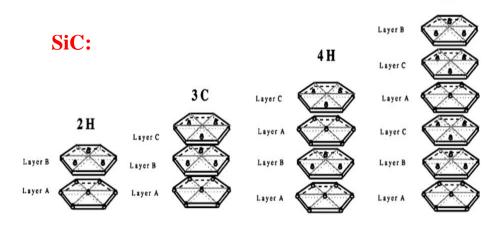


Integrated Technology in SiC for Harsh Environement Power Electronics, Sensors and Quantum Nanophotonics

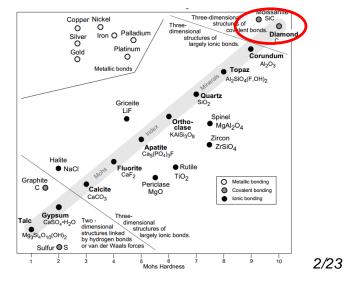
- Mihai LAZAR -

Light, Nanomaterials & Nanotechnologies (L2n), CNRS EMR 7004, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France

UILT UNIVERSITÉ DE TECHNOLOGIE TROYES


mihai.lazar@utt.fr

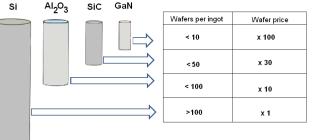
SiC – one of the most technologically advanced wide bandgap semiconductor


6H

	Eg (eV)	ε _r	μ_n (cm ² .V ⁻¹ .s ⁻¹)	μ_p (cm ² .V ⁻¹ .s ⁻¹)	E _c (MV.cm ⁻¹)	v _{sat} (10 ⁷ cm.s ⁻¹)	λ (W.cm ⁻¹ .K ⁻¹)	Electronic fields: High temperature High power
Si	1,1	11,8	1450	500	0,2-0,8	1	1,5	Compact systems Low switching losses High-frequency
2H-GaN	3,39	9	900	350	3,3	2,5	1,3	
GaAs	1,42	12,9	8000	400	0,4-0,9	0,7	0,46	Harsh environnement
3C-SiC	2,2	9,6	900	45	1,2	2	4,5	Strong interatomic bonding High chemical inertnes
6H-SiC	3	9,7	370	90	2,4	2	4,5	
4H-SiC	3,26	10	600	115	2	2	4,5	Good bio-compatibility
Diamond	5,45	5,5	1900	3800	5,6	2,7	20	

Crystal structure: more than 200 polytypes:

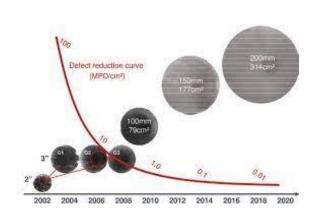
Hardness (Mohs scale)



Particular and complex processes for the growth and technology

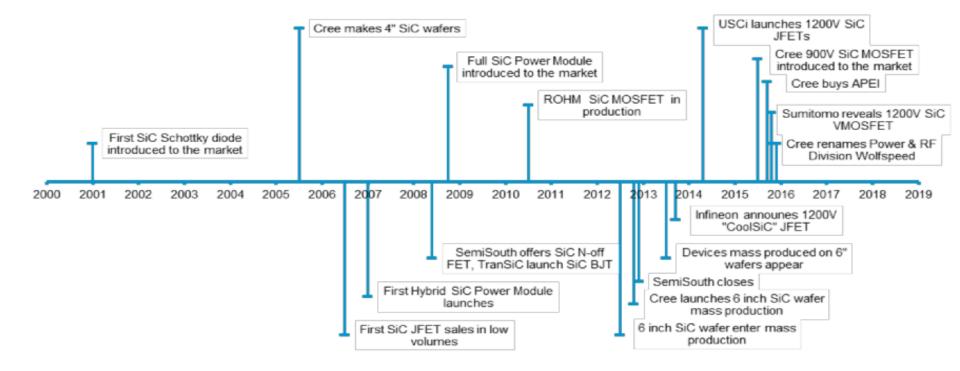
Cristal Cristal Fransport Si₂C₂C₁ Source Cuvercle Isolation Induction à radiofréquences Covercle Isolation Induction à radiofréquences Covercle Isolation Induction à Covercle Isolation Covercle Cover

"ingot growth" SiC~2000°C (without liquid phase)


Considerable « cost »

M.A. Fraga et al, " Silicon Carbide in Microsystem Technology - Thin Film Versus Bulk Material", 2015, INTECH Ed

- But remarkable industrial investments in power electronics over the last decades:
- continuous progress in reduction of defect densities,
- increase of wafer size
- and lowering of wafers costs.



Power discrete SiC devices already commercialized (Farnell...)

Main industrial developments in recent years for the manufacture of power devices in SiC (4H-SiC)

Critical technological steps to develop (power) devices in SiC:

- Improve the quality of the SiC substrate:

- decrease the density of the point and extended defects:

"micropipes" , dislocations ;

- increasing the wafer size to fit with Si technological compatibility.
- Doping: a fundamental step to create active layers
 - mainly by ion implantation ;
 - needing high temperature annealing ~1700° to recover the crystal crystallinity and to activate the doping ;
 - avoiding Si sublimation and thus a doping loss by SiC etching ;
 - use a C-cap to encapsulate the substrate.
- Packaging, surface and interface improvements:
 - MOS interface : SiO₂/SiC: decrease the interface trap density ;
 - develop a robust packaging to fully benefit from the SiC properties.

SiC technological developing today

Power electronics :

- Monolithic integration of SiC devices in the same single crystal wafer

- to improve reliability in power electronics,
- to reduce the size of converters,
- to improve the switching operation speed,
- to decrease the power loss.

- Increasing the breakdown voltage of the single discrete devices (~30 kV)

New emerging application fields:

- Quantic nanophotonics and robust optoelectronics

- Color centers in SiC-(near)IR emission at RT
- SiC white LED without rare-earth metals.

- Harsh environment sensors

- neutron detectors, UV photodectors , bio - electrochemical sensors...

From end of 2018: a new techological line we develop for SiC 100/150 mm

Two platforms (clean-rooms):

- ESIEE (Paris Marne-la-Vallée): proved Si 100/150 mm technology
- Nano'Mat (Troyes/Reims) : SiC specific and complementary machines

Not only for power electronics but also for the new emerging fields:

- sensors with SCR, piezo, bio-electrochemical
- nanophotonics, optoelectronics, plasmonics

A technological transfer of know-how developed in Lyon (limited to 50mm). Support from academic projects (ANR, Europe, Région GE...) and direct demand from industrial partners

ESIEE Paris cleanrooms

650 m^2 in ISO 5 and ISO 7

120 equipments to cover fully and standard steps to fabricate μ -systems and μ -sensors :

- Thin films deposition, thermal oxidation, photolithography, wet and dry plasma etching, wet chemical cleaning, electroplating, wire-bonding, wafer cutting, back-end packaging.

ESIEE Paris cleanrooms

Different technological lines :

- more classic (Si, glass, piezoelectric materials)
- more specifics (flexible systems with integrated carbonic materials: diamond, nanotubes, graphene).

Each equipment is compatible with:

- 4 inches wafers
- 2 to 8 inches for certain steps.
- not for parts or little samples!

Several industrial partners implanted in this cleanroom

For <u>SiC 100mm</u> technological line we validated:

- Wet chemical cleaning and etching
- UV lithography (positive and negative photoresist, double-side, lift-off)
- Thermal oxidation (dry and wet)
- Sputtering: Ni, TiW, Au, SiO₂ (metal contacts, plasma etching and ion implantation masks)
- LPCVD and PECVD with Si₃N₄
- Plasma etching (RIE et DRIE) to locally open thin films, dielectrics (up to ~2µm)
- Cutting SiC wafers with Disco DAD dicing saw

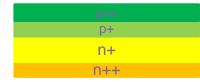
All these machines are currently used at ESIEE on 100mm silicon wafers for academic and industrial projects

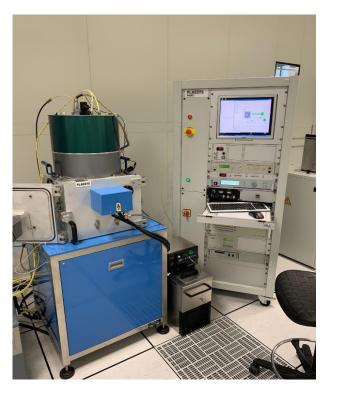
Specific and dedicated equipments for SiC (compatibles for 100mm)

- SiC ICP/RIE plasma etching
- Post-ion implantation annealing at high temperatures : AET RTP 1900°C furnace
- E-beam evaporators: Ni/Ti/AI (p-type contact) Si
- RTA annealing JIPELEC JETFirst furnace, an equipment also present at URCA and that we frequently used
- E-beam lithographie (quantum technology)

At Nano'Mat we utilized less technological equipments but they are indispensable and represents key steps.

Physico-chemical characterizations : FEGSEM, AFM, KPFM, μRaman, PL...

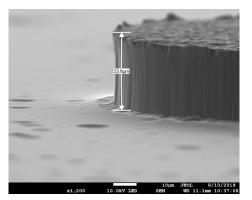



L2n – Nano-microfabrication of electronic devices in SiC

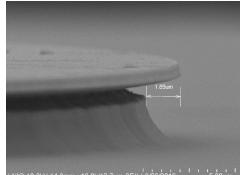

n+

n++

Local plasma etching of 4H-SiC layers



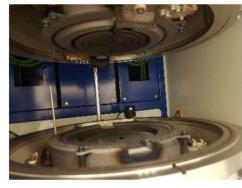
ICP/RIE etching with SF₆
 → MU400 Plassys reactor

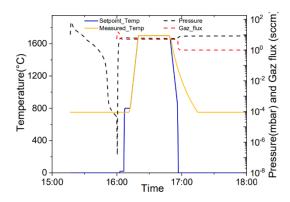

~35µm mesa and via

"isotropic" etching - ICP mode

n+

n++


10.0kV 14.8mm x10.0k/12.7um SE(L) 3/29/2019 5.00ur


L2n – Nano-microfabrication of electronic devices in SiC

High temperature post –ion implantation annealing and recrystallisation of SiC thin layers

RTP

Pyrolyse

RTP pressure and temperature profiles under Ar with a plateau of 30min at 1700°C

AET furnace

- RTP chamber with graphite resistors : heating temperature: 800 et 2000°C under Ar.
- More classic quartz tube chamber to form C-cap layer by pyrolyse : up to 900°C under Ar.

AFM/KPFM : Atomic/Kelvin Probe Force Microscopy

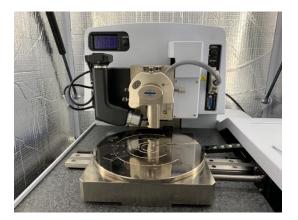
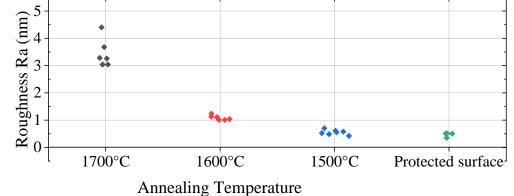
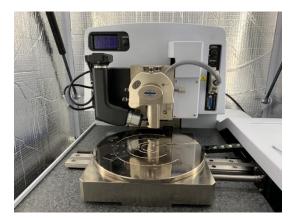
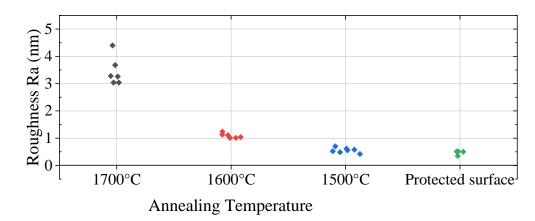



 Image: state of the second state of

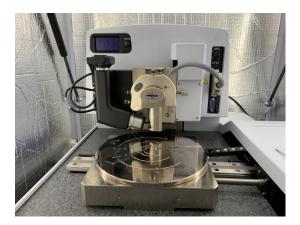

4H-SiC roughness (Ra): control of the light emission/ absorption

Bruker's Dimension Icon Peak Force :

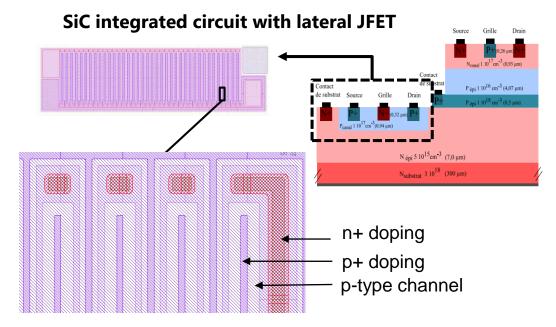

- SiC surface topography
- Roughness: AR layers control of light emission/absorption

AFM/KPFM : Atomic/Kelvin Probe Force Microscopy

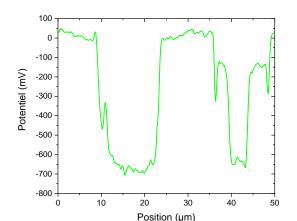
Protected area boundary patterned by photolithography after 1600°C annealing.


4H-SiC roughness (Ra): control of the light emission/ absorption

Bruker's Dimension Icon Peak Force :

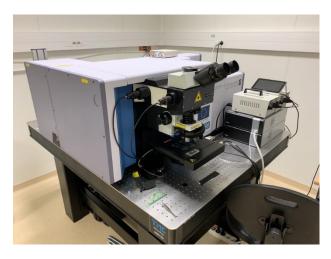

- SiC surface topography
- Roughness: AR layers control of light emission/absorption

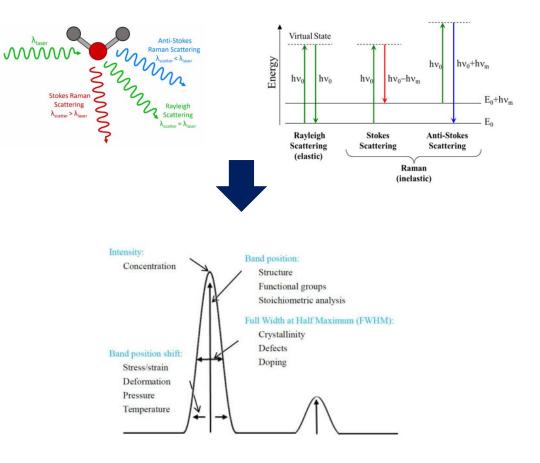
AFM/KPFM : Atomic/Kelvin Probe Force Microscopy


L2n – Nano-characterization of electronic devices in SiC

KPFM: surface potential microscopy (WF)

Bruker's Dimension Icon Peak Force :

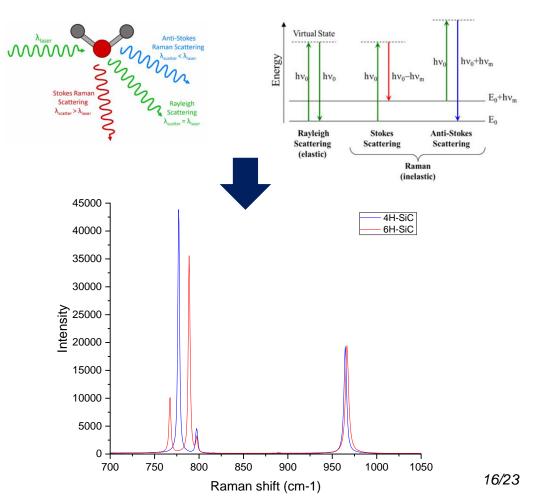

- SiC surface topography
- Roughness: AR layers control of light emission/absorption
- \rightarrow KPFM p/n junction cartography


p+ and n+ layers are identified from p-type channel
A difference of 700mV between p and n-type layers
Smooth surface topography (AFM – not shown)

µ-Raman Microscopy

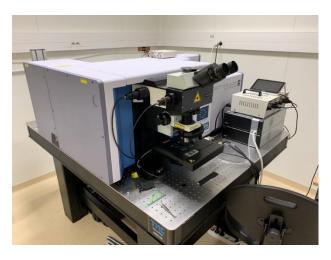
- SiC strong interatomic bonding
- \rightarrow favourable for Raman scattering diffraction
- •Raman very sensitive to crystal structure, polytype, defects, doping ...
- •PL also possible (from 320 to 1000nm)

µ-Raman Microscopy



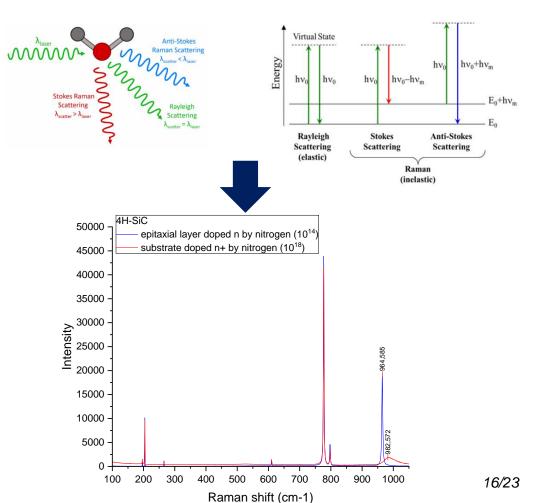
SiC strong interatomic bonding

→ favourable for Raman scattering diffraction


•Raman very sensitive to crystal structure, polytype, defects, doping ...

•PL also possible (from 320 to 1000nm)

µ-Raman Microscopy

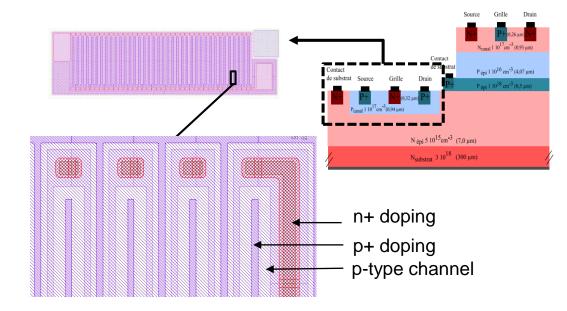


SiC strong interatomic bonding

→ favourable for Raman scattering diffraction

•Raman very sensitive to crystal structure, polytype, defects, doping ...

•PL also possible (from 320 to 1000nm)


µ-Raman Microscopy

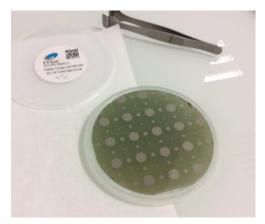
SiC strong interatomic bonding

→ favourable for Raman scattering diffraction

- •Raman very sensitive to crystal structure, polytype, defects, doping ...
- •PL also possible (from 320 to 1000nm)

μ Raman scanning (in UV 325 nm)

p and n+ are identified from from n- layers
Complementary results compared to KPFM


Implementation of a 100/150 mm SiC technological fabrication line

1) Progressively starting with little runs (end 2018 and beginning of 2019)

- to test the feasibility based on our past experience and by training if necessary on new equipment,
- technology transfer : Nanolyon (Lyon cleanroom 50mm) -> ESIEE/Nano'Mat,
- with the support of two engineering teams from the two research structure,s
- high number of trips/missions -> ESIEE Paris and also Lyon, Strasbourg, ISL...

Step validated during 2019 – industrial project NEDSiC (Magdala society)

- neutron detectors in SiC,
- PiN structure with a large SCR (HPSI substrates),
- high precision (revers current extremely low fA)
- 2 runs delivered,
- process-flow defined with critical technological steps validated for the future SiC projects.

SiC 100 mmm wafer processed:

A project set up and managed with the support of the UTT (50 k€)

Implementation of a 100/150 mm SiC technological fabrication line

2) Shift to larger and more numerous projects

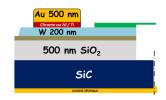
ANR HV-PhotoSW - High Voltage Photo-Switches

- CE05 (Une énergie durable, propre, sure et efficace)
- Ampère CNRS Institut franco-allemand de recherches de Saint-Louis -NOVASIC S.A.
- 2019 2023 465 k€

ESACAT 2 – Cold cathodes fabrication on SiC

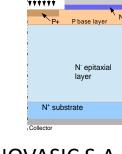
- industrial project supported by Thales

ANR MUS²IC - Monolithic Ultimate Switching cell in Silicon Carbide

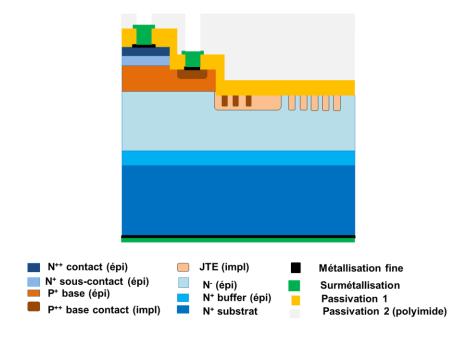

- CE05 (Une énergie durable, propre, sure et efficace)
- LAPLACE, LAAS, L2n, AMPERE
- 2022 2026 504 k€

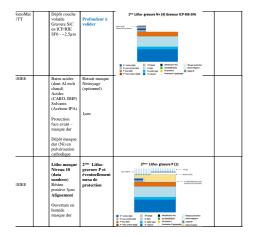
Fabrication of LED (white and with color centers) in SiC

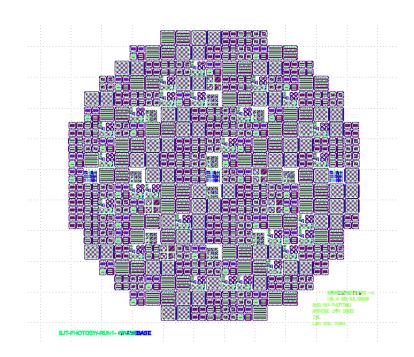
- SATT SAYENS, CNRS
- 2 patents: FR2201067 and FR2201064

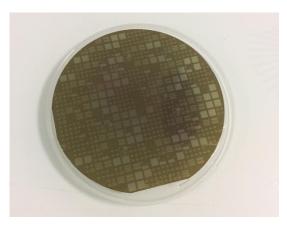

KRASiC – Région GE – ph-d student project Enora Vuillermet

- engineering of SiC defects (color centers) for luminescent devices

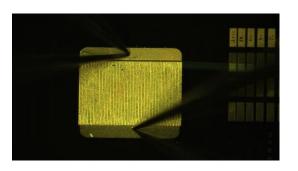


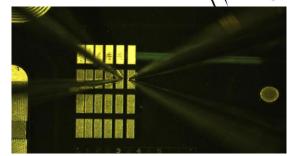

Cathode

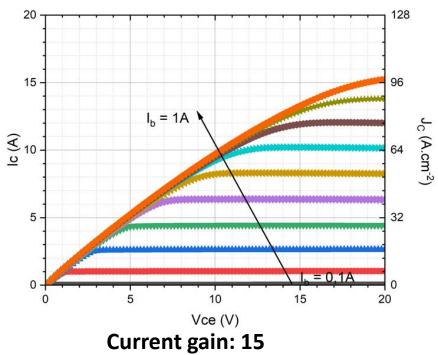


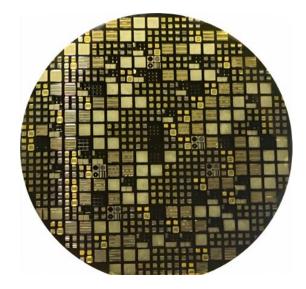

DC (-)

Process-flow HV-Photo SW: 11 mask levels, about one hundred steps

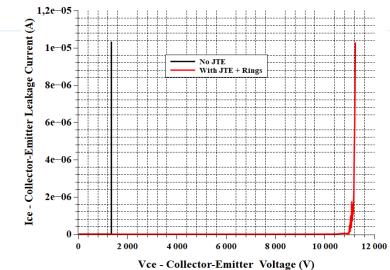


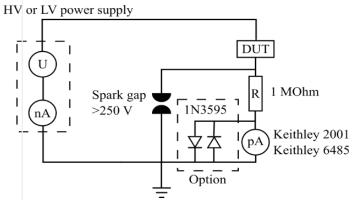



Electrical cahracterizations – 1st run



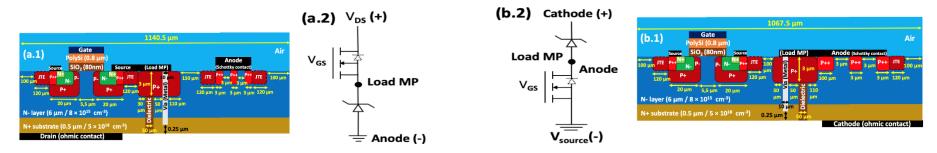
5 mm x 5 mm electrical BJT

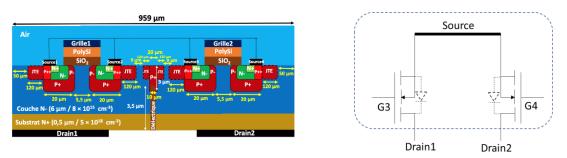



Breakdown voltage: 11kV (the goal was 10kV)

Reverse IV characteristics - open emitter blocking

3900 µm


Electroluminescence at high voltage


ANR MUS²IC - Monolithic Ultimate Switching cell in Silicon Carbide

For Ultimate Efficient Power Vertical Integration

Full-SiC Single-Chip Buck and Boost MOSFET-JBS Converters :

Full-SiC Single-Chip High-Side and Low-Side Dual-Mosfet :

→ Technological realization of the deep vertical insulating SiC etched-trench region
 - by both and alternative fluorinated plasma and electrochemical eteching

- same process is need to isolate color centers in quantum nanophotonic cavities