
The best way to quantum

Feb 2023

application note

Using Aquila

on Braket



Using Aquila On Braket

The AWS Braket interface allows you to send tasks from your laptop to quantum processors at 
QuEra via the AWS cloud infrastructure. This tutorial will give you a first taste of what this 
workflow looks like. It's simple: Define the arrangement of atoms you want to use and specify 
your Hamiltonian parameters of choice to govern the behavior of those atoms. Submit the 
program and analyze the results.

Below we go through the code that can be found Please note that quera_ahs_utils is installed here. 

via pip:

pip install quera_ahs_utils conda install -c conda-forge quera-ahs-utils

Goal

To say hello to the world of neutral atoms, let's investigate one of the central phenomena in quantum 
many-body physics: the emergence of ordered phases of matter. In this tutorial, we'll show how Aquila can 
prepare the simplest of such ordered phases, namely an antiferromagnetic phase (aka Z2 phase) in both 
one- and two-dimensional arrays of atoms. To make this possible, we will make use of the 

 - the mechanism at the heart of our quantum computing architecture.
Rydberg 

blockade

Register

Let's start off with the 1D case. To achieve our goal, we first need to define our Rydberg-atom quantum 
computer register. We arrange them in a line with a separation of 6.1 μm between each pair of atoms.

from import
import as
from import 

for in

braket.ahs.atom_arrangement  AtomArrangement 
 numpy  np 

 quera_ahs_utils.plotting show_register  

a =   
N_atoms = 

register = AtomArrangement() 
 i  (N_atoms): 

    register.add([ , i*a])  

fig = show_register(register)

6.1e-6
11  

0.0

# meters 

range

PAGE 01 www.quera.com

Ready to explore what's possible with Aquila? Let's dive straight in.

or Conda via:

https://caveonix.com/
https://github.com/QuEraComputing/QuEra-braket-examples/tree/main/HelloWorld
https://queracomputing.github.io/Bloqade.jl/dev/tutorials/1.blockade/main/
https://queracomputing.github.io/Bloqade.jl/dev/tutorials/1.blockade/main/
https://www.quera.com/


Using Aquila On Braket

Hamiltonian
The next component we need to specify is the Hamiltonian. It's the energy function that governs the behavior of our 
atoms, including their interactions. In the lab, the Hamiltonian is implemented by applying lasers to the atoms.

Specifically, the Hamiltonian governing our system of atoms takes the following form:

where Ω, ϕ and Δ denote the Rabi frequency, laser phase, and the detuning of the driving laser field coupling the 
ground states |gj〉 and excited Rydberg state |rj〉 of the j-th atom. Our task is to specify these Hamiltonian parameters 
(Ω,ϕ and Δ). Here, they will be time-dependent in order to help us carry out a protocol called adiabatic state 
preparation. In case this sounds unfamiliar, feel free to read up on the physics background on our open source 
platform . In our current case, we only want to tell the system to activate the set of lasers controlling the 
Rabi frequency and the global detuning. In particular, we will choose a constant Rabi frequency of Ω=2π×2.5×106 Hz 
and a linearly increasing detuning from Δ=−2π×9×106 Hz to Δ=2π×7×106 Hz, together with a total time duration of 
t=4μs. The phase parameter will simply be set to zero. The rest of the code ensures that Ω and Δ are ramped on and 
off in a way compatible with the experimental setup.

 Bloqade

from import 
from import

quera_ahs_utils.plotting show_global_drive 
 quera_ahs_utils.drive  get_drive  

omega_min = 
omega_max =  *  * np.pi 
detuning_min = -  *  * np.pi 
detuning_max =  *  * np.pi  

time_max =
time_ramp = *time_max  

time_points = [ , time_ramp, time_max - time_ramp, time_max] 
omega_values = [omega_min, omega_max, omega_max, omega_min] 
detuning_values = [detuning_min, detuning_min, detuning_max, detuning_max] 
phase_values = [ , , , ]  

drive = get_drive(time_points, omega_values, detuning_values, phase_values) 
H += drive   

show_global_drive(drive)

0        
2.5e6 2

9e6 2
7e6 2

 4e-6 
0.15

0

0 0 0 0

from braket.ahs.hamiltonian import Hamiltonian  

H = Hamiltonian()

from import braket.ahs.hamiltonian  Hamiltonian  

H = Hamiltonian()

www.quera.com PAGE 02

https://caveonix.com/
https://queracomputing.github.io/Bloqade.jl/dev/tutorials/2.adiabatic/main/
https://www.quera.com/


Using Aquila On Braket

However, that's not the full story. These drive terms 
alone don't tell us how the atoms interact. But 
interactions are at the core of many-body quantum 
physics! That's where the Rydberg blockade comes in. 
Mathematically, it is described by the term

in the Rydberg Hamiltonian. The key idea is that within a certain distance - the so-called blockade radius - only one 
atom will be excited into an |rj〉 state. Having more excitations will cost too much energy. This means that the states 
of two neighboring atoms will depend on each other and exhibit specific patterns which we will plot below. Creating 
these ordered states is non-trivial. Following the mentioned previously is crucial since it allows us 
to slowly introduce these complex interactions into the system.Note: In the current version of the AHS module in 
Braket, this Rydberg interaction term is automatically calculated from the atom positions. Hence, we don't need to 
worry about specifying it explicitly. Our Hamiltonian is all set!

 adiabatic protocol 

from braket.ahs.hamiltonian import Hamiltonian  

H = Hamiltonian()

Defining the program (1D case)
Now, we can combine the register and Hamiltonian into a program. In particular, this program falls within the class 
of Analog Hamiltonian Simulation (AHS). If you're curious about other types of quantum computing, take a look at 

or tutorials ongate-based circuits  quantum annealing.

from import  braket.ahs.analog_hamiltonian_simulation AnalogHamiltonianSimulation  

ahs_program = AnalogHamiltonianSimulation( 
    register=register,  
    hamiltonian=H 
)

PAGE 03 www.quera.com

https://caveonix.com/
https://queracomputing.github.io/Bloqade.jl/dev/tutorials/2.adiabatic/main/
https://github.com/aws/amazon-braket-examples/blob/main/examples/getting_started/1_Running_quantum_circuits_on_simulators/1_Running_quantum_circuits_on_simulators.ipynb
https://github.com/aws/amazon-braket-examples/blob/main/examples/quantum_annealing/Dwave_TravelingSalesmanProblem/Dwave_TravelingSalesmanProblem.ipynb
https://www.quera.com/


Using Aquila On Braket

Simulation on classical hardware

Before submitting the task to run on actual quantum hardware, let's first check our program by running a local 
simulation on one of AWS's classical servers.

from import braket.devices  LocalSimulator  

classical_device = LocalSimulator(" ")  

nshots = 
task = classical_device.run(ahs_program, shots=nshots)  

braket_ahs

1000 

# The result can be downloaded directly into an object in the python session: 
result = task.result()

from import
from import

 quera_ahs_utils.analysis  get_avg_density 
 quera_ahs_utils.plotting  plot_avg_density  

n_rydberg = get_avg_density(result) 
plot_avg_density(n_rydberg, register)

What phase of matter did we create? Let's have a look at the average density of atoms on each site:

Indeed, we already see from this classical simulation that a pattern emerges: The alternating occupation density in 
the chain of atoms indicates a so-called Z2 phase.

www.quera.com PAGE 04

https://caveonix.com/
https://www.quera.com/


Using Aquila On Braket

Simulation on Aquila

And now for the truly exciting part - let's bring Aquila into the game.



Note: Running this program on the Aquila processor will incur a cost of 0.30 USD for submitting the program and 0.01 
USD per shot. For scientific purposes, one would run this notebook with 1000 shots per task. To simply get a feel for 
the workflow of using Braket, however, we recommend reducing the number of shots. Furthermore, AWS offers 

per month.
1 hour 

of free simulation time 

from import 
from import 

 braket.aws AwsDevice, AwsSession 
boto3 Session  

boto_session = Session(region_name=" ") 
aws_session = AwsSession(boto_session)  

aquila = AwsDevice( ,aws_session)  

discretized_ahs_program = ahs_program.discretize(aquila)  

task = aquila.run(discretized_ahs_program, shots=nshots) 
result = task.result() 
f,ax = show_final_avg_density(result) 
plt.show()

us-east-1

"arn:aws:braket:us-east-1::device/qpu/quera/Aquila"

# To make the program compatible with the quantum hardware, we still need to slice it into discrete time steps: 

Success! We can clearly observe an alternating occupation density, i.e. the Z2 phase, just as in the previous classical 
simulation.

PAGE 05 www.quera.com

https://caveonix.com/
https://www.quera.com/
https://aws.amazon.com/braket/pricing/?loc=ft#AWS_Free_Tier
https://aws.amazon.com/braket/pricing/?loc=ft#AWS_Free_Tier
https://www.quera.com/


Using Aquila On Braket

2D Case

Now that we are familiar with the basic workflow, we can follow the same steps to extend our investigation to the 
2D case.



Let's start off with a simple square lattice with 3x3 atoms. Why? This system is again small enough to first 
simulate it on classical hardware and thus benchmark the quantum device.

b =   
N_x = N_y = 

register_2D = AtomArrangement() 
 i  (N_x): 

   j  (N_y): 
        register_2D.add([i*b, j * b])  

show_register(register_2D)

6.7e-6
3  

# meters 

for in
  for in

range
range

H_2D = Hamiltonian()  

omega_min =       
omega_max =  *  * np.pi 
detuning_min = -  *  * np.pi 
detuning_max =  *  * np.pi  

time_max = -
time_ramp = 

time_points = [ , time_ramp, time_max - time_ramp, time_max] 
omega_values = [omega_min, omega_max, omega_max, omega_min] 
detuning_values = [detuning_min, detuning_min, detuning_max, detuning_max] 
phase_values = [ , , , ]  

drive_2D = get_drive(time_points, omega_values, detuning_values, phase_values) 
H_2D += drive_2D

0  
2.5e6 2

8.75e6 2
8.75e6 2

3e 6 
0.25e-6  

0

0 0 0 0

www.quera.com PAGE 06

https://caveonix.com/
https://www.quera.com/


Using Aquila On Braket

Now, we run the simulation on classical hardware:

ahs_program_2D = AnalogHamiltonianSimulation( 
    register=register_2D,  
    hamiltonian=H_2D 
)  

result_2D = classical_device.run(ahs_program_2D, shots=nshots).result()  

plot_avg_density(get_avg_density(result_2D), register_2D)

We see a pattern emerging, similar to the Z2 phase in the 1D case. In 2D, this pattern is typically referred to as the 
checkerboard phase. But will we observe the same behavior on Aquila?

ahs_program_finale = AnalogHamiltonianSimulation( 
    register=register_finale,  
    hamiltonian=H_2D 
)  

result_2D = aquila.run(ahs_program_2D, shots=nshots).result()  

plot_avg_density(get_avg_density(result_2D), register_2D);

PAGE 07 www.quera.com

https://caveonix.com/
https://www.quera.com/


Using Aquila On Braket

Finale: Moving beyond classical limits

So what's the big picture? We've walked through two best practice examples of simulating the order in a quantum 
many-body system, first on classical hardware and then on an actual quantum device, namely Aquila.



But what's the advantage in using Aquila? Well, having gained confidence in Aquila, we can use this quantum device 
to move into a regime that is not so easy to simulate classically. To give you an impression, let's make one final plot 
showing the order of an 11x11 square lattice of neutral atoms.

b =   
N_x = N_y = 

register_finale = AtomArrangement() 
 i  (N_x): 

  j  (N_y): 
        register_finale.add([j*b, i * b])

6.7e-6
11  

# meters 

for in
   for in

range
range

ahs_program_finale = AnalogHamiltonianSimulation( 
    register=register_finale,  
    hamiltonian=H_2D 
)  

result_2D = aquila.run(ahs_program_2D, shots=nshots).result()  

plot_avg_density(get_avg_density(result_2D), register_2D);

Indeed, the checkerboard phase clearly emerges. We have successfully created a complex many-body quantum 
state in which 121 atoms interact in Aquila to create an ordered phase of matter!

www.quera.com PAGE 08

https://caveonix.com/
https://www.quera.com/


Using Aquila On Braket

Connecting to Braket

Now that you've understood the basic workflow of using the Braket SDK you are ready to start submitting your own 
tasks to Aquila for real. Before heading over to the  here's an outline of the five most 
important steps you will be taken through there

  for fre

 Head to the Permissions & Settings subpage to
 Stay on the Permissions & Settings subpage to (such as QuEra's Aquila
 Get started on  (All the code above is also available as one complete notebook in QuEra's 

public GitHub repository  You can copy-paste the url into an AWS notebook instance if you want to try the 
code out for real)

 full Braket documentation page,

Create an AWS account
Open the Braket consol

 enable Brake
 enable third-party devices 

your first notebook
 here.

Next steps

To try Aquila for yourself, head over to Amazon Braket, or contact QuEra at 

This example plus several others, which can be run using Amazon Braket, are also provided on our  

info@quera.com.


GitHub page.

About QuEra
Located in Boston, QuEra Computing is the best way to quantum. We make of advanced quantum computers 
based on neutral-atoms, pushing the boundaries of what is possible in the industry. Founded in 2018, QuEra is 
built on pioneering research recently conducted nearby at both Harvard University and MIT. We are building the 
industry’s most scalable quantum computers to tackle useful but classically intractable problems for commercially 
relevant applications. Our signature machine, Aquila, is available now for general use over the Amazon Braket 
cloud.

PAGE 09 www.quera.com

https://caveonix.com/
https://docs.aws.amazon.com/braket/latest/developerguide/what-is-braket.html
https://aws.amazon.com/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=*all
https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fus-east-1.console.aws.amazon.com%2Fbraket%3FhashArgs%3D%2523%26isauthcode%3Dtrue%26region%3Dus-east-1%26state%3DhashArgsFromTB_us-east-1_20274c425666f960&client_id=arn%3Aaws%3Asignin%3A%3A%3Aconsole%2Faqx&forceMobileApp=0&code_challenge=9RCx9puSjDUb1ybh7QD_6ISdRhdFrgRQzISNvKb5oDA&code_challenge_method=SHA-256
https://docs.aws.amazon.com/braket/latest/developerguide/braket-enable-overview.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-enable-third-party.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html
https://github.com/QuEraComputing/QuEra-braket-examples/blob/main/HelloWorld/HelloBraket_OrderedPhases.ipynb
https://aws.amazon.com/braket/quantum-computers/quera/
mailto:info@quera.com
https://github.com/QuEraComputing/QuEra-braket-examples
https://www.quera.com/

	US letter - Cover.pdf
	US letter - 1.pdf
	US letter - 2.pdf
	US letter - 3.pdf
	US letter - 4.pdf
	US letter - 5.pdf
	US letter - 6.pdf
	US letter - 7.pdf
	US letter - 8.pdf
	US letter - 9.pdf



