuss Network RID.2

The type of information required to be broadcast by each

drone depends on local regulations, which vary by region.

However, as a rule, all drones must periodically transmit

the following basic information from takeoff to shutdown:

	y Drone ID or UAS ID (where the ID format and the procedure

for registering a drone ID is defined by local regulators).

	y Drone longitude, latitude, altitude, direction and velocity.

	y Control station (or operator) real-time location and elevation.

	y Time mark.

	y Drone class and operation category.

While there are many types of drones, like fixed-wing,

rotary-wing, hybrid, balloon, rocket or others, as a rule,

all consumer and commercial drones weighing more

than 249 grams (0.55 pounds)3 must be compliant

with RID regulations. Exceptions apply to certain drone

models operated according to specific guidelines or

for government, military and other authorized entities.

Figure 2 provides examples of drones that must be

compliant with RID rules (In Scope) and drones that are

exempt (Out of Scope).

A drone can either support RID capabilities through a built-

in module installed or activated by the manufacturer4 or

with an RID add-on device consisting of transmitters that

attach to a drone’s body. The latter is especially useful for

pilots with older or custom-built drones that cannot be

upgraded to support RID policies and protocols.

2 Network RID will eventually become mandatory in Europe under the U-Space program, while, at the time of writing, there is no Network RID mandate in

the US. It is considered a technically more complicated approach than the Direct/Broadcast RID, as Network RID requires a reliable and secure channel.
3 Some vendors are also enabling RID functionality on drones weighing less then 249 grams, like DJI’s Mini 3 Pro. Many regulations also state that once

RID is turned on, it cannot be turned off again (e.g., through a firmware downgrade).
4 Called Standard RID drone in U.S. and C-class certified drone in the EU. Currently, the IETF DRIP (Drone Remote ID Protocol) task force is working to

define mechanisms to support security in the context of the ASTM RID.

7
WHITE PAPER

Not the Drones You're Looking For

2.1 RID Background

2.1.1 RID Standards and Regulations

Europe, the U.S. and Japan are currently the most active

regions in terms of developing Direct/Broadcast RID

policies and rules. These three regions share similar

high-level architecture and RID system rules as all three

allow the usage of the same RID protocol reference

implementation, Open Drone ID.

To make sense of all available RID documentation and

information, one must focus on three aspects:

	y Technical standards: used to define RID transmission

methods and message formats. The two main

standards today are the ASTM5 F3411 in the U.S. and

the ASD-STAN prEN4709-02 in the EU. Both rely on

wireless protocols in the unlicensed spectrum to

broadcast the identification and telemetry data from

UAs to ground observers. In particular, they define

transport methods over Wi-Fi and Bluetooth.

	y Regulations: used by local regulation authorities,

like the Federal Aviation Administration (FAA) in

the U.S. and the European Aviation Safety Agency

(EASA) in the EU, to specify RID rules and policies that

tailor the technical standards according to specific

local regulatory requirements. For instance, while

the standards label certain fields as "optional", local

regulations might deem some of them necessary. In

such cases, the regulation documents can indicate

specific deviations from the standards.

	y Reference implementations: example implementations

of a technical standard designed to be flexible

enough to be adapted to different regulations. They

facilitate interoperability between receivers and

transmitters and, by having a single, carefully tested

reference implementation shared among vendors, they

help reduce security bugs in the code. For Broadcast

RID specifications, the most widely used reference

implementation is maintained by the Open Drone ID

(ODID) project, which we discuss in Chapter 3. One of

the first commercially available fixed ground station RID

receivers, produced by BlueMark and called DroneScout

ds230, is internally based on the ODID reference

implementation library and is discussed in Chapter 4.

Being so recent, these regulations, standards and reference

implementations are continuously evolving. We advise

interested readers to refer to official documentation

from local authorities or drone-remote-id.com, which

summarizes the most recent news on this subject.

2.1.2 RID Protocol Security Flaws

The goal of UAS-RID regulations is to improve the physical

safety and security of airspace by providing immediately

actionable drone telemetry data to regulators and law

enforcement organizations. However, this industry has

not yet succeeded in creating reliable workable schemes

for the global distribution of cryptographic keys. Leaving

the protocols open was the only choice to guarantee that

anyone with a qualified ground station could receive,

decode and interpret RID signals, although the need to

introduce cyber security measures to protect telemetry

data was clear to the security professionals involved in

RID protocol design. While Trusted Platform Modules

(TPM) can be used to safely store keys on drones, this not

only increases a drone’s cost but still does not solve the

problem of distributing the keys.

This conflict between physical and cyber security

requirements, together with the fact that drone vendors

2. Drone Remote Identification (RID)

5 ASTM International: astm.org.

https://drone-remote-id.com/
https://www.astm.org

8
WHITE PAPER

Not the Drones You're Looking For

were forced to comply with UAS-RID rules in a short

period of time, led to the design and deployment

of RID protocols that do not protect telemetry data

confidentiality and integrity, and do not provide telemetry

data authentication (Figure 3). This leaves current RID

protocols open to traffic injection attacks like those we

discuss in the attack scenarios in Chapter 6. Since the RID

data is not authenticated, the receivers have no way to

differentiate between real RID data transmitted by a real

drone and forged data transmitted by a malicious user.

While we are aware that insecure RID is not a trivial problem

to solve and that it will require the time and collective

effort of security experts around the world, we believe it is

important to bring awareness to issues that may arise from a

global deployment of RID protocols as currently designed.

2. Drone Remote Identification (RID)

Figure 3 - Current RID protocols lack encryption, authentication and integrity checks, meaning this data cannot be trusted.

Lack of Privacy

Data Cannot be Trusted

No Encryption

No Authentication

No Integrity Check

2.2 DJI and the OcuSync-Based DroneID Protocol

In the second half of 2022, DJI, the leading drone vendor

with over 70% of the global market share, introduced

support for RID regulation and policies into its drones

though the adoption of the ODID protocol. However,

prior to the introduction of RID rules, DJI designed and

deployed DroneID, its own proprietary RID protocol. All

DJI drones broadcast DroneID telemetry data using DJI’s

proprietary radio protocol, OcuSync.6 Given that custom

hardware is required to receive OcuSync signals, DJI also

started producing and selling proprietary ground station

receivers, Aeroscopes, specifically designed to detect DJI

drones in surrounding areas and visualize them on a map.

The research presented here relied on the DJI Mini 3 Pro

drone model with firmware version 01.00.0150. We used this

firmware to perform the experiments, capture RID traffic

and test the proof-of-concept attack scenarios. Nozomi

Networks Labs also had the opportunity to test one of

DJI’s Aeroscope appliances and analyze its behavior from

a security perspective. Chapter 5 provides more details

about OcuSync, DroneID RID protocol and the Aeroscope.

DJI’s proprietary RID protocol suffers from the same

type of weaknesses as ODID, as it does not protect the

confidentiality and integrity of drone telemetry data and

does not provide any form of authentication. This makes

DroneID subject to the same type of attacks scenarios

that target ODID, which we describe in Chapter 6.

6 Early generations of DJI drones used 5MHz channels with Wi-Fi modulation to broadcast telemetry data. This channel is no longer supported

in recent models.

9
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

The Federal Aviation Administration (FAA) in the U.S.,

Aerospace and Defense Industries Association of Europe

(ASD) and other regulatory agencies around the world

are moving towards requiring RID for most drones

operating in their airspace. The ODID protocol aims to

provide a standardized, open-source solution for this

requirement7 by means of a reference implementation

library for the protocol and various example tools for

testing reception and transmission of ODID messages.

Understanding how the ODID protocol works is necessary

to implement the ODID injection framework and develop

the attack scenarios that we introduce in Chapter 6. For

this reason, this chapter describes the main features of the

ODID protocol, its supported communication methods,

the format of the specified messages and an example of

real ODID (RID) data transmitted by a consumer drone.

3.1 ODID Protocol Background

ODID is an initiative aiming to create an affordable and

reliable RID system for UAS that allows receivers and ground

stations within range to identify and locate drones and their

operators. The transmitted data may include information

such as a drone's ID, current location, direction, speed,

operator information and other relevant telemetry data.

As mandated by recent RID regulations and policies,

telemetry data broadcast by drones using the format

specified by the ODID project can be used by the general

public, law enforcement, critical infrastructure managers,

Air Traffic Control (ATC) systems or even other drones to

improve situational awareness of the surrounding airspace.

The accessibility of this protocol thereby increases both

safety and security and creates accountability for drone

operators (Figure 4). This system is in some ways analogous

to the transponder technology used in manned aviation.

Figure 4 - Open Drone ID broadcasts can be received by law enforcement officers,
critical infrastructure managers and Air Traffic Control systems.8

7 The project is hosted in a dedicated GitHub organization: github.com/opendroneid.

https://github.com/opendroneid

10
WHITE PAPER

Not the Drones You're Looking For

Most RID regulations around the world divide

transmitted information into static and dynamic data,

where the static data can be broadcast less frequently

than the dynamic data. The ODID project provides

the flexibility to create different types of messages

transporting different types of information, making it

possible to create messages that only contain static

data. For example, Figure 5 shows a scenario where a

drone broadcasts one message transporting static data

for every three messages transporting dynamic data.

The static data includes the drone registration number

and flight information, which does not change during a

single flight. Meanwhile, dynamic data can include the

drone’s location (latitude and longitude), which changes

with high frequency and thus must be broadcast more

often to allow an ODID receiver (e.g., law enforcement

officer) to have accurate location information.

The decision to split static and dynamic RID information

between two different message types transmitted with

different frequencies is up to the developer of the RID

module running on the drone. For example, a drone

vendor could decide to develop RID functionalities

that include both static and dynamic data in all

the broadcast RID messages and then configure a

transmission frequency that is enough to satisfy the

timing requirements of the dynamic data.8

3. Open Drone ID (ODID) Protocol

Figure 5 - Dynamic RID data, such as a drone’s location, is often shared more
frequently than static RID data like operator information.9

Msg

Msg

Msg

Msg

Msg

Reg#
Flt Info

Lat/Lon
Vector

Lat/Lon
Vector

Lat/Lon
Vector

Reg#
Flt Info

Static Data

Dynamic Data

8 The disadvantage of this approach is that all the ODID messages transmitted by the drone will be a few bytes longer than necessary.

11
WHITE PAPER

Not the Drones You're Looking For

Messages transmitted by drones are always

“connectionless advertisements”, meaning that

they do not require acknowledgment from the

receiver. Considering the unreliable nature of wireless

transmission as a medium (i.e., a transmitted message

is not guaranteed to be received at destination),

frequently transmitting dynamic data increases the

probability that enough messages will reach their

destination (i.e., RID receivers).

ODID’s reference implementation core library allows

developers to implement both the transmission

and reception functionalities of an RID system. The

transmission logic, which is in charge of broadcasting

RID messages, is typically installed on drones or on

add-on modules9 that must be mounted on drones.

The reception logic, in charge of monitoring wireless

channels and decoding the received RID messages, is

typically installed on receiving equipment like mobile

phones, tablets or dedicated fixed ground stations.

The Open Drone ID project focuses exclusively on

the Broadcast RID method10 with the purpose of

specifying exactly how a drone must transmit each RID

message (i.e., how the data contained in the messages

is encoded and packed) so that a compatible receiver

system is able to receive, decode and interpret those

messages. The standard specifies that ODID messages

containing RID data must be transmitted using either

Wi-Fi or Bluetooth, making it possible to receive RID

data using inexpensive hardware already available on

the market. No other wireless technology is currently

supported or specified by the standard.

3.1.1 ODID Communication Methods
and Technologies

ODID messages can be transmitted using Wi-Fi (IEEE

802.11), Bluetooth or both. When Wi-Fi is used, the

ODID transmitter (i.e., the drone) can use either the

2.4GHz or 5GHz band, although the former is more

common because it provides a bigger expected

transmission range and is compatible with more types

of receiving hardware. Different broadcast modes are

supported for both Wi-Fi and Bluetooth: Wi-Fi (IEEE

802.11) Neighbor Awareness Networking (NaN), Wi-

Fi beacon, Bluetooth Low Energy (BLE) (Bluetooth

4.x compatible) Advertisements and Bluetooth 5.0

Extended Advertisements.

This white paper focuses exclusively on the Wi-Fi beacon11

broadcasting method as, at the time this research was

carried out, it was the only ODID broadcasting method

supported by the first RID compliant drone models

available on the market. In short, with Wi-Fi beacon

ODID broadcasting, the transmitter encapsulates

ODID telemetry messages in a vendor specific (0xdd)

Information Element (IE), with the Organizationally

Unique Identifier (OUI) set to ASD-STAN (0xfa 0x0b

0xbc 0x0d) and inserts them within standard Wi-Fi

beacon frames.

3. Open Drone ID (ODID) Protocol

9 If a drone’s hardware does not support the transmission methods required to be compliant with RID standards, regulations and policies, then

an external add-on module must be used. See Chapter 2.
10 For the Network RID mechanism there are currently several alternative projects (although they do not appear to be well maintained), namely:

github.com/interuss and github.com/uastech/standards.
11 Wi-Fi management (type 0) beacon (sub-type 8) frames are the frames periodically transmitted by a Wi-Fi Access Point (AP) to advertise the

presence and capabilities of a Wi-Fi network to any nearby Wi-Fi device.

https://github.com/interuss
https://github.com/uastech/standards

12
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

3.2 ODID Message Format and Encoding

ODID protocol message format defines two types of

“macro” messages: message blocks and message packs.

Message blocks represent the minimal unit of ODID

broadcast information and are the messages that contain

the actual RID information (and other drone-related data).

Message packs are used to aggregate multiple ODID

message blocks into a single transmission.

While the specific wireless technology used for

broadcasting does not affect message format, it does

affect the mechanism used for encapsulating and

transporting the ODID message. In the case of Wi-Fi

beacon broadcasting method, as we already briefly

mentioned, the ODID data is transported in a vendor-

specific Information Element (IE) field. This IE field is

typically found towards the end of the beacon frames and

its maximum length is 255 bytes. ODID message blocks

are encoded in an ODID message pack and the resulting

Vendor Specific IE is formatted as described in Table 1.12

Table 1 - Wi-Fi beacon: Format of the Information Element containing ODID-specific data.

Byte Offset Length (bytes) Value Description

0 1 0xdd 0xdd represents a vendor-specific Information Element

1 1 0x2 – 0xFF Length of the Information Element (maximum 255 bytes)

2 4 0xFA 0x0B 0xBC 0x0D ASD-STAN identifier

6 1 0x00 – 0xFF ODID message counter that increments with each ODID
message pack sent and resets back to 0 after 0xFF is reached

7 3 + N * 25 Variable Message pack header + message blocks. A maximum of 9
message blocks (N) are allowed.

12 We refer the reader to the official Open DroneID specifications for more details on how ODID message encapsulation works with other

broadcasting methods: github.com/opendroneid/specs.

https://github.com/opendroneid/specs

13
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Table 2 - ODID message block format.

Table 3 - ODID message block types.

3.2.1 ODID Message Blocks

An ODID message block is always 25 bytes in length—

the message can be padded with null bytes if needed.

The block starts with a 1-byte header followed by 24

bytes of data whose format depends on the block

message type which is specified in a dedicated 4-bit

field in the header as shown in Table 2.

The 16- or 32-bit numerical fields that can be present

in the message block data are always transmitted in

little endian order, while all other types of data (e.g.,

non-magnitude values, strings, IDs) are transmitted in

big endian order. ODID specifications provide different

types of message block types based on the kind of

information they contain.

The list of currently existing ODID message block

types is provided in Table 3. A message type of value

0xFF is considered invalid and, as we will see later, the

message type 0xF is used for ODID message packs.

In the following sections we will investigate the most

important block message types and their fields. We

refer the reader to the official ODID specifications for

message blocks not discussed here.

Block Header Block Data

Message Type (4 bits) Protocol Version (4 bits) Message fields base on Message Type

0x1 – 0xF 0x0 <Message Data>

Message Type Message Name Description

0x0 Basic ID Provides ID for the UAS, characterizes the type of ID and identifies the type of UAS

0x1 Location/Vector Provides location, altitude, direction and speed of the UAS

0x2 Authentication Optional message that provides authentication data for the UAS

0x3 Self-ID Optional message that can be used by operators to identify themselves
and the purpose of an operation

0x4 System Identifies the location of the operator

0x5 Operator Provides the operator ID

14
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 6 - ODID Basic ID message block.

The Basic ID message block is used to identify the

drone and includes the ID Type, UAS Type and the

Unique ID. Figure 6 shows its packed form in the

reference implementation.13 The Unmanned Aerial

System Identifier (UASID) is maximum 20 bytes and

the actual format and procedure for obtaining one are

country-specific and defined by local regulators. UASID

values can be used to identify a specific drone in a

particular geographic region.

The Location/Vector block message, among other

things, provides the location, altitude, direction and

speed of the drone. Figure 7 shows its packed form in

the reference implementation.14

13 See the reference implementation: github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/

libopendroneid/opendroneid.h#L423
14 See the reference implementation: github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/

libopendroneid/opendroneid.h#L439

https://github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/libopendroneid/opendroneid.h#L423
https://github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/libopendroneid/opendroneid.h#L423
https://github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/libopendroneid/opendroneid.h#L439
https://github.com/opendroneid/opendroneid-core-c/blob/6f0bc76fddb11730ed280582a4b878979b499b66/libopendroneid/opendroneid.h#L439

15
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 7 - ODID Location/Vector message block.

In order to save space and allow all the location data to

be packed into the 24 bytes available in the message

block payload, some of the fields in the Location/Vector

message block (and also System message block which

we discuss further on) have some encoding techniques

to either compress the data or allow for more optimal

and precise resolutions.

For example, the latitude and longitude values are

32-bit signed integer values where the actual latitude/

longitude value is encoded by multiplying it by 107.

This means that to decode the value at the receiver,

the Latitude and Longitude field values must be

divided by 107. Let’s consider Nozomi Networks’ offices

in Mendrisio, Switzerland, which are located more or

less at latitude 45.878780 and longitude 8.979026.

Those two values will be encoded in the Latitude and

Longitude fields of the Location/Vector message block

respectively as 458787800 and 89790260. We refer the

reader to official ODID specifications15 for details on how

the various fields are encoded in the message blocks.

15 See github.com/opendroneid/specs for official ODID specifications.

https://github.com/opendroneid/specs

16
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 8 - ODID message pack Definition.

3.2.2 ODID Message Packs

Multiple message blocks can be grouped into a single

message and encoded into an ODID message pack,

whose format is shown in Table 4.

The message pack always starts with a 3-byte header

which, among other things, includes the size of a single

message block (which is always 25 bytes in the current

version of ODID protocol) and the number N of message

blocks that follow the header. The packed form of the

ODID message pack in Figure 8 shows that the current

ODID protocol specifies that 9 is maximum number N of

message blocks transported by a message pack.16

Table 4 - ODID message pack.

ODID Message Pack

Message Pack Header Message Block Message Block ...

Message
Type (4 bits)

Version
(4 bits)

Single
Message

Size
(always 0x16)

(1 byte)

N. Messages
in Pack

(N)
(1 byte)

25 bytes 25 bytes ...

16 This is due to the size limit of Wi-Fi Beacon IE length.

17
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 9 - Reference implementation library encoded ODID message data structures.

3.2.3 Open Drone ID Reference Implementation
Library

The ODID project’s reference implementation library

implements the encoding and decoding functionalities

for all the messages specified by the ODID protocol.

For each ODID message (block and pack), as shown

in Figure 9, the library provides a data structure

representing the encoded version of the messages

(i.e., the messages that are actually transmitted and

received over the air).17

This library is particularly important because, as we

will see in the following chapters, it is used by both the

BlueMark DroneScout ds230 RID ground station receiver

and the Open Drone ID reception/injection framework

developed by Nozomi Networks Labs for implementing

the proof-of-concept attack scenarios presented later in

this white paper. The reference implementation library is

open source and available on GitHub and exposes data

structure types representing all the possible messages

provided by the ODID protocol.18

For each of these data structures, the library provides the

corresponding non-encoded version (also called non-

packed or normative form) (Figure 10). These are the data

structures actually used in the code that implements

the ODID transmitter or receiver logic because they

are easier to use for parsing and elaborating drone

data. For example, strings like UASID which are not null

terminated in the encoded data structures are instead

null terminated in the normative form data structures.

17 The encoded versions of the ODID messages are what is passed to the lower network layer to be transmitted over any of the broadcast

methods in Open Drone ID and what is received from the lower network layer during reception.
18 See github.com/opendroneid/opendroneid-core-c. This repository provides a C-code function library for encoding and decoding (packing/unpacking)

Open Drone ID messages, as the format is defined in the ASTM F3411 RID and the ASD-STAN prEN 4709-002 Direct/Broadcast RID specifications.

https://github.com/opendroneid/opendroneid-core-c

18
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 11 - Open Drone ID reference implementation library encoding functions.

The library also provides the encoding functions

for mapping the normative form data structures

representing the ODID messages into their

corresponding encoded forms. For example, the

function encodeBasicIDMessage(…) maps the

normative form of the Basic ID ODID message block

(ODID_BasicID_data) into its corresponding encoded

version (ODID_BasicID_encoded) which can be used

to transmit the data. The list of all available encoding

functions is shown in Figure 11.

Figure 10 - Reference implementation library normative ODID message data structures.

19
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 12 - Open Drone ID reference implementation library decoding functions.

Figure 12 shows the corresponding decoding functions

which are used to map data structures representing

the encoded ODID messages into their corresponding

non-packed form. For example, the function

decodeLocationMessage(…) maps the encoded form

of the Location/Vector ODID message block (ODID_

Location_encoded) into its corresponding normative

form (ODID_Location_data).

20
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 13 - Open Drone ID reference implementation library UAS aggregate data structure.

There is a particularly important decoding function

called odid_message_process_pack(…)19 which is used

to parse a raw buffer of bytes (uint8_t *pack) which

must point to an ODID_MessagePack_encoded and

map it into an ODID_UAS_Data whose definition is

shown in Figure 13. This data structure contains the

normative form of all the data contained in the parsed

ODID message pack.

19 Internally this function uses decodeMessagePack(…).

21
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

3.3 Wi-Fi ODID Traffic Capture Example

Now that we have seen how ODID is implemented in the

reference library, we can look at an example of what real-

world ODID traffic generated by a consumer drone looks

like when monitoring Wi-Fi channels with nearby ODID

transmitting drones. Figure 14 presents an example of Open

Drone ID (RID) data capture on Wi-Fi channel 6 transmitted

by a DJI Mini 3 Pro running firmware version 01.00.0150,

which we used throughout this research project.20 The

Wireshark screenshot shows the ODID messages (protocol

OPENDRONEID) transmitted by the drone.

Note that:

	y The drone uses Wi-Fi beacon frames as its

broadcasting method;

	y In the beacon frames the SSID is set to the string

“RID-” followed by the UAS ID of the drone21;

	y The ODID messages containing RID data are sent

with a period that is either ~160ms or ~320ms.

Figure 14 - DJI Mini 3 Pro transmits ODID messages with a period of ~160 or ~320 ms.

20 In this firmware version DJI has enabled ODID (RID) transmission by default, independent of the geographic location of the drone. So, for

example, it was possible to perform these experiments in Europe where the RID regulation was not yet mandatory.
21 With DJI drones, at the time of writing, it was possible to configure a drone’s UAS ID through the DJI Fly app.

22
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 15 - I/O graph for ODID messages transmitted by the DJI Mini 3 Pro.

Figure 16 - ODID message pack transmitted by a DJI Mini 3 Pro.

The ODID message periodicity is reflected in the

corresponding I/O graph (Figure 15) where we can see

that the tested drone transmitted between 3 and 5

ODID messages per second.

Going into more detail, Figure 16 shows that for the DJI

Mini 3 Pro, each beacon frame is transmitting an ODID

message pack containing five ODID message blocks:

Basic ID, Location/Vector, Self-ID, System and Operator.

23
WHITE PAPER

Not the Drones You're Looking For

3. Open Drone ID (ODID) Protocol

Figure 17 - Dissection of an ODID message pack transmitted by a DJI Mini 3 Pro.

Finally, a complete dissection (followed by the

hexadecimal dump) with all the details of the message

blocks contained in the message pack is shown in

Figure 17. We can see from the dissection that latitude

and longitude values, for example, contained in

the Location/Vector message block have values of

458787800 and 89790260. In the hexadecimal dump

this corresponds to the little-endian order bytes “0xd8

0x8b 0x58 0x1b” and “0x34 0x17 0x5a 0x05”. Also, as

described in the previous sections, these two values

are encoded; to obtain the real latitude and longitude

the receiver must divide them by 107 which results in

45.87878 and 8.979026.

Finally, it should be noted that the UAS ID

contained in the Basic ID ODID message block is

1581F4XFC226Q0078PRH, which the Mini 3 Pro also uses

for creating the SSID value of the beacon frame. This is

not something required by the Open Drone ID protocol

or the RID regulation, but it characterizes this drone

model and the firmware version used during testing.

For more details, we refer the reader to the official Open

Drone ID documentation and GitHub organization.

24
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark
DroneScout ds230

The BlueMark DroneScout ds230 is a fixed ground

station that receives and parses RID signals based on

the ODID protocol. It is compliant with recent EU and

U.S. Direct/Broadcast RID standards and supports all

the communication technologies required by existing

regulations. Being one of the first commercially available

ODID-based ground station receivers, it represents

an interesting security research target as its internal

functions —and therefore vulnerabilities—will potentially

be shared with other receivers that also rely on ODID.

Nozomi Networks Labs completely reverse engineered

both the hardware and software of the DroneScout ds230

appliance. This chapter presents the results of our activity

which include the discovery of multiple vulnerabilities,

allowing the implementation of new attack scenarios

such as the possibility of “hijacking” legitimate drone

trajectories, which we present in Chapter 6.

4.1 DroneScout ds230 Characteristics

The BlueMark DroneScout ds230 appliance, shown

in Figure 18, is a Broadcast RID outdoor fixed ground

station receiver22 capable of receiving and interpreting

telemetry messages broadcast by drones. Internally

the DroneScout is based on the ODID open-

source framework (see Chapter 3), which makes it

compatible with both EU and U.S. standards for remote

identification and tracking (the DIN EN 4709-002 and

ASTM F3411-22a-RID-B standards respectively).

Figure 18 - BlueMark DroneScout ds230 RID receiver.

22 Also called sensor or radar.

25
WHITE PAPER

Not the Drones You're Looking For

For RID functionality, the DroneScout appliance is

equipped with two independent Wi-Fi interfaces and

one Bluetooth interface with a dedicated antenna. The

appliance supports all communication mechanisms

and frequency bands currently required by various RID

regulators around the world.23 The wireless interfaces

are configured in monitor mode and continually listen

for incoming frames containing RID information packed

according to the ODID protocol specification. We refer

the reader to the official product manual for any technical

specification details not covered in this chapter.24

Because RID signals can be broadcast on several

different frequencies, the wireless interfaces are

managed to cover as many frequency bands as possible.

If no ODID payload is detected, both the Wi-Fi radio

interfaces will continually loop over all Wi-Fi channels,

switching to a new channel every second. If an ODID

signal is detected, one Wi-Fi radio will continue hopping

over all Wi-Fi channels and scanning for new ODID

signals while the other Wi-Fi interface will only loop over

Wi-Fi channels where ODID signals have previously been

detected. A channel is removed from this list if no new

ODID messages are received for a configurable amount

of time, set to 60 seconds by default.

The DroneScout ds230 is not a device intended for an

end user, it is instead designed for system integrators

who want to integrate the functionalities provided by the

DroneScout into their own products. Also, the DroneScout

is not a standalone device; it requires an MQTT broker

(typically provided by the system integrator) to collect

detected RID information. Finally, the DroneScout is also

equipped with a Power over Ethernet interface which

provides power and allows asset owners to connect it

to their own networks. The device uses this interface to

communicate with the MQTT broker.

From a high-level point of view the DroneScout works

as follows:

	y It uses its internal wireless interfaces to continuously

scan both Wi-Fi and Bluetooth channels. From the

wireless point of view the DroneScout is a completely

passive device. The wireless interfaces, configured in

monitor mode, never transmit anything over wireless.

	y When a frame (Wi-Fi or Bluetooth) containing

RID information (packed as specified by the ODID

protocol) is detected, it parses the content of the

ODID message and associates the parsed RID

information to the source MAC address of the drone

sending the message.

	y Collected RID information is periodically transmitted

over the Ethernet interface to the third-party

managed MQTT broker managed by the system

integrators or asset owners. The content of the MQTT

messages is JSON formatted.

4. Reverse Engineering the BlueMark DroneScout ds230

23 The communication mechanisms are Bluetooth 4.x legacy advertisement, Bluetooth 5.0 Extended advertisement, Wi-Fi NaN and Wi-Fi

beacon. The frequency bands are 2.4GHz, 5.2GHz and 5.8GHz.
24 DroneScout 230 manual is available at: download.bluemark.io/dronescout_sensor_manual_230.pdf

https://download.bluemark.io/dronescout_sensor_manual_230.pdf

26
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

4.2 DroneScout ds230 Hardware

Looking at the DroneScout ds230’s hardware, Figure 19

shows the external enclosure of the appliance. The side

views on the right show a PoE ethernet port and the

three N-Type antenna connectors.

Opening the enclosure reveals that the DroneScout

ds230 does not use a custom-made board but is

instead based on multiple commercial-off-the-shelf

(COTS) hardware components (Figure 20).

Figure 19 - BlueMark DroneScout ds230 external view.

Figure 20 - BlueMark DroneScout ds230 internals.

27
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Figure 21 - BlueMark DroneScout ds230 main board.

Figure 22 - BlueMark DroneScout ds230 Wi-Fi SoC.

In particular, the DroneScout uses an Orange Pi3

(Allwinner SUNXI64) as the main board (Figure

21). A PoE to USB-C converter is used to provide

alimentation and ethernet connectivity to the board.

For the Wi-Fi interfaces, Figure 22 shows that the

ds230 uses two USB dongles based on Realtek

8812AU/8821AU 802.11ac WLAN chipsets connected to

the Orange Pi 3 board.

28
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Finally, the Bluetooth sniffing is handled by a

development kit based on the ESP32-C3 SoC. As shown

in Figure 25, the DroneScout uses a NodeMCU series

ESP-C3-13 development kit25 connected to the Orange

Pi 3 board through a serial connection (PIN IO8) which

is used by the ESP32 SoC for transmitting the captured

RID data to the main board.

Figure 23 - BlueMark DroneScout ds230 lsusb output.

Figure 24 - BlueMark DroneScout ds230 dmesg output.

This can also be confirmed by listing the USB devices

connected to the main board using the lsusb command

whose output is shown in Figure 23.

The two wireless interfaces are managed by the kernel

module 88XXau, confirmed by the output of the dmesg

command shown in Figure 24.

25 ESP-C3-13-Kit specifications can be found at: docs.ai-thinker.com/_media/esp32/docs/esp-c3-13-kit-v1.0_specification.pdf

Figure 25 - . BlueMark DroneScout ds230 Bluetooth SoC.

https://docs.ai-thinker.com/_media/esp32/docs/esp-c3-13-kit-v1.0_specification.pdf

29
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Figure 26 - BlueMark DroneScout drivers for Unisoc UWE5622 Wi-Fi SoC.

On the DroneScout there is also a Wi-Fi/Bluetooth

chipset based on a Unisoc UWE562226 and equipped

directly on the Orange Pi 3 board. This chipset is

managed by out-of-tree kernel drivers whose names are

shown in Figure 26. However, this chip is not used by

the DroneScout ds230 and its antenna is disconnected.

4.3 DroneScout Firmware Reverse Engineering

In order to understand the internal functioning and

hunt for potential vulnerabilities, Nozomi Networks

Labs completely reverse engineered the firmware

running on the DroneScout ds230 appliance.27

At the time of writing BlueMark does not provide

a way to download the device firmware directly

from their website. However, by looking at the file /

root/update.sh28 it was easy to determine that the

firmware is downloaded from the following endpoint:

https://download.bluemark.io/dronescout/
firmware/stable/ds230.tar.bz2

The firmware download package does not contain a

full disk image but just a few configuration files, bash

scripts and one executable file called dronescout.arm64

which is the main firmware component. The firmware

base image is based on an Ubuntu 22.04.1 LTS for ARM

devices with Linux kernel version 5.15.72. The details of

the operating system installed on the DroneScout are

provided in Figure 27.

26 For more information on the Unisoc UWE5622: unisoc.com/cn_zh/home/TJUWLW-56XX-2.
27 Information presented in this section has been extracted by reverse engineering DroneScout firmware version 20220608-1239. It is mostly

applicable to later firmware versions unless otherwise stated.
28 The DroneScout ds230 filesystem can be freely explored as it can be accessed through SSH using the default credential: username root and

password bluemark. This is a functionality provided by the vendor and documented in the official product manual. Also, by performing a nma

scan on the ethernet interface, SSH on port 22 is the only open port.

https://download.bluemark.io/dronescout/firmware/stable/ds230.tar.bz2
https://download.bluemark.io/dronescout/firmware/stable/ds230.tar.bz2
https://www.unisoc.com/cn_zh/home/TJUWLW-56XX-2

30
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Figure 27 - BlueMark DroneScout ds230 system information.

Most of the files provided as part of the DroneScout

firmware are located in the /root directory. We list them

below with brief descriptions:

	y dronescout.arm64 (SHA256: f9a519632273ecafe52-
661d017876e8ebaddedf626d dc22c66c8e4e991fa
e3c6): main executable taking care of sniffing wire-

less traffic (Wi-Fi and Bluetooth), channel scanning,

ODID message parsing and MQTT publishing.

	y dronescout.conf (SHA256: 92af13b5af6b52675e-
2904d0149e59cbc5b32407d3eb58fd07226ze592
67d4f): configuration file for dronescout.arm64.

	y remote.sh (SHA256: cd7e885bd951a4139ed75e-
2631ed066ddf90474ccf1209b32fcefbf01f16daef):
script for setting up reverse SSH tunnel to remotely

access the DroneScout when placed behind a router

or firewall. Disabled by default.

	y remote.conf (SHA256: e58b7170f7323d71341ff3c-
bd25622121672321544b48b2eac216fdf38b83fab):
configuration file for remote.sh.

	y run.sh (SHA256: cf00d1556861b69dd68d524ae37-
e1310633ebfb5547d6108c6c122cf6c950cab): script

for setting up the Wi-Fi and Bluetooth interfaces and

running dronescout.arm64.

	y start.sh (SHA256: cb3c31a6e0d2633b802056e6b-
cda7a73a503a72ced435a570bded47017c42f1f):
main script for setting up and starting the system. It

starts run.sh, wathdog.sh and remote.sh (each in its

own screen session).

31
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Figure 28 - BlueMark DroneScout public key found on the device.

	y update.sh (SHA256: 97536f07adffc1327795cc6c-
fb9b417ba0dd69c113ce50e27eb646c2dacad6c9):
script for starting the firmware update procedure.

	y watchdog.sh (SHA256: cf3985dbba11be1d020b311c-
08bc4eda5dae8111d80b96ee1f8feedd48682832):
checks if dronescout.arm64 is still running correctly

every 10 seconds. If this is not the case, it reboots the

DroneScout.

	y wlan.conf (SHA256: c6f77e8d2440d7ae8a35f830-
6473e7c9993c3c2826085c6baed9114dcddeca5a):
configuration file containing the initial names of the

Wi-Fi interfaces that are then changed to wlan1 and

wlan2 during initialization by run.sh.

	y wlan_channels.conf (SHA256: 7e3dd8d174ce554-
35073887281e51019a6d6621515e0f7dace0551281d-
8be6): configuration file containing the list of Wi-Fi

channels to scan.

The firmware also comes with a crontab file placed

in /etc/cron.weekly/reboot which reboots the system

every week and with the file /etc/rc.local which calls /

root/start.sh at system boot. The main executable

dronescout.arm64 is executed as root in a non-

sandboxed environment.

Also, while investigating the device file system, Nozomi

Networks Labs found the public SSH key shown

in Figure 28, likely a leftover from device firmware

development.

Finally, the ESP32-C3 SoC runs its own customized

firmware which is in charge of handling the Bluetooth

sniffing and parsing.

32
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Figure 29 - ds230 firmware: configuration file reading.

4.3.1 DroneScout Firmware Main Executable:
dronescout.arm64

The DroneScout firmware’s main executable is

called dronescout.arm64. This is the most important

executable, as it handles all the functionalities of the

product and is automatically executed when the

device boots. This executable requires a “license” file

to work correctly, which is located in /root/.ssh/serial.

license and its content on the analyzed device is “sn:

82c00007bffb6b5c usb: 0000 0000 check: 0375 86ed”.29

At a high-level, the DroneScout’s firmware operations

can be divided in two macro blocks:

	y The main function in charge of reading the

configuration, setting up the system (e.g., configuring

Wi-Fi interfaces) and spawning multiple threads.

	y Multiple threads that run forever, each in charge of

its own sub-functionality (e.g., communication with

MQTT broker, Wi-Fi frame parsing, etc.).

The dronescout.arm64 process starts by reading

the configuration file (dronescout.conf) and saving

the various setting parameters in a global data

structure that is then accessed in various parts of the

code (Figure 29). We will not go into details, but the

configuration contains things like IP address and port

of the MQTT broker, Wi-Fi interface names, thresholds

for Wi-Fi frame RSSI, etc. and can be used to tweak the

DroneScout’s behavior.

29 The license checking procedure is straightforward and it is easy to generate “fake” licenses that are accepted by dronescout.arm64.

33
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Figure 30 - ds230 firmware: mosquitto setup.

Figure 31 - ds230 firmware: Wi-Fi interface setup.

The process then continues by setting up the

(Mosquitto-based) MQTT stack (Figure 30). In fact,

dronscout.arm64 acts like an MQTT publisher and

various options can be configured in dronescout.conf,

like the MQTT broker host/IP and port, username,

password and, in case SSL is used, keys and certificates.

Then the two Wi-Fi interfaces are configured to work

in monitor mode. dronescout.arm64 relies on libpcap

(statically compiled) for sniffing the Wi-Fi traffic.

libpcap capture handler is set the same way for both

Wi-Fi interfaces (see Figure 31):

	y Monitor mode enabled

	y Snapshot length: 524288 bytes

	y Buffer size: 1MB

	y Buffer timeout: 1s

34
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

Finally, as shown in Figure 32, the main function of

dronescout.arm64 starts multiple threads, each in

charge of handling a specific functionality. The most

important threads are:

	y License Thread (license_thread_handler(), 0x407998):

periodically checks if the license file is valid. The

period is a random number of seconds each time.

	y Wi-Fi Sniffing Threads (wlan{1,2}_thread_handler(),

0x407dd0, 0x407e48): there are two of these, one for

each Wi-Fi interface. They are in charge of handling

the Wi-Fi frame sniffing and parsing and possibly the

parsing of the ODID payload contained in them.

	y Wi-Fi Channel Hopping Thread (wlan_hopping_

thread_handler(), 0x408150): handles the Wi-Fi

channel scanning. It uses mutexes to synchronize

with the Wi-Fi sniffing threads.

	y Bluetooth Sniffing Thread (uart_bt_thread_handler(),

0x409468): handles the communication with the

external ESP32-C3 SoC and periodically parses the

JSON data received from the microcontroller.

	y Cleaning Thread (clean_thread_handler(), 0x407708):

parses and cleans the global data structures

containing the received RID data every few hours.

	y Logging Thread (log_thread_handler(), 0x408040):

periodical log of DroneScout operations.

	y Monitor Thread (monitor_thread_handler(), 0x407760):

periodically checks the DroneScout’s running state

and send a JSON status message to the MQTT broker.

Figure 32 - ds230 firmware: threads.

30 After the threads have been spawned, the main function enters an infinite loop.

35
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

4.3.1.1 UAS Data Structure

Every time a new ODID message is received by the

DroneScout, it is parsed by a function provided by the

ODID reference implementation API and decoded into

an ODID_UAS_Data data structure (see section 3.2.1).

Then, this data structure is copied by the function copy_

odid_uas_data_in_global_ll() (0x4065b8) into a global

linked list which we call g_data. Each entry of this

linked list is of type global_odid_entry which is defined

as shown in Figure 33.31

The fields of global_odid_entry are:

	y uasData: a copy of the ODID_UAS_Data data structure.

	y RSSI: the RSSI value of the received frame containing

ODID data.

	y tx_addr_str: the string on the MAC address that

broadcasts the frame containing the ODID data.

	y channel: the channel that the frame containing the

ODID data was received on.

	y rx_type: identifies the type of broadcast message (Wi-Fi

beacon, Wi-Fi NaN, Bluetooth 4.x legacy advertisement,

Bluetooth 5.0 extended advertisement).

	y entries_ctr: a counter tracking how much ODID data

has been received from the tx_addr_str MAC address.

	y odid_ctr: the ODID message counter.

	y timestamp: timestamp in milliseconds of when the

ODID data was received.

	y last_publish_ts: timestamp in milliseconds of the last

time the ODID data for this particular tx_addr_str was

published to the MQTT broker.

	y next: pointer to the next global_odid_entry.

When the ODID_UAS_Data refers to a transmitter device

(tx_addr_str) not already present in the g_data, a new

global_odid_entry is created and appended at the end

of the existing g_data (or put at the head if this is the

first entry). When the transmitter device (tx_addr_str)

already exists, no new entries are created. In this case the

global_odid_entry referring to that particular tx_addr_

str is retrieved from the g_data list. Its global_odid_

entry→uasData field is updated with the info contained

in the new ODID_UAS_Data.

Figure 33 - ds230 firmware: reversed UAS Data structure.

31 Note that this definition has been reverse engineered, so a few details could be wrong.

36
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

This means that for a given tx_addr_str no historical

values are maintained.

Of particular interest is the function log_odid_entry()

(0x4084c0) (which is called for every ODID_UAS_Data

received) that does not publish to the MQTT broker the

new data for a given tx_addr_str if

(global_odid_entry→timestamp -

global_odid_entry→last_publish_ts)

is less than 500 ms (or 1000 ms depending on the

configuration). This means that injecting a lot of spoofed

traffic for a given tx_addr_str is not directly reflected in

what is published to the MQTT broker. Later in this chapter

we will show how it is possible to exploit this DroneScout

firmware behavior to “hijack” legitimate drone trajectories.

4.3.1.2 Wi-Fi Sniffing and Parsing

In the Dronescout’s firmware, Wi-Fi sniffing is handled

by wlan1_thread_handler() for the “first” Wi-Fi interface

and by wlan2_thread_handler() for the “second” Wi-

Fi interface. These two functions do exactly the same

thing: they call pcap_loop() passing wlan_pcap_

handler() (0x408708) as callback function. wlan_pcap_

handler() is the function that actually takes care of

parsing the sniffed Wi-Fi frames (Figure 34).

Figure 34 - ds230 firmware: Wi-Fi thread handler.

37
WHITE PAPER

Not the Drones You're Looking For

wlan_pcap_handler() starts by parsing the radiotap

header (Figure 35). "This is done to extract information

like the frequency and channel the frame was received

on and the measured RSSI (frames whose RSSI is below

a configurable threshold are dropped and not parsed

by the code that follows).

Once the radiotap header parsing is complete, the

function starts parsing the actual Wi-Fi frame (Figure

36). Without going too far into details, the code

performs the following actions:

	y Parses and saves the receiver, transmitter and BSSID

addresses.

	y Continues with the parsing code only if the frame

Type is 0 (i.e., management).32

	y It then extracts the frame sub-type and continues

only if the sub-type is beacon (0x08) or action NaN

Figure 35 - ds230 firmware: radiotap header parsing.

Figure 36 - ds230 firmware: Wi-Fi frame parsing.

4. Reverse Engineering the BlueMark DroneScout ds230

38
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

32 This makes sense considering that the ODID messages can only be contained in beacon or NaN frames which are both management.
33 During our reverse engineering activity, we noticed that the length of the vendor-specific IE (the second byte in each element) is trusted by the code

and is used for advancing to the next element. It is also used for computing the length of the ODID element that is then passed to function located at

0x43238c. This means it is possible to inject beacon frames with forged IE lengths and force the code to read content after the actual frame. However,

during our experiments, we noticed that even if we are able to force the code to read past the actual frame length, the memory read is part of a buffer

managed by libcap and memory mapped, so it was not possible to cause a segmentation fault that could have led to a Denial-of-Service attack.
34 Both odid_message_process_pack() and ODID_UAS_Data have been introduced in the previous chapter and are part of the ODID reference

implementation library API.

Figure 37 - ds230 firmware: Wi-Fi frame parsing.

(0xd). Then the code flow changes slightly depending

on the frame sub-type:

	‐ If the frame sub-type is beacon, the code starts

parsing the vendor-specific IEs. The code will loop

over all vendor-specific IEs present in the beacon

until the end of the frame or until it finds an IE

that matches the ODID specifications.33 In order to

be compliant with the specifications, the ODID IE

must be formatted in the following way:

	· 0xdd: vendor-specific IE.

	· 0xXX: IE length (maximum 255 bytes).

	· 0xFA 0x0B 0xB 0x0D: ASD-STAN specific IE.

	· 0xYY: ODID message counter.

	· 0xF0: ODID message pack.

	· 0x19: each message block in the message pack

must have a length of 25 bytes.

	· 0x0N: number of message blocks in the

message pack (maximum 9),

	· Then 25 * N bytes (25 bytes for each ODID

message block).

	‐ Instead, if the frame sub-type is NaN, with the help

of function parse_odid_nan() (0x430418) (Figure

37), the code checks that the mandatory values in

the frame are set as defined in the specification.

	y The code continues by passing the content of the ODID

message pack to function odid_message_process_

pack() (0x43e38c) which fills and returns an ODID_UAS_

Data data structure containing the received ODID data.34

	y At this point, as discussed in section 4.3.1.1, the obtained

ODID_UAS_Data data structure is passed to function copy_

odid_uas_data_in_global_ll() and inserted into g_data.

	y The updated entry in g_data is then filled with

additional information like a timestamp, the

transmitter address, RSSI, channel, counter and

reception type (see Figure 33).

	y Finally, the Wi-Fi Sniffing Thread synchronizes with

the Wi-Fi Channel Hopping Thread to update the list

of channels that must be monitored by the “second”

Wi-Fi interface.

39
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

35 The firmware running on the ESP32 SoC handles the differences between Bluetooth 4.x legacy advertisement and Bluetooth 5.0 extended

advertisement making the difference between the two communication mechanisms transparent to dronescout.arm64.

4.3.1.3 Bluetooth Sniffing and Parsing

As already discussed, Bluetooth sniffing in the

DroneScout ds230 is handled by an ESP32-C3 SoC.35 As

we focused on Wi-Fi ODID broadcasting and injection

in this research, we will not detail how Bluetooth

sniffing works on the DroneScout. However, for a high-

level overview of how this functionality works:

	y The ESP32-C3 SoC runs a custom firmware

responsible for sniffing Bluetooth advertisements (4.x

legacy and 5.0 extended).

	y When an advertisement with an ODID payload is

detected, the custom firmware extracts the ODID

RID information and prepares a JSON message that

will be transmitted to the main board through the

UART interface.

	y On the main board, dronescout.arm64 is in charge of

setting up the UART communication and receiving

and parsing the JSON data generated by the custom

firmware running on the ESP32-C3 SoC.

	y From the JSON, a properly encoded stream of

bytes is extracted and passed to the function

decodeOpenDroneID() (0x43aa84). This function is

part of the ODID reference implementation API and

returns an ODID_UAS_Data data structure. From here

on, the code proceeds in the same way as it does for

Wi-Fi (i.e., copy_odid_uas_data_in_global_ll(), etc.).

4.4 DroneScout ds230 Vulnerabilities

While reverse engineering the DroneScout ds230

appliance we found three distinct vulnerabilities, listed

below. The manufacturer BlueMark Innovations has,

upon discovery, solved the vulnerabilities in firmware

version 20230605-1350 released on June 5, 2023.

Critical Risk High Risk Medium Risk

CVE-2023-31191:
Information Loss or Omission (CWE-221)

Base Score:

9.3

CVSS 3.1 Vector:
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:C/C:N/I:H/A:H

CVE-2023-31190:
Improper Authentication (CWE-287)

Base Score:

8.1

CVSS 3.1 Vector:
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

CVE-2023-29156:
Information Loss or Omission (CWE-221)

Base Score:

4.7

CVSS 3.1 Vector:
VSS:3.1/AV:A/AC:H/PR:N/UI:N/S:C/C:N/I:L/A:L

40
WHITE PAPER

Not the Drones You're Looking For

4. Reverse Engineering the BlueMark DroneScout ds230

36 More information about this CVE can be found in this blog published by Nozomi Networks Labs: nozominetworks.com/blog/nozomi-

networks-discovers-three-vulnerabilities-affecting-bluemark-dronescout-ds230-remote-id-receiver.

Two of the vulnerabilities we discovered (CVE-2023-

31191 and CVE-2023-29156) could allow an attacker to

spoof RID information, forcing the DroneScout ds230

to drop RID information transmitted by legitimately

communicating drones. Consequentially, an attacker

could inject fake locations associated with the

legitimate drone detected by the DroneScout.	

Apart from the technicalities which are discussed in

the next sections, the difference between the two

vulnerabilities is that CVE-2023-21156 is probabilistic

and the attack’s success rate is around 90%, which is

why this CVE is classified as medium risk. Meanwhile,

CVE-2023-31191, classified as critical, is deterministic and

attack success is guaranteed when it is exploited.

CVE-2023-31190 demonstrates the capability to install

malicious firmware updates on the DroneScout

appliance. The crafted update could contain arbitrary

files which, in turn, could lead the attacker to gain

administrative privileges on the underlying Linux

operating system. We will not discuss this vulnerability

in here.36 Instead, we will focus on the other two

vulnerabilities, which are more related to the RID

functionalities of the DroneScout.

4.4.1 Vulnerability Analysis: CVE-2023-29156

With this vulnerability, an attacker can force the

DroneScout receiver to drop real RID information

and instead generate and transmit JSON encoded

MQTT messages containing fake RID information.

Consequently, the system integrator running MQTT

broker will have no access to the RID information of the

real drones. To trigger the vulnerability, the attacker

must inject ODID messages with spoofed source MAC

addresses at the right time in order to overwrite the

in-memory RID information stored by the DroneScout

main executable (dronescout.arm64). This CVE affects

the DroneScout ds230 appliance firmware 20211210-

1627 and later versions with default configuration.

As introduced in the previous sections, the behavior

of dronescout.arm64 can be tweaked by modifying

the configuration file dronescout.conf. We are

interested in the option “transmit_mode” under section

“mqtt”. When this option is set to 1, as in the default

configuration, dronescout.arm64 performs a throttling

of the MQTT messages and does not generate and

publish an MQTT message for each ODID message

received and correctly parsed.

Instead, the executable behaves as follows: when a

new ODID message is received from a legitimate drone

D with MAC address MD, the behavior follows the

sequence presented in section 4.3.1.2, “Wi-Fi Sniffing and

Parsing”. In short, the RID data (RIDD) contained in the

message is parsed into a structure of type ODID_UAS_

Data (defined by the ODID framework). Then RIDD and

MD are passed to function copy_odid_uas_data_in_

global_ll (note that MD is used by dronescout.arm64 for

identifying D). An example of this is shown in Figure 38,

which reports a snippet of function wlan_pcap_handler

(0x408708) that handles the sniffed Wi-Fi frames.

https://www.nozominetworks.com/blog/nozomi-networks-discovers-three-vulnerabilities-affecting-bluemark-dronescout-ds230-remote-id-receiver
https://www.nozominetworks.com/blog/nozomi-networks-discovers-three-vulnerabilities-affecting-bluemark-dronescout-ds230-remote-id-receiver

41
WHITE PAPER

Not the Drones You're Looking For

The function copy_odid_uas_data_in_global_ll (0x4065b8)

copies RIDD into a global linked list that contains an

entry for each known MD (i.e., a drone from which an

ODID message was previously received). A snippet of

this function is shown in Figure 39: if the global linked

list already contains an entry for MD, then that entry is

updated with the new RIDD. Otherwise, a new entry for the

previously unknown MD address is created and filled with

the new RIDD. This means that for a given MD (i.e., drone), the

DroneScout does not keep a history of the received RIDD.

Instead, only the more recent RIDD is kept in memory. In the

following we call RIDM the most recent RIDD for entry MD.

Figure 38 - ODID message parsing for Wi-Fi.

Figure 39 - ds230 firmware: copy_odid_uas_data_in_global.

4. Reverse Engineering the BlueMark DroneScout ds230

42
WHITE PAPER

Not the Drones You're Looking For

Then, each entry in the global linked list has two fields

containing timestamps (see Figure 33): “timestamp”,

which is the timestamp in milliseconds of when RIDM

was last updated (which is more or less the time when

the latest ODID message was received from MD) and

“last_publish_ts” which is the timestamp of the last

RIDM transmitted to the MQTT broker (i.e., when RIDM

is published over MQTT, the “timestamp” field of entry

MD is copied over its “last_publish_ts”. This is shown in

Figure 40).

Finally, once the global linked list has been updated,

the function log_odid_entry (0x4084c0) is called. This

function, among other things, decides when to generate

and transmit a new JSON message containing RIDM

to the MQTT broker. In Figure 40, lines 20-29 of the

decompiled code show that, when option “transmit_

mode” is set to 1, the function does not always publish

RIDM over MQTT. Instead, RIDM is dropped (i.e., the

function returns) if it was last published less than 500

milliseconds before. Below is the code snippet of interest:

Figure 40 - ds230 firmware: MQTT throttling.

4. Reverse Engineering the BlueMark DroneScout ds230

entry_timestamp = g_odid_e_p >timestamp;

 if (((long)(entry_timestamp - g_odid_e_p->last_publish_ts) < 500) ||

 (499 < (long)(now - entry_timestamp))) {

 return;

 }

43
WHITE PAPER

Not the Drones You're Looking For

In other words, when RID data received from a certain

MAC address MD is published over MQTT, all the RID

data received from the same MAC address in the

following 500 milliseconds is discarded and never

published by the DroneScout. This means that an

attacker can force the DroneScout to never publish real

RIDD by following these steps:

	y Create an ODID message with spoofed source MAC

address MD and containing crafted RID data RIDD1;

	y Inject the ODID message 500ms or more after RIDM

has been published over MQTT and before D transmits

its next ODID message containing the real RIDD.

If the condition above is satisfied, what happens in

dronescout.arm64 is the following:

	y ODID message transmitted by the attacker and

containing crafted RIDD1 is received,

	y Crafted RIDD1 is used to update RIDM,

	y RIDM is put in a new JSON message transmitted to

the MQTT broker,

	y ODID message transmitted by D and containing real

RIDD is received,

	y Real RIDD is used to update RIDM,

	y RIDM is NOT published over MQTT (i.e., RIDD is discarded).

If the attacker repeats the steps above, the MQTT

broker of the system integrator using DroneScout

will never receive real RIDD transmitted by drone D. In

Chapter 6 we will see an example of attack scenario

where this vulnerability is exploited and what kind of

impacts it can have.

4.4.2 Vulnerability Analysis: CVE-2023-31191

The effect of this vulnerability is the same as the previous

one: its exploitation can force the DroneScout receiver

to drop real RID information and instead generate and

transmit JSON encoded MQTT messages containing fake

RID information. Consequently, the system integrator

running the MQTT broker will have no access to the

RID information of the real drones. This CVE affects the

DroneScout ds230 appliance firmware 20230104-1650

and later versions with default configuration.

The difference is that with this vulnerability the attacker

does not need to rely on the DroneScout’s internal

unknown timer states. Instead, the attacker only needs

to inject high power messages (e.g., by using directional

antennas) containing RID information on Wi-Fi channels

adjacent to the ones used by real drones.

This vulnerability was made possible by a new

algorithm introduced in DroneScout firmware version

20230104-1650 that, as stated in the official release

notes: “implement[s] an algorithm to suppress WLAN

transponder signals on neighboring channels in case

the RSSI is very strong. (If for instance a transponder

is detected on channel 6 at -45 dBm, it will also be

detected at channel 4, 5 7 and 8. The algorithm will

suppress those detections on adjacent channels.)”

In firmware 20230104-1650 the algorithm has been

added to function wlan_pcap_handler() (0x408a80)

and a decompiled snippet is shown in Figure 41.

4. Reverse Engineering the BlueMark DroneScout ds230

44
WHITE PAPER

Not the Drones You're Looking For

When a new drone (let’s call it D) with source MAC

address MD is detected by the DroneScout (i.e., the

DroneScout captures ODID messages transmitted by

D), dronescout.arm64 creates an in-memory global

linked list entry (see Figure 33) indexed by MD. Among

other things, this list contains:

	y MD->channel: the Wi-Fi channel C where the ODID

messages transmitted by D have been captured.

	y MD->RSSI: the Wi-Fi frame reception RSSI.

When a new Wi-Fi frame containing an ODID message

is received from MAC address MD on channel C1 with

RSSI R, the adjacent channel suppression algorithm

implements the following logic:

	y If C1 is an adjacent channel (i.e., ((MD->channel – C1) +

3) < 7) and the reception RSSI R is greater than the last

RSSI registered for MD (i.e., (R – MD->RSSI) > 6), then

MD->channel is set to C1, MD->RSSI is set to R and the

new ODID message is accepted and used to fill the RID

information in the global entry corresponding to MD.

	y Otherwise, the new ODID message is accepted only if

C1 is the same as C (i.e., MD->channel). In other words,

the new Wi-Fi frames are accepted only if received on

the same channel that was previously registered for MD.

Figure 41 - ds230 firmware: adjacent channel suppression algorithm.

4. Reverse Engineering the BlueMark DroneScout ds230

45
WHITE PAPER

Not the Drones You're Looking For

The description above is a simplified version of

the algorithm which handles other details like the

timestamps of the ODID messages received from MD

and the case of a first ODID message received from a

specific drone D. Additional details have been omitted

as they do not impact the vulnerability discussed here.

An attacker can exploit the algorithm described above

with the following procedure:

	y Create an ODID message with spoofed source MAC

address MD containing crafted RID data.

	y Inject the ODID message with the spoofed source

MAC address on an adjacent channel Ca (e.g., if the

drone D is transmitting on channel 6, the attacker

can transmit on channel 8).

	y Transmit the Wi-Fi frames with high enough power

that they are received by the DroneScout with an

RSSI Ra that satisfies the condition discussed above

(i.e., ((Ra – MD->RSSI) > 6)). This can be achieved

by using a transmitter amplifier or a high gain/

directional antenna.

If the conditions above are satisfied, when the

DroneScout receives the ODID message spoofed by

the attacker it will set MD->channel to Ca and MD->RSSI

to Ra. From this moment forward it will start dropping

the ODID messages received from drone D on channel

C and the MQTT broker will never receive real RID

data transmitted by drone D. As we mentioned in the

analysis of the previous CVE, we will see an example of

attack scenario where this vulnerability is exploited and

what kind of impacts it can have in Chapter 6.

4. Reverse Engineering the BlueMark DroneScout ds230

46
WHITE PAPER

Not the Drones You're Looking For

5. DJI, OcuSync and DroneID Protocol

Before the introduction of RID standards, rules and

policies, DJI, which owns roughly 70% of the global drone

market, developed and deployed its own proprietary

RID protocol called droneID. The telemetry information

transported by droneID37 is similar to what is contained in

ODID messages. However, in contrast to ODID, DJI’s RID

protocol is broadcast by its drones using a radio protocol

called OcuSync38 which requires specialized hardware in

order to be received and decoded.

OcuSync39 is a proprietary and undocumented40 protocol

designed and developed by DJI for the purpose of

providing a better communication range with respect to

the standard Wi-Fi transmission technology. Nowadays,

all modern drones and related equipment from DJI

support OcuSync as a communication technology. To

enable end users (who are mostly military and critical

infrastructure) to detect its drones, DJI also developed a

specialized device, called Aeroscope, designed specifically

to receive droneID protocol transmitted on top of

OcuSync and visualize the detected drones on a map.

As part of our research, Nozomi Networks Labs analyzed

the behavior of the Aeroscope appliance and reverse

engineered the OcuSync signal and the droneID

protocol transmitted on top of it. From this analysis,

we developed an injection framework based on

Software Defined Radios (SDRs) for injecting OcuSync-

based telemetry data (i.e. droneID packets). Given

that OcuSync telemetry packets suffer from the same

security weaknesses found in the ODID protocol (they

are neither authenticated nor encrypted) the injection

framework allowed us to develop attack scenarios

against DJI’s Aeroscope that resemble those based on

ODID used against the DroneScout.

5.1 DJI Aeroscope Appliance

The Aeroscope is a specialized device developed by

DJI which uses SDR-based hardware for receiving

and decoding droneID telemetry packets transmitted

on top of OcuSync Radio Frequency (RF) signals. DJI

produces two models of this device: a stationary unit

and a mobile unit (which has since been discontinued).

Nozomi Networks Labs had the opportunity to test and

analyze the behavior of the mobile unit.

37 This includes the status, speed, altitude of the drone, user identification code and license information, GPS position of the drone and the

takeoff, landing and operator positions.
38 In this white paper, with OcuSync we refer both to the radio frequency (RF) signal at the physical layer and to the protocol transported on top

of the RF signal.
39 This research is based on OcuSync version 3.
40 We used the paper “DJI droneIDs are not encrypted” by Conner Bender (https://arxiv.org/pdf/2207.10795.pdf) and the dji_droneid GitHub

project as starting points for our activity.

https://arxiv.org/pdf/2207.10795.pdf

47
WHITE PAPER

Not the Drones You're Looking For

The DJI Aeroscope mobile unit is based on an Android

tablet with dedicated SDR hardware that is able to

detect all DJI telemetry signals. Figure 42 shows a

picture of the Aeroscope mobile unit.

The Android tablet on the mobile Aeroscope unit is

customized by DJI and provides a simple user interface

to execute the drone monitoring application or show

documentation. The drone monitoring application is

composed of a world map and an information panel. When

the application is restarted the map is clean. A sound plays

every time a new drone is detected and the map updates

with live drone positions, flight paths, operator and home

(landing) position. After some time, the old drones are

removed from the display to avoid clutter. Figure 43 shows

an example of a map on the Aeroscope’s drone monitoring

application with two icons reporting detected drones.

Figure 42 - A mobile Aeroscope unit used during Nozomi Networks Labs experiments,
consisting of an Android tablet with dedicated USB hardware.

Figure 43 - DJI Aeroscope map interface showing the detected drone locations.

5. DJI, OcuSync and DroneID Protocol

48
WHITE PAPER

Not the Drones You're Looking For

When one of the drones visualized on the map is selected,

corresponding information is shown in a panel that appears

at the bottom of the map. The “List” button (bottom left of

Figure 44) allows a user to see a list of previously detected

drones. Selecting a drone from this list will show it on the

map with captured information and flight path (right of

Figure 44). The drone’s movement can be played back

using the play button or a sliding bar control.

Figure 44 - DJI Aeroscope, example showing the list of drones (left) and a detailed view of one of them (right).

5. DJI, OcuSync and DroneID Protocol

5.2 Ocysync Communication Methods and Technologies

DJI uses the OcuSync protocol for different types of

communications, including video streaming from

the drone to the Remote Controller (RC), sending

commands from the RC to the drone and broadcasting

telemetry data from the drone. The OcuSync RF signal

at the physical layer uses a different modulation

scheme depending on the type of information

transported. The rest of this section focuses on our

analysis of the OcuSync signal used to broadcast

telemetry packets and analysis of the format of the

telemetry data (droneID) it contains.41

41 In particular, our analysis is based on the OcuSync telemetry signal broadcast by the DJI Mini 3 Pro drone.

49
WHITE PAPER

Not the Drones You're Looking For

The OcuSync telemetry signal is modulated using an

Orthogonal Frequency Division Multiplexing (OFDM).

Several parameters must be known to correctly decode

or encode the telemetry. The signal bandwidth is 10

MHz, while the duration is around 0.65 milliseconds and

is broadcast on a frequency that can hop on 2.4 GHz or

5 GHz ISM bands. The hopping logic is unknown, but it

seems to be related to channel quality. Table 5 shows the

center frequencies where the DJI telemetry signal can be

spotted. These frequencies have been confirmed by our

RF spectrum observation of DJI Mini 3 Pro transmissions.

5.2.1 OcuSync Message Format and Encoding

OcuSync signal structure differs between DJI drone

models. Figure 45 shows the spectrogram of one

telemetry signal sent by the DJI Mini 3 Pro drone.

The telemetry signal is characterized by two synchronization

symbols based on the Zadoff-Chu sequence with root

of 600 (ZC600) and 147 (ZC147). The signal structure is

composed by a fixed number of OFDM symbols with

two of them carrying the ZC600 and ZC147 sequences.

5. DJI, OcuSync and DroneID Protocol

Center Frequency of Telemetry Bands

2.4 GHz 2.3995 2.4145 2.4295 2.4445 2.4595 2.4745

5 GHz 5.7415 5.7565 5.7715 5.7865 5.8015 5.8165 5.8315

Table 5 - OcuSync channel center frequencies.

Figure 45 - Spectrogram of DJI Mini 3 Pro telemetry signal (10 MHz bandwidth, 643 microseconds).

50
WHITE PAPER

Not the Drones You're Looking For

There can be eight or nine symbols in a telemetry packet

depending on the DJI drone model. Table 6 shows

the two possible symbol sequences composing an

OcuSync telemetry packet. The case with eight symbols

is a special case where the first symbol is missing. The

DJI Mini 3 Pro uses the eight-symbol packet format.

The fourth symbol contains a ZC sequence with root

set to 600 (ZC600) and the sixth symbol contains a ZC

sequence with root set to 147 (ZC147).

Each symbol is composed of a cyclic prefix (CP) followed

by the OFDM symbol bitstream. The cyclic prefix is a

copy of the last samples of the OFDM symbol to the

beginning of the same symbol. The size of each OFDM

symbol is fixed at 1024 samples but the length of the

CP changes depending on the symbol index. There can

either be a short CP with a duration of 4.69 microseconds

or a long CP with a duration of 5.2 microseconds. These

durations are the same as those used in LTE standard for

normal and Extended CP. The duration of each OFDM

symbol is about 66.67 microseconds (which corresponds

to a 15KHz subcarrier spacing).

Table 7 shows the sample lengths of each cyclic prefix

and OFDM symbol for the case of an OcuSync telemetry

packet with nine symbols with the sampling rate is set

to 15,360,000 Sample/s.

The total length of a telemetry signal is about 643

microseconds (or 9,880 samples with 15,360,000 Sample/s).

5. DJI, OcuSync and DroneID Protocol

Count 1 2 3 4 5 6 7 8 9

9 symbols S1 S2 S3 ZC 600 S5 ZC 147 S7 S8 S9

8 symbols - S2 S3 ZC 600 S5 ZC 147 S7 S8 S9

Count 1 2 3 4 5 6 7 8 9

cyclic
prefix 80 72 72 72 72 72 72 72 80

OFDM
symbol 1024 1024 1024 1024 1024 1024 1024 1024 1024

Table 6 - OFDM symbols and Zadoff-Chu sequences in OcuSync telemetry signals.42

Table 7 - OFDM symbols and cyclic prefixes durations in OcuSync telemetry signals.

42 Source paper “DJI drone IDs are not encrypted" available at arxiv.org/pdf/2207.10795.pdf.

https://arxiv.org/pdf/2207.10795.pdf

51
WHITE PAPER

Not the Drones You're Looking For

5.2.2 Telemetry Signal Detection and Extraction

In order to detect the presence of an OcuSync telemetry

signal broadcast by a DJI drone, the following three

condition must be fulfilled:

1.	 The cross-correlation peak between the signal and

a Zadoff-Chu (ZC) sequence with root 600 is above a

threshold (see Figure 46)

2.	The cross-correlation peak between the signal and

a Zadoff-Chu (ZC) sequence with root 147 is above

a threshold.

3.	The difference in samples between the two correlation

offsets is comparable with the expected distance of

2 OFDM symbols (2(1024 + 72) = 2,192 samples with

15,360,000 Sample/s).

The threshold must be empirically selected depending

on the level of channel noise.

The correlation peak of the ZC600 sequence is near

the fourth block of symbols. Starting from the sample

offset where the correlation peak is detected, the

beginning of the telemetry packet signal is detected

by subtracting the length of the first three symbols

(3*1024+80+2*72). Then the whole telemetry signal is

extracted starting from the start to the end estimated

using the total length of 9,880 samples (nine symbols

9*1024+7*72+2*80).

5. DJI, OcuSync and DroneID Protocol

43 The cross-correlation 𝑓 ∗ 𝑔 is a signal processing to compute the similarity of two data series 𝑓 and 𝑔 in function of the relative

displacement between them.

𝑓 ∗ 𝑔 = ∑ 𝑓[𝑚]𝑔[𝑚+𝑛]

Where 𝑓 ∊ ℂ , 𝑔 ∊ ℂ and (𝑓[𝑚]) complex conjugate of 𝑓[𝑚]

Figure 46 - Zadoff-Chu sequence correlation peaks on a signal with eight symbols (DJI Mini 3 Pro.

m=-∞

∞

52
WHITE PAPER

Not the Drones You're Looking For

5.2.3 Telemetry Signal Decoding

Depending on the precision in the frequency tuning of

the SDR Card, the captured signal can present some

frequency offset. In order to correctly decode the signal,

the frequency offset must be removed and the signal

must be centered in the frequency space. After the

frequency correction, the signal can be safely filtered

using a 10 MHz low pass filter. Then the samples are

separated into the nine OFDM symbols with their

relative cyclic prefix replicas, as shown in Figure 47.

These replicas are used to perform a coarse frequency

offset adjustment.

The first symbol (unused by DJI Mini 3 Pro), the fourth

symbol (ZC600) and the sixth symbol (ZC147) are

ignored. All other symbols are decoded as Quadrature

Phase Shift Key (QPSK) modulated bits. The resulting

bitstream is descrambled and the turbo codes are

removed. The final bitstream contains a CRC code that

is useful to check the validity of the extracted data.

5. DJI, OcuSync and DroneID Protocol

Figure 47 - OcuSync: centered signal (with symbol blocks) and filtered signal.

53
WHITE PAPER

Not the Drones You're Looking For

5.2.4 Telemetry Packet Data Structure

The overall structure of an OcuSync telemetry packet is

shown in Table 8.

The first field (Payload length) contains the length

in bytes of Payload type and data. The second field

(Payload type) contains the type of the structure

contained in Payload data. The type can assume two

different values: 0x10 when Payload data contains

telemetry data or 0x11 when Payload data contains

license plates. The last field contains a 16-bit CRC

computed from the first field to the end of Payload data

and can be used to check for possible decoding errors.

5. DJI, OcuSync and DroneID Protocol

Byte Offset Data Type Value Description

0x00 uint8 - Payload length (N)

0x01 uint8 0x10 or 0x11 Payload type

0x02 N * uint8 - Payload data

N+1 Uint16 - CRC 16 bit

Table 8 - High-level OcuSync telemetry packet structure.

Table 9 shows an example of OcuSync packet content

transmitted by a DJI Mini 3 Pro drone. The payload type

is 0x10, as expected for a telemetry packet. The byte at

offset 0x02 is the protocol version number – for the DJI

Mini 3 Pro it is always 2.

54
WHITE PAPER

Not the Drones You're Looking For

For telemetry packet protocol version 2, the python

unpack format string is '<BBBHH16siihhhhhhQiiiiBB19s'.

The GPS timestamp field contains the Unix epoch time

multiplied by 1000 to reach millisecond granularity. The

UUID field is a numerical string encoded in ASCII while

the drone serial number is an alphanumerical field.

The GPS coordinates can be extracted multiplying the

longitude or latitude int32 value by 180 .

5. DJI, OcuSync and DroneID Protocol

Byte Offset Data Type Value Description

0x00 uint8 0x58 payload length

0x01 uint16 0x10 packet type

0x02 uint8 0x02 version

0x03 uint16 0xD3 0x03 sequence number

0x05 uint16 0xF6 0x3F status

0x07 char[16] “ABCD1234EFGH5678” serial number

0x17 uint32 0x12 0x7B 0x07 0x00 drone longitude

0x1A uint32 0x8B 0x8E 0x55 0x00 drone latitude

0x1E uint16 0xF8 0x02 altitude above sea

0x21 uint16 0xFE 0xFF height from ground

0x23 uint16 0x03 0x00 speed north

0x25 uint16 0x06 0x00 speed east

0x27 uint16 0xF2 0xFF speed up

0x29 uint16 0x88 0xBE yaw

0x2B uint64 0x45 0xF7 0x3F 0xCE 0x84 0x01 0x00 0x00 GPS timestamp

0x33 uint32 0x2B 0x8E 0x55 0x00 pilot latitude

0x37 uint32 0x22 0x7B 0x07 0x00 pilot longitude

0x3B uint32 0x14 0x7B 0x07 0x00 home longitude

0x3F uint32 0x81 0x8E 0x55 0x00 home latitude

0x43 uint8 0x49 model

0x44 uint8 0x13 length of UUID string

0x45 chars[] “ABCD1234EFGH5” UUID

Table 9 - Example of OcuSync telemetry packet content.

π 107

55
WHITE PAPER

Not the Drones You're Looking For

5. DJI, OcuSync and DroneID Protocol

5.3 Creating Fake DJI Telemetry Packets

Nozomi Networks built an OcuSync telemetry data

injection framework based on the scripts made available

by the open source dji_droneid project. This allowed us

to artificially create OcuSync telemetry packets, giving

the user complete control over the data written into the

telemetry packet structure. The output generated by

these scripts can be given as input to any SDR card able

to output 10Mhz signals over 2.4 GHz or 5 GHz bands.

Figure 48 reports the spectrum characteristics of the

fake signals generated by these scripts.

Figure 48 - Spectrum and Zadoff-Chu correlation peaks of a fake telemetry signal
(left) and fake telemetry signal in time and frequency (right).

56
WHITE PAPER

Not the Drones You're Looking For

5. DJI, OcuSync and DroneID Protocol

5.3.1 Replay of OcuSync Telemetry Packets

Beyond generating artificial OcuSync telemetry packets,

another thing a potential attacker can do is capture

(with an SDR) a legitimate OcuSync telemetry packet

transmitted by a real DJI drone and later use the captured

samples to replay it. For example, with a bladeRF SDR

card, an OcuSync signal can be captured using the

following commands (through the bladerf-cli tool):

In the example above, the 10MHz signal is captured

using 2.3995 as a central frequency and with a sample

rate of 15.36 samples/s. The captured samples are

then saved in the file replay.sc16 which uses a SC16

Q11 (signed complex 11bit) raw binary format where

each sample requires 32 bits (4 bytes): 16 bits for the

I component and 16 bits for the Q component (i.e.,

61.44MB of data is required for each second of capture).

At this point the file can be processed to extract the

single telemetry packets, each one using more or less

40KB of data (39,520 bytes).

Otherwise, the attacker can replay the previously

captured signals (saved in file replay.sc16) using the

following commands:

Nozomi Networks Labs performed several experiments

demonstrating that OcuSync telemetry data injected

using replay techniques is actually received and

correctly decoded by the Aeroscope; the Aeroscope

map will show the drones that were present when the

original signals were captured.

Our experiments also showed that the Aeroscope

always considers the telemetry data valid, even when

the drone location contained in the injected telemetry

data is several thousand kilometers away from the

actual position of the Aeroscope.

set frequency rx1 2.3995Ghz

set samplerate rx1 15.36Mhz

set bandwidth rx1 10MHz

set agc rx1 on

rx config file=replay.sc16 n=10G

rx start

set frequency tx1 2.3995Ghz

set samplerate tx1 15.36Mhz

set bandwidth tx1 10MHz

tx config file=replay.sc16

tx start

tx wait

57
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

Nozomi Networks developed two frameworks that

would allow us to implement attacks exploiting both

the weaknesses in current RID standards as well as the

vulnerabilities we discovered in ground station receivers.

The first framework is based on standard Wi-Fi interfaces

for receiving, parsing, and injecting ODID messages

containing RID data. The second is based on SDR cards

for receiving, decoding, encoding and injecting OcuSync

signals containing DJI droneID protocol data.

The frameworks we developed would allow a potential

attacker to inject crafted ODID and OcuSync telemetry

data into ground station receivers. This fake data could

be used to achieve different effects such as forging the

presence of fake drones or hijacking the trajectories

of legitimately flying drones, thereby impacting the

security and reliability of RID systems.

This chapter introduces both our ODID injection

framework and OcuSync telemetry data injection

framework, then presents proof-of-concept attack

scenarios designed to highlight the risks involved

in RID systems as currently designed. The technical

descriptions of the presented attacks will mostly focus

on ODID protocol. However, except for differences

in radio technologies and injection mechanism, the

attacks similarly impact the DJI Aeroscope and its

proprietary droneID protocol.

6.1 ODID Injection Framework

This injection framework takes advantage of both

intrinsic ODID protocol weaknesses and vulnerabilities

in the DroneScout ds230 ground station receiver, which

we described in Chapter 4. In order to capture and

analyze ODID traffic transmitted by consumer drones44

and perform injection attacks, we created a python

framework built on top of the ODID project’s reference

implementation library.45

The official ODID reference implementation library

is implemented in C programming language. To

create the required Python bindings, we leveraged

the Binder project46 to automatically generate

as much bindings code as possible; we manually

developed the missing code for parts of the reference

implementation library that Binder was not able

to support. Using Python programming language

allowed us to quickly create different experimental

ODID reception and injection prototypes.

44 Specifically, for all our experiments we used DJI Mini 3 Pro drones equipped with firmware version 01.00.0150. With this firmware the drone

transmitted Wi-Fi beacon frames containing Open Drone ID data by default, independent of the geographic location of the drone. So, for

example, it was possible to perform experiments in Europe where, at the time of writing, it was not mandatory for a drone to transmit RID data.
45 See section 3.3.3 in this white paper and github.com/opendroneid/opendroneid-core-c.
46 Binder is a tool for automatic generation of Python bindings for C++11 projects using Pybind11 and Clang LibTooling libraries. See github.com/

RosettaCommons/binder.

https://github.com/opendroneid/opendroneid-core-c
https://github.com/RosettaCommons/binder
https://github.com/RosettaCommons/binder

58
WHITE PAPER

Not the Drones You're Looking For

The resulting framework supports the following features:

	y Support for multiple independent Wi-Fi interfaces

to allow simultaneous ODID traffic monitoring and

injection on different Wi-Fi channels47;

	y Real time asynchronous Wi-Fi traffic sniffing;

	y Real time asynchronous ODID message injection;

	y Support for different types of ODID (RID) oriented

attacks like single drone emulation, multiple drone

emulation, drone copycat (where the framework

monitors for the presence of legitimate drones and

injects identical ODID data but with fake locations),

drone cloud (where the framework creates a cloud

of emulated drones surrounding the location of a

legitimate drone), DroneScout timer attack (which

exploits CVE-2023-29156) and DroneScout adjacent

channels attack (which exploits CVE-2023-31191);

	y Drone visualization on a map. For this part, the

framework leverages a locally deployed OpenStreetMap

tiling server as a backend and a modified version of

tar109048 for the frontend visualization.

We used this framework to implement all the

proof-of-concept attack scenarios presented in the

following sections.

6.2 OcuSync Telemetry Data Injection Framework

This Ocusync telemetry data injection framework was

developed to receive and decode OcuSync signals

containing DJI’s proprietary telemetry data transmitted

by the Mini 3 Pro drone, as well as perform OcuSync

signal injection attacks against the DJI Aeroscope

appliance. To do so, we created a python framework

that directly controls an SDR card to perform the

required tasks.

In particular, the framework has been fined tuned to

work with the BladeRF SDR board. The framework can

use one or more of these SDR cards to scan all possible

wireless channels in search of DJI’s OcuSync telemetry

signals. The framework can also create parallel

execution threads to create and transmit OcuSync

signals containing forged telemetry data packets.

For example, it can be configured to inject telemetry

packets forging the presence of a DJI drone in a fixed

and pre-selected location or to inject multiple telemetry

packets, making multiple drones appear around the

position of the most recently detected legitimate DJI

drone (through OcuSync based telemetry).

47 For our experiments we used multiple Alfa AWUS036ACH USB Wi-Fi dongles. However, any Wi-Fi network interface supporting monitor and

injection mode is compatible with the framework.
48 Web interface application originally designed for use with ADS-B decoders readsb / dump1090-fa. See github.com/wiedehopf/tar1090.

6. DroneScout ds230 Attack Scenarios

https://github.com/wiedehopf/tar1090

59
WHITE PAPER

Not the Drones You're Looking For

49 The same attack scenarios also apply to DJI’s proprietary RID protocol and work against the Aeroscope. In this case the attacker must inject

DroneID telemetry data using an SDR card capable of injecting OcuSync signals.

6. DroneScout ds230 Attack Scenarios

6.3 Attack Scenarios

Nozomi Networks Labs developed five different proof-of-

concept attack scenarios targeting RID protocols (ODID

and DJI’s proprietary RID protocol) and compatible

ground receivers (the DroneScout and Aeroscope). The

attacks presented can be divided into two macro groups:

1.	 Attacks that target the intrinsic weaknesses of
current RID protocols. For example, the lack of

data authentication and encryption, as presented

in Chapter 2 of this document. These attacks afflict

any RID receiver and are independent of the actual

ground station implementation.

2.	Attacks that take advantage of vulnerabilities
present in the ground station receivers. The attacks

affecting the DroneScout ds230 ground station

receiver presented in the Chapter 4 are an example.

These attacks are not as portable as those in the

first group because they are specific to each ground

station and rely on vulnerabilities that can eventually

be patched. However, they represent an interesting

case study because they allow the attacker to

obtain results that would not be possible just from

leveraging the weaknesses of current RID protocols.

What follows is a brief description of the five attack

scenarios developed by Nozomi Networks, divided into

the two macro groups discussed above:

	y Generic RID attacks (receiver implementation

independent)49:

	‐ Single drone forging: this scenario showcases

an attacker injecting ODID traffic to forge the

presence of a single drone flying in a random

trajectory in the airspace around the ground

station receiver.

	‐ Multiple drone forging: similar to the previous

scenario, but in this case the attacker injects ODID

messages to emulate the presence of an arbitrary

number of drones flying in random trajectories in

the airspace around the ground station receiver.

	‐ Drone cloud: this scenario involves the attacker

monitoring the airspace for ODID messages

coming from real drones. When the real drone

target is detected, the attacker injects ODID traffic

to emulate the presence of fake drones flying in

the airspace surrounding the legitimate drone.

	y Ground station-specific attacks:

	‐ DroneScout timer attack: this scenario exploits

CVE-2023-29156. The attacker injects spoofed

ODID messages with the right timing to overwrite

a legitimate drone’s trajectory with a fake

trajectory. In optimal conditions and using multiple

attackers, the reliability of this attack can go above

90%, which we discuss below.

	‐ DroneScout adjacent channels attack: this

scenario exploits CVE-2023-31191. The attacker injects

high power spoofed ODID messages on a carefully

selected Wi-Fi channel to overwrite a legitimate

drone’s trajectory with a fake trajectory. The attack

can achieve 100% reliability through the use of

directional antennas and a high gain transmitter.

60
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

For all the presented proof-of-concept attacks targeting

ODID or the DroneScout, we used the following equipment:

	y Target (legitimate): DJI Mini 3 Pro drone with

firmware version 01.00.0150.

	y Attack box: Intel PC running our in-house developed

ODID reception/injection framework and equipped

with two ALFA AWUS036ACH USB Wi-Fi dongles.

	y ODID ground station receiver: DroneScout ds230. As

already discussed, the DroneScout is not a standalone

device. So, we set up our own MQTT broker based

on Mosquitto to receive the data captured by the

DroneScout and leveraged our framework to visualize

the real and fake drones on a map.

For DJI’s proprietary RID protocol based on OcuSync

and the Aeroscope, we used:

	y Target (legitimate): DJI Mini 3 Pro drone with

firmware version 01.00.0150.

	y Attack box: Intel PC or MacBook running our in-

house developed OcuSync reception/injection

framework connected to a BladeRF SDR card.

	y Ground station receiver: Aeroscope mobile unit.

In contrast to the DroneScout, the Aeroscope is a

standalone unit equipped with a monitor capable of

visualizing detected DJI drones on a map.

In the following sections we assume that the attacker is

positioned in such a way that the RID injected traffic is

received by the ground stations.

The attacker can increase the reception rates of the

injected wireless traffic by positioning themselves

“close enough” to the ground station receivers, or in

a location where they have line-of-sight towards the

receivers, or by using high power transmitter or high

gain directional antennas.

61
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

6.3.1 Attack Scenario 1: Single Drone Forging

Scenario Description Impact

The attacker injects Wi-Fi beacons containing

ODID message packs that emulate the presence

of a single drone flying in the airspace surrounding

the DroneScout ds230 ground station receiver.

The attack takes advantage of the fact that RID

(ODID) data is not authenticated, and the ground

station receiver has no way to discern forged RID

data injected by an attacker from real RID data

that is usually transmitted by a drone.

The DroneScout ds230 parses the injected ODID

messages as if they are transmitted by a real

drone and transmits the processed data to the

MQTT broker.

The final user will see a drone appearing on the

map as if a real drone is positioned in the reported

location while, in reality, there are no drones flying

in the monitored airspace.

Figure 49 - Attack scenario 1: Forging of a single drone.

62
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

Here is a step-by-step description of the attack whose

effects are shown in Figure 49:

	y At the beginning (top left in the figure) no one is

transmitting RID data, so the DroneScout does not

detect any beacon frames containing ODID messages

and does not transmit any data to the MQTT broker.

The final user sees a map without any drone.

	y The attacker selects an appropriate Wi-Fi channel.

The channel selection logic can be based on different

metrics such as how much a channel is occupied or

detected noise levels. In general, it is better to choose

channels on the 2.4GHz band because they allow the

Wi-Fi transmitted frames to reach longer distances.

	y The attacker generates a random MAC address M

that will be used as source address for the Wi-Fi

frames that are going to be injected. (Remember

from Chapter 4 that the DroneScout uses the beacon

source MAC address as drone identifier.)

	y The attacker starts injecting Wi-Fi beacon frames

containing an ODID message pack on the selected

channel. The frames use M as source address. The

interval between each beacon frame can be chosen

arbitrarily by the attacker (in our PoC we used 160ms

which is the same period used by the DJI Mini 3 Pro).

In each subsequent ODID message pack, the attacker

modifies latitude, longitude, altitude and speed to

make the drone appear to follow a random trajectory.

	y The DroneScout captures the first beacons

containing ODID message packs. The ODID data

is not authenticated, so the DroneScout accepts

and parses it. It creates a new entry DM for drone

with MAC address M (see Chapter 4 for details on

DroneScout internals) and associates the RID data

contained in the ODID message to this entry (RIDM).

Then it transmits a new JSON message containing

RIDM to the MQTT broker.

	y The user sees a drone appearing on the map (top

right in the figure).

	y The DroneScout keeps receiving and accepting the

beacon frames containing ODID data injected by the

attacker. The DroneScout periodically (every 500ms

by default) transmits a JSON message containing the

updated RID data for the drone with MAC address

M (RIDM) to the MQTT broker.

	y The user sees the drone following the random

trajectory generated by the attacker (bottom image

in Figure 49). The user has no way to tell if the drone

is real or not just by looking at the map. They can

attempt to visually confirm the presence of the drone,

however this is not always feasible since drones are

small and can easily fly at low altitudes or behind

obstacles, making it extremely hard to see them. Even

assuming the user can visually confirm the presence

of the drone, it is possible to make their life even

harder by emulating a vast number of drones. This is

the attack scenario explored in the next section.

The same attack scenario can also be replicated in the

case of DJI’s proprietary RID protocol. In this situation,

the attacker uses the SDR card to inject OcuSync

signals containing forged telemetry packets. The

Aeroscope will accept the injected telemetry data as

valid and the forged drone will appear on the map on

the Aeroscope’s built-in display. Figure 50 shows the

effect of this attack scenario against the Aeroscope. In

this example, the attacker injected forged DJI telemetry

data to make a drone flying over the Bern airport

appear on the map.

63
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

Figure 50 - Attack scenario 1 in case of OcuSync: forging a single drone over the Bern airport.

6.3.2 Attack Scenario 2: Multiple Drone Forging

Scenario Description Impact

The attacker injects Wi-Fi beacons containing

ODID message packs that emulate the presence

of an arbitrary number of drones flying in the

airspace surrounding the DroneScout ds230

ground station receiver. Each emulated drone

follows an independent random trajectory.

As in the previous case, the attack takes

advantage of the fact that RID (ODID) data is not

authenticated, and the ground station receiver

has no way to discern forged RID data injected

by an attacker from real RID data that is usually

transmitted by a drone.

The DroneScout ds230 parses the injected ODID

messages as if they are transmitted by real

drones and transmits the processed data to the

MQTT broker.

The final user will see multiple drones appearing

on the map as if real drones are positioned in the

reported locations, while in reality there are no

drones flying in the monitored airspace. In this case

it will be much more difficult, if not impossible, for

the user to visually confirm the data reported on

the map (e.g., tell if all the reported drones are fake

or if there is at least one real drone).

64
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

Figure 51 - Attack scenario 2: Forging of multiple drones.

Here is a step-by-step description of the attack whose

effects are shown in Figure 51:

	y At the beginning (top left in the figure) no one is

transmitting RID data and the final user sees a

map without any drones (the same as the previous

attack scenario).

	y The attacker selects an appropriate Wi-Fi channel

(see attack scenario 1 for a discussion on channel

selection). In this case the attacker could also decide

to use multiple Wi-Fi channels and emulate different

drones on different Wi-Fi channels. This would make

the attack more realistic. However, in our PoC, to keep

things simpler, we used a single Wi-Fi channel for all

emulated drones.

	y For each drone i that they want to emulate, the

attacker generates a random MAC address Mi. Given

that the MAC address is used by the DroneScout to

identify a drone (i.e., associate the received RID data

to the right drone) it is important that each emulated

drone has its own unique MAC address.

65
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

	y The attacker starts injecting beacon frames containing

ODID messages. For each drone i the attacker must

periodically (e.g., every 160ms) inject a separate beacon

frame with source address Mi. Also in this case, for

each drone and for each subsequent ODID message

associated with that drone, the attacker modifies the

latitude, longitude, altitude and speed to make the

drone appear to follow a random trajectory.

	y The DroneScout captures the first beacons

containing ODID message packs. The ODID data is

not authenticated, so the DroneScout accepts and

parses it. It creates a new entry DMi for each drone

with a MAC address Mi (see Chapter 4 for details on

DroneScout internals) and associates the RID data

contained in the ODID message to this entry (RIDMi).

Then it transmits a new JSON message containing

RIDMi to the MQTT broker.

	y The user sees a drone appearing on the map (top

right in Figure 51).

	y The DroneScout keeps receiving and accepting the

beacon frames containing ODID data injected by

the attacker.

	y When a new ODID message is received from a MAC

address Mi that has not been seen before, the user

will see a new drone appear on the map (middle left

and right in Figure 51).

	y When a newly received ODID message arrives from

a known MAC address Mi the user will see a drone on

the map moving. Each drone has its own independent

trajectory (bottom left and right in the figure).

	y In this case the user has no way to tell if the reported

drones are real or not just by looking at the map. The

user may be aware of being under attack by visually

confirming that there are not so many drones flying

around. However, it can be hard to visually confirm

whether at least one of the drones reported on the

map is real.

The same attack scenario can also be replicated in the

case of DJI’s proprietary RID protocol. The attacker

uses the SDR card to inject OcuSync signals containing

forged telemetry packet to fake the presence of

multiple drones. The effect of this attack scenario

against the Aeroscope is shown in Figure 52. All the

forged OcuSync telemetry packets injected by the

attacker are considered valid by the Aeroscope and the

corresponding drones are visualized on the map.

Figure 52 - Attack scenario 2 in case of OcuSync.

66
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

6.3.Attack Scenario 3: Drone Cloud

Scenario Description Impact

This scenario assumes there is a real (legitimate)

drone flying in the airspace monitored by the

DroneScout receiver.

The attacker is interested in creating confusion

by making an arbitrary number of fake drones

appear to be flying around the real drone and

following the same trajectory.

The DroneScout receives and parses both ODID

messages transmitted by the real drone and ODID

messages injected by the attacker.

The user sees a cloud of drones surrounding the

legitimate drone on the map, making it difficult to

determine the actual location of the real drone.

Figure 53 - Attack scenario 3: cloud of drones.

67
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

Here is a step-by-step description of the attack whose

effects are shown in Figure 53:

	y As in the previous scenarios, at the beginning (top left

in the figure) no one is transmitting RID data and the

final user sees a map without any drone reported.

	y Then an operator starts flying their own legitimate

drone. The drone periodically transmits ODID

messages in Wi-Fi beacon frames containing real RID

data. Those messages are captured and parsed by the

DroneScout that transmits the corresponding JSON

messages to the MQTT broker. The DroneScout’s user

sees the legitimate drone appearing on the map and

following a certain trajectory (top right in Figure 53).

	y The attacker, with Wi-Fi monitoring capabilities,

receives the ODID messages transmitted by the

real drone. Then for each drone i that they want to

emulate (the number of drones to inject for creating

the cloud is configurable), they generate a random

MAC address Mi.

	y For each drone they want to emulate, the attacker

injects a beacon frame with source address Mi

containing an ODID message whose latitude, longitude

and latitude are near (where near is configurable, e.g.,

20 meters) to the last location reported in the last

captured ODID message coming from the real drone.

	y The user sees a cloud of drones surrounding the

legitimate drone (bottom left in Figure 53).

	y For each newly captured ODID message coming from

the real drone, the attacker injects an ODID message

for each address Mi, updating the location information

to maintain the emulated drones near the real drone.

	y The user sees the cloud of drones following the same

trajectory as the real drone (bottom right in Figure

53), making it difficult to identify the exact location of

the real drone.

The same attack scenario can also be replicated in the

case of DJI’s proprietary RID protocol. In this situation,

the attacker uses the SDR card to inject OcuSync

signals containing forged telemetry packets. The

Aeroscope will accept the injected telemetry data as

valid and the forged drone will appear on the map on

the Aeroscope’s built-in display. Figure 54 shows the

effect of this attack scenario against the Aeroscope. In

this example, the attacker injected forged DJI telemetry

data to make a drone flying over the Bern airport

appear on the map.

Figure 54 - Attack scenario 3 in the case of OcuSync.

68
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

6.3.4 Attack Scenario 4: DroneScout Timer (CVE-2023-29156)

Scenario Description Impact

This scenario assumes there is a real drone flying in

the airspace monitored by the DroneScout receiver.

The attacker injects, at precise times, spoofed ODID

messages, using the MAC address of the real drone as

source address. This injection forces the DroneScout to

drop RID data transmitted by the real drone and only

report the false, injected RID data to the MQTT broker.

Note: This proof-of-concept attack exploits the

DroneScout ds230’s vulnerability identified by

CVE-29156. We refer the reader to Chapter 4 for

a technical description of how the vulnerability

works and how it can be exploited.

The user sees a drone on the map, which is a

legitimate drone flying in monitored airspace,

however the trajectory followed by the real drone

is different than the one visualized on the map.

The attacker can use this scenario to achieve the

false prosecution of an innocent operator, for

example, by making a legitimate drone appear to

be in a no-fly zone.

Analogously, an attacker could make a drone in a

no-fly zone appear to be outside of the no-fly zone.

Figure 55 - Attack scenario 4: DroneScout timer.

69
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

Here is a step-by-step description of the attack whose

effects are shown in Figure 55:

	y An operator starts flying their own legitimate drone D

with MAC address MD. The drone periodically transmits

ODID messages in Wi-fi beacon frames containing real

RID data RIDM. Those messages are captured and parsed

by the DroneScout that transmits the corresponding

JSON messages to the MQTT broker. The DroneScout’s

user sees the legitimate drone appearing on the map and

following a certain trajectory (top left in Figure 55).

	y The attacker, with Wi-Fi monitoring capabilities, receives

the ODID messages transmitted by the real drone. The

attacker creates ODID messages with spoofed source

MAC address MD containing crafted RID data RIDD1. In

our PoC, the crafted RID data RIDD1 is generated in such

a way that the drone appears to be moving west. The

attacker then injects these messages in such a way that

each is injected 500ms or more after RIDM has been

transmitted to the MQTT broker and before D transmits

its next ODID message containing the real RIMD (see

Chapter 4 to understand why this is done in this way).

	y The user sees the real drone pointing west on the

map (top right in Figure 55).

	y When the attacker stops injecting the ODID

message, the user sees the actual position of the real

drone again (bottom left in the figure). In real attack

scenarios the attacker does not have to stop the

injection. In the PoC this was done to demonstrate

that the real drone was not actually flying west.

	y When the attacker starts injecting the ODID messages

again, the user sees the real drone pointing west again

(bottom right in the figure).

As explained in the previous chapter, for this attack to

work the attacker must inject the ODID messages with

crafted RID data with precise timing (500ms or more

after RIDM has been transmitted to the MQTT broker and

before D transmits its next ODID). The problem here

is that the attacker does not know the internal state of

DroneScout timestamps and timers. This means that

the attacker does not know the right times to inject the

spoofed ODID messages, so they can only try to predict

the right times. This makes the attack probabilistic.

In order to increase the chance of success, the attacker can

increase the number of injected ODID messages and inject

them on multiple Wi-Fi channels at once. Preliminary non-

optimized experiments performed with a single channel

injection strategy showed that it is quite easy to achieve an

attack success rate above 90%. However, when the predicted

injection time of the attacker is wrong, the actual location

of the drone will appear on the map for a few instants. This

example is shown in Figure 56, where the attacker was

injecting ODID messages to make the drone appear like it

was going west but at a certain point the attack failed and the

location of the drone briefly jumped back to its real position.

Figure 56 - Attack scenario 4: DroneScout timer attack is not 100% reliable.

70
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

6.3.5 Attack Scenario 5: DroneScout Adjacent Channels (CVE-2023-31191)

Scenario Description Impact

This scenario assumes there is a real drone flying in the

airspace monitored by the DroneScout receiver. The

attacker injects, with precise timing, spoofed ODID

messages, using the MAC address of the real drone

as source address. This forces the DroneScout to drop

RID data transmitted by the real drone and only report

the RID data injected by the attacker to the MQTT

broker. This attack scenario and impact are identical to

the previous attack scenario, however, in this case the

attack is 100% reliable if a high-power transmitter or

high gain directional antennas are used.

Note: This proof-of-concept attack exploits the

DroneScout ds230 vulnerability identified by

CVE-31191. We refer the reader to Chapter 4 for

a technical description of how the vulnerability

works and how it can be exploited.

The user sees a drone on the map, which is a

legitimate drone flying in monitored airspace, but

the trajectory it is following in reality is different

than what is visualized on the map.

The attacker can use this scenario to achieve the

false prosecution of an innocent operator, for

example, by making a legitimate drone appear to

be in a no-fly zone.

Or, similarly, the attack could be used to make a

drone in a no-fly zone appear to be outside the

no-fly zone.

71
WHITE PAPER

Not the Drones You're Looking For

6. DroneScout ds230 Attack Scenarios

Figure 57 - Attack Scenario 5: DroneScout adjacent channels.

Here is a step-by-step description of the attack whose

effects are shown in Figure 57:

	y An operator starts flying their own real and legitimate

drone D with MAC address MD. The drone periodically

transmits ODID messages in Wi-Fi beacon frames

containing real RID data RIDM. Those messages are

captured and parsed by the DroneScout, which

transmits the corresponding JSON messages to

the MQTT broker. The DroneScout’s user sees the

legitimate drone appearing on the map and following

a certain trajectory (top of Figure 57). The beacon

frames containing ODID data are received by the

DroneScout with power MD->RSSI.

	y The attacker creates ODID messages with spoofed

source MAC address MD and containing crafted RID

data RIDD1. In our PoC, the crafted RID data RIDD1

is generated in such a way that the drone appears

moving west. The attacker then injects the messages

with spoofed source on an adjacent channel Ca

(e.g., if the drone D is transmitting on channel 6,

the attacker can transmit on channel 8). Also, the

beacon frames containing RIDD1 must be transmitted

with high enough power that they are received by

the DroneScout with an RSSI Ra that satisfies the

condition ((Ra - MD->RSSI) > 6) (see Chapter 4 to

understand why this is done in this way).

	y The user sees the real drone pointing west on the

map (middle of Figure 57).

	y When the attacker stops, the real location of the

drone is revealed (bottom of the figure).

72
WHITE PAPER

Not the Drones You're Looking For

7. Conclusion

Unfortunately, policy requirements making drone RID

systems “immediately actionable” led to the deployment

of RID protocols that do not protect telemetry data

confidentiality nor guarantee telemetry data integrity

and authentication. This makes current RID systems

open to injection attacks. Moreover, vulnerabilities

in ground station receivers, like the ones we found

affecting the DroneScout ds230, open the possibility

of more sophisticated types of attacks, making the

situation even worse.

In this research we studied how RID ground stations

in charge of receiving drone telemetry data can be

abused by a malicious user. By leveraging both RID

system intrinsic weaknesses and the vulnerabilities

we found on ground station receivers, we identified

attack scenarios where an attacker could emulate the

presence of fake drones, spoof legitimate telemetry

data, inject fake drone trajectories and, ultimately,

disrupt RID functionalities.

When critical infrastructure facilities are involved

(airports, military bases, industrial areas, etc.), these

attacks become particularly serious because they can

lead to the disruption of critical operations. We believe

that this work is important because it highlights the type

of risks that a final user, like a law enforcement agency

or a critical infrastructure provider, could face if they

decided to rely exclusively on RID systems to monitor for

the presence of drones in the surrounding airspace, or to

make security and safety related decisions.

Drone RID regulations and standards, which require

drones to periodically broadcast their telemetry

information, will play an essential role in the future

of aviation. This is true both in terms of airspace

security and safety as drones allow entities such as law

enforcement and critical infrastructure authorities to be

aware of the drones flying surrounding a certain area.

RID systems, as currently designed, should not be used

as the one and only source of information for taking

security and safety sensitive decisions.

73
WHITE PAPER

Not the Drones You're Looking For
nozominetworks.com

Cybersecurity for OT, IoT
and Critical Infrastructure
Nozomi Networks protects the world’s critical infrastructure from cyber

threats. Our platform uniquely combines network and endpoint visibility,

threat detection, and AI-powered analysis for faster, more effective incident

response. Customers rely on us to minimize risk and complexity while

maximizing operational resilience.

NN-WP-DRONES-8.5x11-001

© 2024 Nozomi Networks, Inc. | All Rights Reserved.

