
KAFKA
Know the basic building blocks used in Kafka and
understanding the data In-Flow and In-Rest

www.wissen.com

Table of Contents
 Abstract

Who should read this

General Terms

 3.1 Kafka Broker

 3.2 Kafka cluster

 3.3 Zookeeper

 3.4 Producer

 3.5 Consumer

3.6 Consumer Group

 3.7 Topic

3.8 Topic Logs

3.9 Partition

3.10 Replica

 3.11 Message

3.12 Record Meta Data

3.13 Offset

 3.14 Controller

2

2

3

1

2

3

Kafka Broker & Consumer mapping
scenarios

Consumers of a Group are equal to Partitions

Consumers of a Group are less than Topic’s

Partitions

Consumers of a Group are more than the Topic’s

Partitions

4.1

4.2

4.3

7
4

Kafka Producer & Broker mapping
scenarios

Message (ProducerRecord) having Topic & Value

Message having Topic, Partition & Value

 Message having Topic, Key & Value

Message having Topic, Partition, Key & Value

10
5

Journey of Message

 6.1 From Producer to Partition

 6.2 At Rest in Topic’s Partition

 6.3 From Partition to Consumers

146

Comparison

 7.1 ActiveMQ

7.2 RabbitMQ

177

References

About Wissen

17

18

8

9

5.1

5.2

5.3

5.4

KAFKA- A JOURNEY OF A MESSAGE

Apache Kafka is an open-source distributed streaming platform. It provides a reliable, scalable, and robust solution for data
streaming.

This paper explains the building blocks of Kafka and the journey of messages in and out of Kafka and refers to Kafka’s version
– 2.4.0.

Who should read this
Anyone interested in knowing the basic building blocks used in Kafka and understanding the data In-Flow and In-Rest in Kafka
will find this paper useful.

Written by
Nikhil Kumar Summi

Abstract

KAFKA- A JOURNEY OF A MESSAGE I 4

WHITEPAPER

General Terms

It is a stateless instance of Kafka server running in a Kafka Cluster. It is capable of handling read and write operations on
Kafka Topic(s). Each broker has a unique ID and can be responsible for partitions of one or more topic logs. Kafka Client
(ex. Producers/Consumers) can bootstrap to a full Kafka cluster after connecting to any Broker.

Kafka Broker

A Kafka cluster is made up of several brokers. They work
in concert to form the cluster to achieve load balancing,
reliable redundancy, and failover. To manage and
coordinate stateless Brokers of a cluster, it uses Apache
Zookeeper.

Kafka Cluster

A Kafka cluster is made up of several brokers. They work
in concert to form the cluster to achieve load balancing,
reliable redundancy, and failover. To manage and
coordinate stateless Brokers of a cluster, it uses Apache
Zookeeper.

Zookeeper

• Leadership election of Kafka Broker and Topic Partition
pairs.

• Cluster configuration & management.
• Failure detection and Recovery.
• Storage of ACLs.

A Kafka client that publishes records (messages/stream)
to Kafka cluster is called Kafka Producer. It is thread-
safe and serves as a data source that optimizes, writes,
and publishes messages to one or more Kafka topics.
It also serializes, compresses, and load-balance data
among brokers through partitioning.

Producer

A Kafka client that consumes records (messages/
stream) from Kafka cluster is called Kafka Consumer.
It connects to Kafka Brokers and consumes records
from one or more Topic’s Partitions. Each Consumer
is associated with a Consumer Group. The Consumer
sends an acknowledgment to Kafka on successful
ingestion of the records.

Consumer

Kafka uses the concept of Consumer Groups to allow a
pool of processes to divide the work of consuming and
processing records. A Consumer Group has a unique id.
Each Consumer Group is a subscriber to one or more
Kafka topics and maintains its offset per topic partition.
If you need multiple subscribers, then you have multiple
Consumer Groups. A record gets delivered to only
one Consumer in a Consumer Group. Each Consumer
in a Consumer Group processes records and only
one Consumer in that group will get the same record.
Consumers in a Consumer Group load balance record
processing.

Consumer Group

It is the name given to the channel through which
records are streamed in Kafka. It is where Producers
produce records and Consumers consume records. It
has a unique name in the Kafka cluster. It can have zero
or multiple subscribers (Consumers). Topics are broken
up into partitions for speed, scalability, and size.

Topic

Kafka stores Topics in logs. A Topic log is broken up into
partitions. Kafka spreads log partitions across multiple
servers or disks or brokers.

Topic Logs

KAFKA- A JOURNEY OF A MESSAGE I 5

WHITEPAPER

Given below is the visual of how the above components looks in the Kafka Ecosystem

Kafka Ecosystem

• Having 3 Brokers in Broker Cluster (Broker-1/2/3)

• 3 Zookeeper (Zookeeper-1/2/3)

• 3 Producers (Producer-1/2/3)

• 3 Consumer Groups (Consumer Group 1/2/3) having different set of Consumers.

Kafka Topic can be divided into Partitions. It is the physical space where data/message is published. These are
distributed across Brokers in the cluster. Each partition is an ordered, immutable sequence of records that is continually
appended to a structured commit log. A general formula to pick up the number of partitions is based on throughput
needs. If partition keys are not used, then Kafka assigns the keys in a default manner making the ordering of messaging
unguaranteed. Kafka uses partitions to scale a topic across many servers for producer writes. Also, Kafka uses partitions
to facilitate parallel Consumers. Consumers consume records in parallel, up to the number of partitions. The order is
guaranteed per partition. When partitioning by key, all records for the key will be on the same partition, which is useful if
you need to replay the log. Kafka can replicate partitions to multiple brokers for failover.

Partition

KAFKA- A JOURNEY OF A MESSAGE I 6

WHITEPAPER

Kafka can replicate partitions across a configurable number of Kafka servers which is used for fault tolerance. Each
partition has a leader server and zero or more follower servers. Leaders handle all read and write requests for a partition.
Followers replicate leaders and take over if the leader dies.

Replica

Leaders: Kafka chooses a replica of partition of a broker as Leader using Zookeeper. The broker that has the partition
leader handles all reads and writes of records for the partition. Kafka replicates writes to the leader partition to followers
(node/partition pair). A follower that is in sync is called an ISR (in-sync replica). If a partition leader fails, Kafka chooses a
new ISR as the new leader.

Followers: All those replicas of the Broker’s partition that is not a Leader will work as a Follower. Followers replicate
leaders.

Given below is the visual of how the above components look in the updated Kafka Ecosystem

Kafka Ecosystem

Having 3 Brokers in Broker Cluster (Broker-1/2/3)

3 Zookeeper (Zookeeper-1/2/3)

3 Producers (Producer-1/2/3)

3 Consumer Group having different set of Consumers

2 Topics (Topic-1/2) each having 3 partitions and 3 Replications

KAFKA- A JOURNEY OF A MESSAGE I 7

WHITEPAPER

It is Kafka server (Broker) response for the Producer sent message. It includes information about the Topic’s partition,
offset in partition, timestamp, etc.

Record Meta Data

Each record in the partitions is assigned a sequential id number called the offset that uniquely identifies each record
within the partition.

Offset

The Controller is one of the brokers and is responsible for maintaining the leader/follower relationship for all the
partitions. When a node shuts down, the Controller tells other replicas to become partition leaders to replace the
partition leader on the node that is going away. Zookeeper is used to elect a controller, make sure there is only one, and
elect a new one if it crashes. The Controller is responsible for admin operations such as partition assignment to broker,
monitoring broker failures, etc.

Controller

Message is the actual data/message that needs to be sent out to Kafka Producer. It is also named ProducerRecord. This
consists of a topic name to which the record is being sent, an optional partition number, and an optional key and value. If
a valid partition number is specified, then that partition will be used when sending the record. If no partition is specified
but a key is present, then a partition will be chosen using the hash of the key. If neither key nor partition is present, then
a partition will be assigned in a round-robin fashion.

Message

KAFKA- A JOURNEY OF A MESSAGE I 8

WHITEPAPER

Kafka Broker & Consumer Mapping Scenarios

One-to-one mapping of Consumer to Topic’s partition

Each consumer subscribes to one partition and pulls messages from it in the order they are coming in that
partition.

Consumers of a Group are Equal to Partitions

Kafka Ecosystem (Consumer Perpective)

Having 3 Brokers in Broker Cluster (Broker-1/2/3)

3 Consumer Group having different set of Consumers

2 Topics (Topic-1/2) each having 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers

Consumer Group 1 is active having 3 Consumers (Consumer-1A/B/C)

Scenario - Consumers are listening to both Topics and number of Consumers equal to number of Partitions.

Consumer-1A is listening to Topic-1's Partitions-0 and Topic-2's Partition-1

Consumer-1B is listening to Topic-1's Partitions-1 and Topic-2's Partition-0

Consumer-1C is listening to Topic-1's Partitions-2 and Topic-2's Partition-2

KAFKA- A JOURNEY OF A MESSAGE I 9

WHITEPAPER

One-to-Many mappings of Consumer to Topic’s Partition

In this case, a single consumer may subscribe to multiple Partitions of a topic and pull data from them.

Consumers of a Group are less than Topic’s Partitions

Kafka Ecosystem (Consumer Perpective)

• Having 3 Brokers in Broker Cluster (Broker-1/2/3)

• 3 Consumer Group having different set of Consumers

• 2 Topics (Topic-1/2) each having 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers

• Consumer Group 2/3 are active having different set of Consumers.

Scenario - Number of Consumers are less then number of Partitions.

Consumer Group 2 is listening to Topic-1 (Consumer-2A is listening to Partition-0 and Consumer-2B is listening
to Parition-1/2)

Consumer Group 3 is listening to Topic-2 (Consumer-3A is listening to all Partitions (0/1/2)

KAFKA- A JOURNEY OF A MESSAGE I 10

WHITEPAPER

Extra Consumer will be ideal in this case
Extra consumer will not add any value as it is not going to pull any data from Kafka.

Consumers of a Group are more than the Topic’s Partitions

Kafka Ecosystem (Consumer Perpective)

Having 3 Brokers in Broker Cluster (Broker-1/2/3)

3 Consumer Group having different set of Consumers

2 Topics (Topic-1/2) each having 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers

Consumer Group 4 is active and listening to Topic-2.

Scenario - Number of Consumers are more than number of Partitions.

• Consumer-4A is listening to Topic-2's Partition-0

• Consumer-4B is listening to Topic-2's Partition-1

• Consumer-4C is listening to Topic-2's Partition-2

• Consumer-4D is ideal

KAFKA- A JOURNEY OF A MESSAGE I 11

WHITEPAPER

Kafka Producer & Broker Mapping Scenarios

Message pushed to Topic’s Partition in round robin.

Message (ProducerRecord) having Topic & Value

Kafka Ecosystem (Producer Perspective)

Having 3 Brokers (Broker-1/2/3)

2 Topics (Topic-1/2), Each Topic has 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers)

Producer-1 is active and publishing/pushing message to Topic-1

Scenario: - Producer Record (Message) have Topic and Value only.

Example Topic = Topic-1 and Value = "Message1", "Message2"

Message will be pushed to partition in round robin selection.

KAFKA- A JOURNEY OF A MESSAGE I 12

WHITEPAPER

All messages will be pushed to provided Topic’s Partition. It will guarantee the ordering of messages in Kafka and to
Consumers.

Message having Topic, Partition & Value

Kafka Ecosystem (Producer Perspective)

Having 3 Brokers (Broker-1/2/3)

2 Topics (Topic-1/2), Each Topic has 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers)

Producer-1 is active and publishing/pushing message to Topic-1

Scenario: - Producer Record (Message) have Topic and Value only.

Example Topic = Topic-1, Partition-2 and Value = "Message1", "Message2"

All message will be sent to same partition so it follow the ordering of message.

KAFKA- A JOURNEY OF A MESSAGE I 13

WHITEPAPER

Message pushed to Topic’s Partition as per Key’s hash. It will guarantee the ordering of messages for the same key.

Message having Topic, Key & Value

Kafka Ecosystem (Producer Perspective)

Having 3 Brokers (Broker-1/2/3)

And 2 Topics (Topic-1/2), Each Topic has 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers)

Producer-1 is active and publishing/pushing message to Topic-1

Scenario: - ProducerRecord (Message) have Topic, Key and Value only.

ProducerRecord#1 having Topic = "Topic-1", Key = "Cust1" and Value = "Message1"

ProducerRecord#2 having Topic = "Topic-1", Key = "Cust2" and Value = "Message2"

Message will be pushed to partition as per the Hash value of Key.

KAFKA- A JOURNEY OF A MESSAGE I 14

WHITEPAPER

Producer will ignore Key and consider Partition while pushing a message to Topic

Message having Topic, Partition, Key & Value

Kafka Ecosystem (Producer Perspective)

Having 3 Brokers (Broker-1/2/3)

And 2 Topics (Topic-1/2), Each Topic has 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers)

Producer-2 is active and publishing/pushing message to Topic-1's Partition-2

Scenario: - ProducerRecord (Message) have Topic, Partition, Key and Value only.

ProducerRecord#1 is having Topic = Topic-1, Partition-2 , Key = "Cust1" and Value = "Message1"

ProducerRecord#1 is having Topic = Topic-1, Partition-2 , Key = "Cust2" and Value = "Message2"

It will ignore the Key and all message will be sent to same partition so it follow the ordering of message.

KAFKA- A JOURNEY OF A MESSAGE I 15

WHITEPAPER

Journey of Message

Producer’s Send method performs several things before pushing a message to the Kafka cluster. Below are some of the
primary tasks performed by the Producer

From Producer to Partition

Serializing – It serializes the Key and Value before pushing data.

Partitioning – It takes care of assigning the Topic’s partition to message.

Buffering/Batching - To provide throughput, it maintains the buffer of a batch of non-pushed messages.

I/O - It takes care of pushing message to Kafka from the buffer.

Retyring – If configured, it pushes the message again for retrying. It happens in case of failure or NAK (not
acknowledged by Partition or its replicas).

Kafka Ecosystem (Journey of Message from Producer to Broker)

Having 3 Brokers (Broker-1/2/3)

And 2 Topics (Topic-1/2), Each Topic has 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers)

Producer-1 is active and publishing/pushing messages to Topic-1 and produce's enable.idempotent= true

Scenario: - ProducerRecord (Message) have Topic, Partition, Key and Value only.

KAFKA- A JOURNEY OF A MESSAGE I 16

WHITEPAPER

Message is at rest in Topic’s partitions. Each message will get a unique sequential offset number in the partition. It also
confirms the replications and acks.

At Rest in Topic’s Partition

Kafka Cluster (Message at Rest in Topic's Partition)

Having 3 Brokers (Broker-1/2/3)

2 Topics (Topic-1/2), Each Topic has 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers)

Producer-1 is active and publishing/pushing messages to Topic-1 and produce's enable.idempotent= true

Messages (PR#1/4/7/10 from Partition-0 Buffer and PR#2/5/8/11 from Partition-1) pushed to Brokers

Scenario: - Kafka Messages in Topic's Partition's Log file.

KAFKA- A JOURNEY OF A MESSAGE I 17

WHITEPAPER

Consumers pull the records from subscribed Topic’s partition(s). Kafka maintains the information about the Consumers’
current and committed offset information.

From Partition to Consumers

Kafka Ecosystem (Consumers Reading Message from Topic's Partition)

Having 3 Brokers (Broker-1/2/3)

And 2 Topics (Topic-1/2), Each Topic has 3 Partitions (Partition-0/1/2) and 3 Replicas (1 Leader and 2 Followers)

Producer-1 is active and publishing/pushing messages to Topic-1 and produce's enable.idempotent= true

Messages (PR#1/4/7/10 from Partition-0 Buffer and PR#2/5/8/11 from Partition-1) pushed to Brokers.

Consumer Group 1 and 2 are active and pulling messages from Topic-1

Consumer Group 1 :- Consumer-1A pulling from Partition-0, Consumer-1B from Partition-1 and Consumer-
1C from Partition-2

Consumer Group 2 :- Consumer-2A pulling from Partition-0, Consumer-2B from Partition-1 and Partition-3

Scenario: - Kafka Messages reads by Consumer from Topic's Partition's Log file.

Consumer-1A pulled PR#1, PR#4, PR#7 --- Committed PR#1 | Consumer-1B pulled PR#2 --- Committed PR#2

Consumer-2A pulled PR#1 --- Committed PR#1 | Consumer-2B pulled PR#2, PR#5 --- Committed PR#2, PR#5

KAFKA- A JOURNEY OF A MESSAGE I 18

WHITEPAPER

Comparison

It is the most popular open-source, multi-protocol, Java-based message broker. It supports multiple
messaging Protocol.

ActiveMQ

ActiveMQ supports both Queues (for P2P) and Topics (for Pub/Sub). On the other hand, Kafka supports Pub/Sub.

Message delivery is the responsibility of Producer to ensure its delivery in the case of ActiveMQ. On the other hand, it is Kafka’s

Consumer responsibility to consume the message.

ActiveMQ works on Push-based messages processing. On the other hand, Kafka works on Pull-based messages processing.

ActiveMQ broker has to maintain the delivery state of every Message, so its throughput is slow. On the other hand, Kafka Broker

only maintains the offset of Message, so it is lightweight.

ActiveMQ is useful in Traditional messaging, on the other hand, Kafka is useful in Distributed Event Streaming.

ActiveMQ does not guarantee the Ordering of messages. On the other hand, Kafka guarantees the Ordering of messages at the

Partition level.

It is an open-source message broker. RabbitMQ is lightweight and easy to deploy on-premises and in the cloud. It
supports multiple messaging protocols. RabbitMQ can be deployed in distributed and federated configurations to meet
high-scale, high-availability requirements.

RabbitMQ

RabbitMQ uses Req/Res, P2P and Pub/Sub communication patterns. On the other hand, Kafka supports Pub/Sub.

RabbitMQ broker works on Push-based mechanisms. Kafka Broker works on Pull-based mechanisms.

RabbitMQ works in a model in which Broker is smart and Consumer is dump. Here Broker delivers the message, and
the consumer is quite simple. On the other hand, in Kafka, Broker is dump and Consumer is Smart which keeps pulling
messages from Broker.

RabbitMQ does not support Message ordering.

RabbitMQ works on Queues - Messages are done away with after they are pushed to Consumer and acknowledged.
On the other hand, Kafka maintains logs of messages.

RabbitMQ provides features to prioritize the messages. Kafka does not support this feature.

References
Kafka Consumer Architecture - Consumer Groups and subscriptions

Introduction to Topic Log Compaction in Apache Kafka

Role of Apache ZooKeeper in Kafka – Monitoring & Configuration

10 Configs to Make Your Kafka Producer More Resilient

Preferred Replica Leader Election Tool

Kafka vs. RabbitMQ: Architecture, Performance & Use Cases

http://cloudurable.com/blog/kafka-architecture-consumers/index.html
https://medium.com/swlh/introduction-to-topic-log-compaction-in-apache-kafka-3e4d4afd2262
https://data-flair.training/blogs/zookeeper-in-kafka/
https://towardsdatascience.com/10-configs-to-make-your-kafka-producer-more-resilient-ec6903c63e3f
https://cwiki.apache.org/confluence/display/KAFKA/Replication+tools#Replicationtools-1.PreferredReplicaLeaderElectionTool
https://www.upsolver.com/blog/kafka-versus-rabbitmq-architecture-performance-use-case

About Wissen

Our service offerings

Application
Development

Artificial Intelligence
and Machine Learning

Big Data and
Analytics

Robotic Process
Automation

Agile and
DevOps

Infrastructure
Management

Visualization and
Business Intelligence

Cloud and Mobility Quality Assurance and
Test Automation

India | UK | USA | Australia | Canada | Mexico | Vietnam

www.wissen.com

hello@wissen.com

Established in the year 2000 in the US, Wissen is an Information Technology company headquartered in Bangalore, India.
With global offices in US, India, UK, Australia, Mexico and Canada, Wissen is an end-to-end solution provider for companies
in sectors such as Banking and Financial Services, Telecom, Healthcare, Manufacturing and Energy verticals. With best in
class infrastructure and development facilities spread across the globe, the company has successfully delivered $1 billion
worth of projects for more than 25 of the Fortune 500 companies. Wissen’s 4500+ highly skilled professionals, a strong
leadership team, and technology expertise help clients build enterprise systems, implement a modern digital strategy, and
gain a competitive advantage with business transformation.

https://www.wissen.com/
https://www.wissen.com/

