Cyclin E1 protein overexpression sensitizes ovarian cancer cells to azenosertib (ZN-c3), a novel, selective and orally bioavailable inhibitor of WEE1
J. Ma¹, W. Liu ${ }^{1}$, H. Chung ${ }^{1}$, H. Izadi¹, P.R. De Jong ${ }^{1}$, O. Harismendy¹, D. Kim¹, N. Jameson¹, T. Y. Ozmen², K. Jeong², D. Zhang², W.A. Pan¹, J. Li¹, F. Doñate¹, A.A. Samatar¹, G.B. Mills², M.R. Lackner¹, L. Escoubet¹, K.D. Bunker¹

BACKGROUND

CCNEI gene amplification is a prevalent oncogenic driver in high grade serous ovarian cancer
(HGSOC) and is associated with platinum resistance and poor patient outcomes ${ }^{1 / 2}$. (HGSOC) and is associated with platinum resistance and poor patient outcom
Cyclin El overexpression can also occur in the absence of gene amplification.
Overexpressed Cyclin E1 forms a complex with CDK 2 to accelerate G1/S transition, resulting in
replication stress and increased dependency on the G2/M checkpoint3. WEE1 is a protein kinase that plays a critical role in cell cycle regulation by inactivating both CDK1
and CDK2 through inhibibory phosphorlation on tyrosine 15 . WEEI is involved in controlling several stages of cell cycle progression, in particular limiting WEEL is involved in controlling several stages of cell cycle progression, in particular limiting
progression from Gl tos and
next phase of cell cycle ${ }^{3}$. 4 . G 2 M , allowing cells to repair damaged DNA before entering the next phase of cell cycle ${ }^{3,4}$.
Azenosertib (ZN-C3) is a novel, selective, and orally bioavailable WEE1 inhibitor currently in clinical
development. WEE1 inhibition by azenosertib abrogates $\mathrm{G} 1 / \mathrm{s}$ and $\mathrm{G} 2 / \mathrm{M}$ checkpoints, leading to devesopment WEEII inhibition by azenonertib abrogates GII/ Sand G2/M checkopoint
increased cell cycling, premature S and M phase entry, and subsequent cell death.
We hypothesized that azenosertib treatment would exacerbate replication stress caused by
Cyclin El overexpression, leading to increased cell death and enhanced anti-tumor activity in Cyclin E1 overexpression, leadin
Cyclin El high preclinical models.

RESULTS
figure 1. Cyclin E1 high HGSOC cell lines are more sensitive to azenosertib in vitro A.

Figure 2. Cyclin E1 overexpression sensitizes isogenic HGSOC cell lines to azenosertib

Figure 3. Sensitivity of Cyclin E1 ${ }^{\text {high }}$ HGSOC cell line to azenosertib is dependent on CDK2

Figure 4. Greater anti-tumor effects of azenosertib in a Cyclin El ligh fumor model are associated with increased replication stress
A.

[^0]Basine Cyclin El expression of each model wos examinead by HC.

Figure 5. Increased synergy between azenosertib and chemotherapy is observed in Cyclin E1 ${ }^{\text {high }}$ HGSOC cell line

Figure 6. Cyclin $\mathrm{E1}{ }^{\text {high }}$ tumor model is more sensitive to combination treatment with azenosertib and paclitaxel than Cyclin E1 low model

REFERENCES

[^1]

[^0]:

[^1]:

