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Si 1,1 11,8 1450 500 0,2-0,8 1 1,5

2H-GaN 3,39 9 900 350 3,3 2,5 1,3

GaAs 1,42 12,9 8000 400 0,4-0,9 0,7 0,46

3C-SiC 2,2 9,6 900 45 1,2 2 4,5

6H-SiC 3 9,7 370 90 2,4 2 4,5

4H-SiC 3,26 10 600 115 2 2 4,5

Diamond 5,45 5,5 1900 3800 5,6 2,7 20

SiC – one of the most technologically advanced wide bandgap semiconductor

Crystal structure: more than 200 polytypes:

High temperature

High power

Compact systems

Low switching losses

High-frequency

Strong interatomic

bonding

High chemical inertness

Good bio-compatibility

SiC:

Electronic fields:

Harsh environnement

Hardness (Mohs scale)
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Particular and complex processes for the growth and technology

"ingot growth"  SiC~2000°C (without liquid phase)

M.A. Fraga et al, " Silicon Carbide in Microsystem Technology - Thin 

Film Versus Bulk Material", 2015, INTECH Ed 

Considerable « cost »

But remarkable industrial investments in power electronics over the last decades:

- continuous progress in reduction of defect densities, 

- increase of wafer size

- and lowering of wafers costs.

MOSFET in SiC

Power discrete SiC devices already 

commercialized (Farnell…)
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Main industrial developments in recent years for the manufacture 

of power devices in SiC (4H-SiC)

4/23



Critical technological steps to develop (power) devices in SiC:

- Improve the quality of the SiC substrate: 
- decrease the density of the point and extended defects: 
"micropipes" , dislocations ;
- increasing the wafer size – to fit with Si technological compatibility.

- Doping: a fundamental step to create active layers
- mainly by ion implantation ;
- needing high temperature annealing ~1700°to recover the crystal 
crystallinity and to activate the doping ;
- avoiding Si sublimation and thus a doping loss by SiC etching ;
- use a C-cap to encapsulate the substrate.

- Packaging, surface and interface improvements:
- MOS interface : SiO2/SiC: decrease the interface trap density ;
- develop a robust packaging to fully benefit from the SiC properties.
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SiC technological developing today

Power electronics :

- to improve reliability in power electronics,

- to reduce the size of converters, 

- to improve the switching operation speed,

- to decrease the power loss. 

- Monolithic integration of SiC devices in the same single crystal wafer

- Increasing the breakdown voltage of the single discrete devices (~30 kV)

New emerging application fields:

- Quantic nanophotonics and robust optoelectronics

- Color centers in SiC–(near)IR emission at RT

- SiC white LED  – without rare-earth metals. 

- Harsh environment sensors

- neutron detectors, UV photodectors , bio – electrochemical sensors... 
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From end of 2018: a new techological line we develop 
for SiC 100/150 mm

Two platforms (clean-rooms):
- ESIEE (Paris Marne-la-Vallée): proved Si 100/150 mm technology
- Nano’Mat (Troyes/Reims) : SiC specific and complementary machines

Not only for power electronics but also for the new emerging fields: 
- sensors with SCR, piezo, bio-electrochemical
- nanophotonics, optoelectronics, plasmonics

A technological transfer of know-how developed in Lyon (limited to 50mm).
Support from academic projects (ANR, Europe, Région GE…)  and direct demand from 
industrial partners
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ESIEE Paris cleanrooms

UMR CNRS 9007

650 m² in ISO 5 and ISO 7

120 equipments to cover fully and standard steps to fabricate µ-systems and 

µ-sensors :

- Thin films deposition, thermal oxidation, photolithography, wet and dry 

plasma etching, wet chemical cleaning, electroplating, wire-bonding, wafer 

cutting, back-end packaging.
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UMR CNRS 9007

Different technological lines :

- more classic (Si, glass, piezoelectric materials) 

- more specifics (flexible systems with integrated carbonic 

materials: diamond, nanotubes, graphene). 

Each equipment is compatible with:

- 4 inches wafers

- 2 to 8 inches for certain steps.

- not for parts or little samples!

Several industrial partners implanted in this cleanroom

ESIEE Paris cleanrooms
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For SiC 100mm technological line we validated:

UMR CNRS 9007

- Wet chemical cleaning and etching

- UV lithography (positive and negative 

photoresist, double-side, lift-off)

- Thermal oxidation (dry and wet)

- Sputtering: Ni, TiW, Au, SiO2 (metal contacts, 

plasma etching and ion implantation masks)

- LPCVD and PECVD with Si3N4

- Plasma etching (RIE et DRIE) to locally open 

thin films, dielectrics (up to ~2µm)

- Cutting SiC wafers with Disco DAD dicing saw

All these machines are currently used at 

ESIEE on 100mm silicon wafers for academic 

and industrial projects 10/23



Specific and dedicated equipments for SiC

(compatibles for 100mm)

- SiC ICP/RIE plasma etching

- Post-ion implantation annealing at high 

temperatures : AET RTP 1900°C furnace

- E-beam evaporators: Ni/Ti/Al (p-type contact) Si

- RTA annealing - JIPELEC JETFirst furnace, an 

equipment also present at URCA and that we 

frequently used

- E-beam lithographie (quantum technology)

At Nano’Mat we utilized less technological 

equipments but they are indispensable and 

represents key steps.

Physico-chemical characterizations : FEGSEM, 

AFM, KPFM, µRaman, PL…

www.nanomat.euEMR CNRS 7004
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n++

n+

p+
p++

• ICP/RIE etching with SF6 

 MU400 Plassys reactor

“isotropic” etching 

- ICP mode
~35µm mesa and via

L2n – Nano-microfabrication of

electronic devices in SiC
www.nanomat.euEMR CNRS 7004
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AET furnace

• RTP chamber with graphite resistors : heating temperature: 800 et 2000°C under Ar.

• More classic quartz tube chamber to form C-cap layer by pyrolyse : up to 900°C under Ar.  

RTP

RTP pressure and temperature

profiles under Ar with a plateau of

30min at 1700°C

Pyrolyse

High temperature post –ion implantation annealing and recrystallisation of 

SiC thin layers

L2n – Nano-microfabrication of

electronic devices in SiC
EMR CNRS 7004
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L2n – Nano-characterization of

electronic devices in SiC
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4H-SiC surface topography after annealing at different 

temperatures

1700°C 1600°C 1500°C

4H-SiC roughness (Ra): control of the

light emission/ absorption

Bruker's Dimension Icon Peak Force :

• SiC surface topography

• Roughness: AR layers control of

light emission/absorption

AFM/KPFM : Atomic/Kelvin Probe 

Force Microscopy

EMR CNRS 7004
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 a)  b)  c) 

 

Protected area boundary patterned by photolithography 

after 1600°C annealing.

EMR CNRS 7004
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L2n – Nano-characterization of

electronic devices in SiC

KPFM: surface potential microscopy (WF)

Bruker's Dimension Icon Peak Force :

• SiC surface topography

• Roughness: AR layers control of

light emission/absorption

 KPFM – p/n junction cartography

AFM/KPFM : Atomic/Kelvin Probe 

Force Microscopy

EMR CNRS 7004
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- p+ and n+ layers are 

identified from p-type channel

- A difference of 700mV 

between p and n-type layers

- Smooth surface topography

(AFM – not shown)

SiC integrated circuit with lateral JFET
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µ-Raman Microscopy

• SiC strong interatomic bonding 

 favourable for Raman scattering 

diffraction 

•Raman very sensitive to crystal structure, 

polytype, defects, doping …

•PL also possible (from 320 to 1000nm)

EMR CNRS 7004

L2n – Nano-characterization of

electronic devices in SiC
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µ-Raman Microscopy
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 4H-SiC

 6H-SiC 

• SiC strong interatomic bonding 

 favourable for Raman scattering 

diffraction 

•Raman very sensitive to crystal structure, 

polytype, defects, doping …

•PL also possible (from 320 to 1000nm)

EMR CNRS 7004

L2n – Nano-characterization of

electronic devices in SiC
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µ-Raman Microscopy
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4H-SiC 

 epitaxial layer doped n by nitrogen (1014)

 substrate doped n+ by nitrogen (1018)

• SiC strong interatomic bonding 

 favourable for Raman scattering 

diffraction 

•Raman very sensitive to crystal structure, 

polytype, defects, doping …

•PL also possible (from 320 to 1000nm)

EMR CNRS 7004

L2n – Nano-characterization of

electronic devices in SiC
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µ-Raman Microscopy

• SiC strong interatomic bonding 
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EMR CNRS 7004

L2n – Nano-characterization of

electronic devices in SiC

µ Raman scanning (in UV 325 nm)

p-type channel

p+ doping

n+ doping

- p and n+ are 

identified from  

from n- layers

- Complementary 

results compared 

to KPFM
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Implementation of a 100/150 mm SiC technological fabrication line 

1) Progressively starting with little runs (end 2018 and beginning of 2019)
- to test the feasibility based on our past experience and by training if necessary
on new equipment,
- technology transfer : Nanolyon (Lyon cleanroom 50mm) -> ESIEE/Nano’Mat,
- with the support of two engineering teams from the two research structure,s
- high number of trips/missions -> ESIEE Paris and also Lyon, Strasbourg, ISL…

Step validated during 2019 – industrial project NEDSiC (Magdala society)
- neutron detectors in SiC,

- PiN structure with a large SCR (HPSI substrates),
- high precision (revers current extremely low – fA)                      faibles- fA)
- 2 runs delivered,
- process-flow defined with critical technological steps 
validated for the future SiC projects.

A project set up and managed with the support of the UTT (50 k€) SiC 100 mmm wafer 

processed:
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2) Shift to larger and more numerous projects

ANR HV-PhotoSW - High Voltage Photo-Switches
- CE05 (Une énergie durable, propre, sure et efficace)
- Ampère CNRS - Institut franco-allemand de recherches de Saint-Louis -NOVASIC S.A.   
- 2019 – 2023 – 465 k€

ESACAT 2 – Cold cathodes fabrication on SiC
- industrial project supported by Thales

ANR MUS2IC - Monolithic Ultimate Switching cell in SIlicon Carbide 
- CE05 (Une énergie durable, propre, sure et efficace)
- LAPLACE, LAAS, L2n, AMPERE 
- 2022 - 2026 – 504 k€

Fabrication of LED (white and with color centers) in SiC
- SATT SAYENS, CNRS
- 2 patents:  FR2201067 and FR2201064

KRASiC – Région GE – ph-d student project Enora Vuillermet
- engineering of SiC defects (color centers) for luminescent devices
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Implementation of a 100/150 mm SiC technological fabrication line 
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Process-flow HV-Photo SW: 11 mask levels, about one hundred steps 

NanoMat 
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Electrical cahracterizations – 1st run

Current gain: 15

5 mm x 5 mm electrical BJT
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Breakdown voltage: 11kV (the goal was 10kV)

Electroluminescence
at high voltage

Reverse IV characteristics - open 

emitter blocking 
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ANR MUS2IC - Monolithic Ultimate Switching cell in SIlicon Carbide

Full-SiC Single-Chip Buck and Boost MOSFET-JBS Converters : 

For Ultimate Efficient Power Vertical Integration

Full-SiC Single-Chip High-Side and Low-Side Dual-Mosfet : 

 Technological realization of the deep vertical insulating SiC etched-trench region

- by both and alternative fluorinated plasma and electrochemical eteching

- same process is need to isolate color centers in quantum nanophotonic

cavities 23/23


