A—=C

OFFICIAL WHITEPAPER

1. Introduction
11 Web3 Development
1.2 Data management

2. The ARC Ecosystem
2.1 ARC Reactor IDE
2.2 ARCVM
2.3 ARC Compiler
2.4 ARC Language
2.5 $ARC Token

3. Reactor IDE & Semantic GUI
31 ERD Diagrams
3.2 Activity Diagrams
3.3 Interface and Libraries

4. Semantic Virtual Machine
4.1 How the ARC VM achieves this impressive speed

5. Auto-Compilation - Automated compilation process for EVM
5.1 Benefits of Auto-Compilation:

6. Decentralized GUI

6.1 On-Chain Smart Contract management

7. ARC Token
71 The virtues of the $ARC Token:
7.2 What is $stARC?
7.3 Benefits of $stARC

8. Decentralized App Store
Early conceptual mockup of ARC’s dApp Store
8.1 For developers
8.2 For users

9. Heterogenous

10. Decentralized - Requiring no backend or Internet Connection
101 Secure In-Browser Local Processing
10.2 Front-end, Server, Database
10.3 Front-end, Chain
10.4 Impact on Web3

CONCLUSION

GLOSSARY OF TERMS

w w

0 N NN o o o oo Ol

©o O

10
10

"
12

13
13
13
14

15
15
15
15

16

www.arc.market
ARC

ARC : A Decentralized Workflow Engine and Semantic GUI

Abstract. A decentralized, heterogeneous workflow engine with a semantic programmatic
GUI would allow all network constituents and future peers within a network to build, manage,
connect, and deploy their data and products, both front-end, and smart contracts intra-chain
and to the web seamlessly, and much more efficiently than alternative methods. Existing
blockchains provide part of the solution needed for the mass adoption of Web3 technologies.
But lack significantly when it comes to cross-chain compatibility, creating exploitative
opportunities for bad actors, slow iteration, deployment speed, and reliance on centralized
services. ARC proposes a solution to these problems via a decentralized workflow engine.
Making all input capabilities available through a semantic GUI, and all output processes via a
decentralized backend.

1. Introduction

11 Web3 Development

The development of Web3 has traditionally been a slow and tedious process. It’'s plagued by communication problems
between technical and non-technical team members. Moreover, web3 (not unlike web?2) is littered with malicious and
bad actors exploiting seemingly unavoidable security flaws and oversights. ARC’s development ecosystem offers
solutions for speed, cost, scalability, and security. ARC achieves this through our suite of tools that make product
development and deployment easier and more secure, each in its own unique way.

Our development ecosystem not only streamlines the way web3 applications get developed but also has far-reaching
implications on the way data gets managed across the web.

1.2 Data Management

Transference of data on the internet has traditionally been controlled by centralized servers acting as custodians of
user data. This system has worked well enough in the infancy of the internet, but in the age of information, it has its
drawbacks. The potential for misuse of user data, difficulty in quantifying the data, cost of maintenance and set-up of
the servers, and susceptibility to manipulation by bad actors, are just a few. Blockchains offer a strong alternative but
are slower, less reliable than other technical counterparts, and still open to manipulation. The ARC Reactor addresses
these issues through a decentralized workflow engine and semantic GUI for all Web3 data transference. This system
serves as a decentralized liaison, onboarding, and automation system for all of Web3. The Reactor offers a solution for
efficient and reliable data transference on the internet by allowing all network constituents to build, manage, connect,
and deploy their data intra-chain and web seamlessly. The ARC Reactor operates without reliance on centralized actors
or institutions.

User to Chain: The ARC Reactor allows for the seamless transference of data from peer to the blockchain. Users can
easily build, connect, and deploy their data on any blockchain, utilizing the Reactor's UML mapping and OOP language
to understand and manipulate the code. The Reactor also includes an auto-compilation feature, which standardizes
uploaded smart contracts for easier deployment and iteration.

Chain to Chain: The ARC Reactor also facilitates the transfer of data from one blockchain to another. Users can easily
build, connect, and deploy their data between different chains. The decentralized nature of the Reactor ensures that
data transference is secure and equal among all network constituents, creating a self-sustaining system.

Chain to User: The ARC Reactor allows for the seamless transference of data from the blockchain to the user by
utilizing existing methods of chain-to-user communications, paired with a flexible development environment. Users can
easily build, connect, and deploy their data from the blockchain.

0O

www.arc.market
ARC

2. The ARC Ecosystem

Reactor

ARC
Compiler

Fiat-on-
ramp

Swaps

21 ARC Reactor IDE

The ARC Reactor Integrated Development Environment (IDE) constitutes the core of our ecosystem. The Reactor IDE
boasts a fully featured solidity IDE. While it allows for all standard functions of an IDE, the Reactor IDE is differentiated
by way of a proprietary code-to-diagram technology that represents any smart contract into editable visual diagrams.
This offers a lower barrier to entry for understanding how smart contracts function. The visual editor provides intricate
control over every aspect of a smart contract, in effect creating a no-compromises, low-code solution to smart contract
development.

2.2 ARCVM

The ARC Virtual Machine (VM) is a shared virtual CPU that can be run through the ARC Reactor IDE. It allows
developers to test and run their smart contracts through the Reactor prior to deployment. The ARC VM differs from
other VMs in that any contracts compiled to run on the ARC VM become intra-chain compatible. In effect the ARC VM
allows developers to rapidly deploy any EVM chain code to any other EVM. Developers can also leverage the ARC VM
to develop for any existing EVM chain. In order to compile smart contracts into byte code which gets executed on the
ARC VM, the ARC VM utilizes the ARC Compiler.

www.arc.market
ARC

2.3 ARC Compiler

The ARC Compiler allows for the streamlined deployment and iteration of smart contracts within the system. Upon
uploading, the contracts are automatically compiled into a standardized format, ensuring that they are easily
understood by the system and improving overall efficiency and reliability. In addition, ARC’s automatic compile feature
massively reduces the amount of tedious and redundant work developers are required to do to compile smart
contracts.

2.4 ARC Language

In order to allow the Reactor IDE to map all functions and relationships of any smart contract into visual diagrams, the
ARC Language was created. The ARC Language is a unique smart contract programming language that instantly maps
all smart contracts across all EVM chains into Entity Relationship Diagrams (ERD), allowing users to edit the source
code directly from activity diagrams. This powerful language is the driving force behind our GUI in the ARC Reactor
IDE.

2.5 $ARC Token

The $ARC Token is the heart of our decentralized system ensuring bad actors with malicious intentions are not
incentivized to use the ARC Reactor. In addition to a monthly fee, The $ARC Token needs to be staked in order to
access the ARC Reactor. By staking more $ARC, users can reduce the total amount of their monthly fees and unlock
other benefits.

| X J@

www.arc.market
ARC

3. Reactor IDE & Semantic GUI

The semantic GUI of the ARC Reactor is a programmatic interface that allows users to easily build, connect, and deploy
their data within the network. The GUI utilizes a unique OOP language that is organized into three layers:

3.1 ERD Diagrams

ERD, or Entity Relationship Diagrams, are a visual representation of the relationships between different entities within a
database. In the context of the ARC Reactor, ERD diagrams are used to provide a visual representation of the
relationships between smart contracts, their subnodes, and children. This allows users to easily understand the
structure of their codebase and make changes as needed.!

Contracts Proferences «
Q search
Your Contracts ~

contractNameHere.sol
hereContractDef.sol

+ contractNameHere.sol
contractName.sol
contractHere.sol
naOfTheGontract.sol

contractNameHere.sol

Drag and drop contract here

Files

A Context

B address _msgSender()

I

A" ownable

u Address _owner

® void OwnershipTransferred()
ovod <<constructors>()

® address owner()

® vod onlyowner(

® voud renounceOwnershipl))

sastancr 1

A Context
u Aduress _owner

® vold OwnershipTransferred)
® void <<constructor>>()

® address owner()

Settings Comments
MODIFIER
ModifierDefinition

Name

onlyOwner

Parameters

VariableDeclaration

Override

VariableDeclaration
Is virtual

CONTRACT

x2y2_test/@openzeppelin/cc

> Rarible-tokens ® void transterOwnership() Ounable.sol
> test ® voud _transferOwnership() Name
> @openzappelin
Jr— Ownable
> token A Gontext
> Rarible-tokens Kind
m Address _owner
> Rarible-tokens abstract
) Rarible-tokens ® void OwnershipTransferred()
® void <<constructor>>() baseContracts
Context

® address owner()
subNodes
void
void

void

3.2 Activity Diagrams

Activity diagrams are a type of flowchart that describe the flow of functions, actions, and events within a process or
system. In the ARC Reactor, activity diagrams are used to describe the functions and interactions of the codebase,
allowing users to easily understand the logic behind their contracts. These diagrams are particularly useful for users
who may not have advanced programming skills, as they provide a visual representation of the code that is easy to

understand.

' Refer to the glossary on page 20.
|

www.arc.market
ARC

> token
ONLYOWNER() X

> Rarible-tokens Kind

» Rarible-tokens abstr

> Rarible-tokens
baseCor
Conte
owner() == _msgSender() subNodt

no yes

1 1 voidt
void
Ownable; caller is not the owner R
é SOURGH
ONLYOWNER() X

3.3 Interface and Libraries

The interface layer of the ARC Reactor's semantic GUI allows users to edit the code diagrammatically, or directly from
the GUL. This layer also includes a variety of libraries for different data structures and input fields, allowing users to
easily access the resources they need to build and deploy their contracts. The GUI also includes support for a variety
of denominations and other features that make it easy for users to generate source code with just a few clicks. Overall,
the semantic GUI of the ARC Reactor is designed to be user-friendly and intuitive, making it easy for users of all skill
levels to build and deploy their contracts within the network.

00O

www.arc.market
ARC

4. Semantic Virtual Machine

The ARC VM is a core component of our system, providing a secure and efficient environment for running smart
contracts and connecting cross-chain.

One of the integral offerings of the ARC VM is its speed. It is designed to be over 90% faster than other VMs on the
market, allowing it to handle large volumes of transactions without slowing down the network. This makes it an ideal
solution for high-throughput applications, such as decentralized finance (DeFi) and gaming. 2

41 How the ARC VM achieves this impressive speed

There are a few key factors at play. First, the ARC VM uses advanced optimization techniques, such as just-in-time (JIT)
compilation, to compile smart contracts as they are executed. This allows the VM to optimize the code for the specific
input data and execution environment, resulting in faster and more efficient execution.

Second, the ARC VM uses a lightweight and flexible architecture that minimizes resource usage. This allows it to run on
a wide range of devices and environments, from high-performance servers to low-power loT devices. This flexibility
enables the VM to operate efficiently across a wide range of applications, from DeFi to GameFi.

In addition to its speed, the ARC VM also offers a range of other benefits, including enhanced security and

interoperability with other EVM chains. This makes it an essential part of our technology stack, enabling users to build
faster, more securely, and in an interoperable blockchain ecosystem.

00O

2 Refer to the glossary on page 20.

www.arc.market
ARC

5. Auto-Compilation - Automated compilation process for EVM

The ARC Reactor's auto-compilation feature allows for the streamlined deployment and iteration of smart contracts
within the system. Upon uploading, the contracts are automatically compiled into a standardized format, ensuring that
they are easily understood by the system and improving overall efficiency and reliability. This feature is particularly
useful for users who may not have advanced programming skills, as it simplifies the process of building and deploying
contracts within the network. Overall, the auto-compilation feature is a key component of the ARC Reactor's design, as
it streamlines the process of building and deploying contracts within a decentralized network.®

5.1 Benefits of Auto-Compilation:

(1) Increased efficiency - users no longer need to manually compile contracts before uploading, saving time and
resources; (2) Improved reliability - standardization of contracts ensures that they are easily understood by the system,
reducing the risk of errors or miscommunication; (3) Greater accessibility - simplifies the process of building and
deploying contracts for users with less programming experience.

Solidity AVM

Yul

AVM Compatible

Code Class loader

:

Verifier

J .
Interpreter <

Hardware

| MNoerror

v

1
1
1
1
1
1
1
1
1
1
{ 1
1 ARC 1
1
1
1
1
1
1
1
1
1
1
1

1

I

1

1

I

1

I

]

I

1

]

I

1

| Error

1 .
, Compiler
I

. T
|

]

I

1

]

I

I

I

1

BYTE CODE |———F———

Compile Time

Run Time

00O

3 Refer to the glossary on page 20.

www.arc.market
ARC

10

6. Decentralized GUI

Through a decentralized GUI, ARC is reimagining what a block explorer looks like. Commonly, block explorers are used
for mapping out certain transactions within a blockchain, as well as allowing users to delve into the smart contract that
the transaction(s) interacted with. The main problem is that delving into the code is time intensive and has to be done
line-by-line. This problem is attenuated by decentralizing the semantic GUI outputs, so every actor within Web3 can
view code in a transparent manner, and understand how the logic works perfectly.

Note that the code for this smart contract is hosted on-chain and has to be examined line-by-line in order to
understand the underlying logic. A large barrier for all users, especially the non-technical.

Transactions Internal Txns Erc20 Token Txns Contract @ Events Produced Blocks Analytics Comments

@ Read Contract Write Contract @ v oA
& Contract Source Code Verified (Exact Maich) A
Contract Name LidoExecutionLayerRewardsVault Optimization Enabled Yes with 200 runs

Compiler Version v0.8.9+commit.e5eed63a Other Settings: default evmVersion

& Contract Source Code (Solidity Standard Json-Input format)
File 1 of 6 : LidoExecutionLayerRewardsvault.sol a a B

1 Vs SPDX-FileCopyrightText: 2821 Lido <info@lido.fi>

2

3 // SPDX-License-Identifier: GPL-3.8

4

5 J/* 5ee contracts/COMPILERS.md */

6 pragma solidity ©.8.9;

7

8 import “"g@openzeppelinscontracts-v4.4/token/ERC28/IERC28.501";

9 import "g@openzeppelinscontracts-v4.4/token/ERC721/IERC721.501";

18 import "@openzeppelin/contracts-v4.4/token/ERC28/utils/SafeERC28.501";

11

12 - interface ILido {

13~ L

14 * @notice A payable function supposed to be called only by LidoExeclayverRewardsVault contract
15 * @dev We need a dedicated function becaouse funds received by the default payable function
16 * gre treated @s a user deposit

17 >

15 function receiveELRewards() external payable;

vault for temporary storgge of execution Layer rewards (MEV and tx priority fee)

25 * contract LidoExecutionLaverRewardsVault { T

ARC’s solution - A Decentralized Semantic GUI-based explorer for all chains

With an accessible GUI interface for exploring smart contracts on any EVM chain, users can easily navigate through the
code via an internet browser. Understanding functions from an entity relationship point of view, as well as activity.

www.arc.market
ARC

o O B E B > e

Contracts Preferences «

Q search

Your Contracts v

Files

v

Rarible-tokens

test

v

@openzappelin

~

token

v

Rarible-tokens

“

Rarible-tokens

~

Rarible-tokens

<
LBRaRY
T safeErc20
void safeTransferFrom()
void safeTrasfer()
void safeApprove()
void safeTransferE TH()
AN
l '
' '
' '
' '
' '
' '
' '
' '

CONTRA
LUSDAllocator

@ iStabilityPool lusdStabilityPool

® ILQTYStaking iqtyStaking

® IWETH weth

® unit256 FEE_PRECISION
® unit256 FEE_PRECISION
® unit256 FEE_PRECISION
® unit256 FEE_PRECISION
® unit256 FEE_PRECISION
® unit256 FEE_PRECISION
® void Deposit()

& void Deposit()

"

Logged in ¢ 0x3972..B0BB 4 0.000711004 ETH
Settings Comments »
apsTRAcT nreRFACt
A OlympusAccessControlled I 1gpe; MODIFIER v
® string UNAUTHORIZED ® unit256 ModifierDefinition
@ I0lympusAuthority authority ® unit256
Name
® bool
® void AuthorityUpdated () i onlyOwner
—> o void <<constructors>() O (==
® void onlyGovemor() O L= Parameters
® void onlyGuardian() @ boo! VariableDeclaration
® void onlyPolicy() O]
Override
® void onlyvault() O e
A i) s
® void setAuthority() 3 VariableDeclaration <
'
'
'
' Is virtual w/ndd +
' \
'
'
. CONTRACT v
'
: x2y2_test/@openzeppelin/contracts/access/
' Ownable.sol
'

INTERFACE

I IERC20Metadate

® string name()
@ string symbol()
® sting onlyGovemor()

6.1 On-Chain Smart Contract Management
Utilizing the block explorer, teams will be able to upload deployed code into the reactor, via exporting. Or by logging
into a wallet that can access the smart contract. One can edit directly from the block explorer.

LamRAnY

1 gafeERC20

waid safeTransferfrom()
void safeTrasfer()
void safeapprovel)
vaid safeTransterETH()
AA
v v
' I
' '
' '
']
' '
' '
' '
-
CONTRAGT
LUSDAllocator
@ iStabilityPool |usdStabilityPool
® ILQTYStaking igtyStaking
® IWETH weth
® unit256 FEE_PRECISION
fc unit256 FEE_PRECISION]
® unil256 FEE_PRECISION
® unit256 FEE_PRECISION
® unit256 FEE_PRECISION
® unit256 FEE_PRECISION
* void Deposit()
® void Deposit()
L

»

ABSTRECT

Logged

19

& Issue fixed

A OlympusAccessControlled

UNAUTHORIZED

@ I0lympusAutharity authority

® void Authrityl I
—> e void <<constructors>{)

® void onlyGovemor(y

® void onlyGuardian|)

® void anlyPalicy()

® void onlyVault()

@ void setAuthority()

authority vaultl} = address(0)?

A

il

in

Name

Ownable

Kind
abstract

® V0 paseContracts

@ v Context

® vo
subNodes

void
void

void

W 0x3972..BOBB 4

Settings Comments
MODIFIER
ModifierDefinition
Name

onlyOwner

Parameters

VariableDeclaration

TR
RC L LR LU
IEl 16 const util = require(’./build/Libsutil®);
1 const path = require(
shring const conpilatis r ib/compilation® i
string - n . TR
20 conpilation.conpileTask('out', false));
string 21 gulp.task('watch-client’, ["clean—client'l,

compilation.watchTaski'out’, falsell;

trasury = [Treat

VariableDeclaration

Is virtual

CONTRACT

Ownable sol

hame
Ownable
Kind
abstract
baseContracts
Context

subNodes

wmird

0.000711004 ETH

(" nde
.

)

www.arc.market
ARC

12

7. ARC Token

The $ARC Token is the heart of our decentralized system ensuring bad actors with malicious intentions are not
incentivised to use the ARC Reactor. In addition to a monthly fee, The $ARC Token needs to be staked in order to
access the ARC Reactor. By staking more $ARC, users can reduce the total amount of their monthly fees.

71 The virtues of the $ARC Token:

e Stake $ARC to access Reactor (and disincentivize bad actors) via slashing. Securing the future of a safer

WEBS3 for all.

e Savings (1): SaaS - priced in stables / FIAT. Monthly packages that scale per user, features, and support. ARC
savings

e Savings (2): Push Fees - Paid in $ETH. Users can save on gas fees dynamically based on the amount of $ARC
they stake

o Revenue sharing on the future marketplace for Dapps and Reactor templates created by users

By using the ARC token as a barrier to access the ARC Reactor an added layer of control over what the ARC Reactor is
being used for was developed. As it’s a very powerful tool that could be maliciously used to rapidly generate clones of
projects, anchoring the transactions in $ARC is essential for an added layer of security. In addition, this allows our
supporters to invest in our developing ecosystem.

Example of fee savings from staked $ARC

Amount of ARC Staked Savings per month

10,000 0%

25,000 5%

75,000 15%
7.2 What is $stARC?

$stARC (Staked $ARC) allows $ARC holders to stake their tokens in return for a synthetic token called $stARC. With
this structure, users accumulating and staking $ARC will earn and be able to sell $stARC tokens accessing the $stARC
liquidity pool.

7.3 The virtues of the $stARC Token

Holders of $ARC are incentivized to accumulate and hold the $ARC utility token and become part of an ever-growing
symbiotic ecosystem.

$ARC holder selects contract

Contract locked in, $stARC (a synthetic token) is generated

The user holds $ARC in their wallet until the contract is complete

The user exits the $stARC contract via selling, accessing liquidity/ revenue via LP

AwNn o=

www.arc.market
ARC

13

8. Decentralized App Store

The decentralized app store is a platform that allows users to discover and access decentralized applications (dApps)
on the blockchain, as well as provides a place for developers to host the decentralized applications they make with the
Reactor. The decentralized app store offers several benefits to developers and users alike.*

POPULAR DAPPS

- WALLET SAFE V2.2

b
.

« FARMALOT V2.3
+ SD’S SDK V1.03

- BROCK’S BLOCK
EXPLORER V6 NFT Marketplaces Explorers

« UNFTABLE V1.22

NOTIFICATION;
FARMALOT V2.3)
HAS BEEN APIs DeFi

Tools

Early conceptual mockup of ARC’s dApp Store

84 For Developers

The decentralized app store provides a secure and decentralized platform to host their dApps. This means that they do
not need to rely on a centralized approval process or worry about censorship, and can be confident that their dApps
will be accessible to all network constituents. In addition, the decentralized app store allows developers to easily
discover and access dApps created by other developers, fostering collaboration and innovation within the ecosystem.
dApps are not required to share a significant portion of their revenue, nor be constrained to one device. Because the
reactor is heterogeneous and works across all chains, mobile, and the web, so will the dApp store.

8.2 For Users

The decentralized app store offers users greater control over their data and privacy. Unlike traditional app stores,
dApps do not have access to personal information and users can be confident that their data is secure. In addition, the
decentralized app store allows users to discover and access a wide range of dApps. Perhaps most importantly, the
dApp store will feature the most transparency and security on the market. As every dApp is made with the Reactor and
hosted in-store, while the smart contracts are hosted on our decentralized GUI, users can be sure of the exact
functions the dApp consists of, what it operates on, and the PoR. Users will also be notified of any changes to any
dApp codebase that is being used in their project.

00O

4 Refer to the glossary on page 20.

www.arc.market
ARC

14

9. Heterogenous

The ARC Reactor is designed to be heterogeneous, meaning that it is able to work with a variety of different networks
and protocols. This is achieved through the integration of multiple programming languages such as Solidity, Yul, and
Bytecode. This allows the Reactor to connect and integrate with all EVM chains and most devices, enabling users to
access, manage, deploy, and edit their data or smart contracts from any location; with or without an internet
connection. The versatility and flexibility of the ARC Reactor make it a revolutionary technology for the web.

The heterogeneous nature of the ARC Reactor allows for seamless integration with a variety of networks and
protocols, including:

(1) Solidity, the most popular programming language for Ethereum smart contracts; (2) Yul, a low-level programming
language used in Ethereum; and (3) Bytecode, a compiled code that can be executed by a virtual machine.

This wide range of compatibility allows users to connect, manage, and edit their data or smart contracts from any
location, with or without an internet connection. Essentially creating a bridge between the blockchain, web, and user
that didn't exist previously.

implement : \ totalSupply \ transfer
Wivorossois somalit balanceOf \ wansferFrom

<<Datalogical>> |
Essential Interface :

- e W reserve _transfer content N\ disown
' Infological Interface
astype {imported - s - - - s
B SR B P e
v' H

! Essential Type | Operation \ Class \ Constraint
: Inlobgi:nl i ~ FunctionType N Property N, Packagelmport '
: Parameter N Interface N ValueMapping '
Datalogical profile D-!‘I!.bgﬂ] prafie

[X X@)

www.arc.market
ARC

15

10. Decentralized - Requiring No Backend or Internet Connection

The decentralized workflow engine of the ARC Reactor allows for the seamless management, execution, and
deployment of workflows within all EVM blockchains without a hosted backend, or internet connection for all
processes besides deploying to mainnet. This decentralized nature ensures that the system is not reliant on any single
point of failure, making it more resilient and secure.

One of the key benefits of the ARC Reactor's workflow engine is its lightweight design. This makes it easy for anyone
to upload and test contracts locally via the ARC Virtual Machine within the engine. The ARC Virtual Machine is
lightweight and compatible with all EVM chains, built with our proprietary language. Allowing users to test and deploy
their contracts without the need for an internet connection or hosted backend. This enables users to easily test and
debug their contracts, leading to faster deployment and iteration.

No backend is required. The reactor itself does not require a backend and all data is deployed directly to the front end
and on-chain. The ARC Reactor has been designed to run completely in-browser, meaning all of the processes and
functions needed to create Diagrams, run the Virtual Machine, or Compile the contracts are stored on the user's
computer. The ARC Reactor utilizes local processing power to securely compute changes to smart contracts before
committing to a mainnet.

FRONT -END

REACTOR

AVM Language Classes

Loader

Web DECENTRALIZED GUI

Blockchain

]r—b Native Method Libraries
Workflow Engine (—1
—» Bato - Compiler

10.1 Secure In-Browser Local Processing

Traditionally, when an individual visits a webpage, the browser will download the necessary files to display the
webpage from a server. Once the webpage is downloaded, users will have access to all the information comprising
that webpage on their local machine. This has some serious implications for how and where processing can occur.

Using proprietary methods, the ARC Reactor’s source code can be hidden and executed within the browser making it
impossible to be accessed or tampered with. Because of this, users can interact with the Reactor without the need for a
back-end or internet connection. This allows for much greater flexibility. This also implies that if in the event the ARC
Reactor becomes infected with malware, this will not impact the experience for any other ARC Reactor users. The
maximum impact of any such security breach will be localized to the infected machine.

www.arc.market
ARC

16

10.2 Front-end, Server, Database

Traditional applications that communicate with both the user and the chain require some type of backend service to
regulate communication between the server and the database. Queries get made by the user and sent to the server,
which then makes a call to the database.

10.3 Front-end, Chain

Using ARC’s secure local processing the backend service becomes obsolete as everything can be done on the
front-end which the user interfaces with. By doing all this on the front end, users can now store data directly on chain
eliminating the need for a backend or traditional database. Using this methodology, the blockchain in effect becomes
the data storage point for applications. This offers a more secure and cost effective way for developers to create
user-facing applications.

10.4 Impact on Web3

The decentralized nature of the ARC Reactor and it's programmatic capabilities allow it to scale Web3 not just for
developers but for end-users, and business owners alike. Currently, well over a trillion dollars is spent in infrastructure
worldwide for centralized servers and several billion per annum in energy expenditure. That could be attenuated by
the workflow engine and semantic GUI ARC offers.

00O

www.arc.market
ARC

17

CONCLUSION

The ARC Reactor is a decentralized, heterogenous workflow engine with a semantic programmatic GUI that allows for
the efficient management, execution, and deployment of workflows across all EVM blockchains, added languages, and
the Web. Its decentralized nature ensures accessibility, security, and resilience, while the semantic GUI makes it easy
for users to understand and edit code. This solution offers a more efficient and reliable alternative to existing methods
for data transference on the internet, offering an over 90% speed improvement, and cost efficiency increase vs.
traditional Web3 development methods. The lightweight design and user-friendly nature of the ARC Virtual Machine
makes it easy for anyone to build and deploy their data on any EVM-compatible distributed ledger, leading to faster
iteration and deployment.

www.arc.market
ARC

18

GLOSSARY OF TERMS

GUL: a visual way of interacting with a computer using items such as windows, icons, and menus, used by most
modern operating systems.

dApps: A decentralized application is an application that can operate autonomously, typically through the use of
smart contracts, that run on a decentralized computing, blockchain, or other distributed ledger system. Like traditional
applications, DApps provide some function or utility to their users.

OOP: Object-oriented programming is a programming paradigm based on the concept of "objects", which can contain
data and code. The data is in the form of fields, and the code is in the form of procedures. A common feature of
objects is that procedures are attached to them and can access and modify the object's data fields.

UML: The Unified Modeling Language is a general-purpose, developmental modeling language in the field of software
engineering that is intended to provide a standard way to visualize the design of a system.

EVM: The Ethereum Virtual Machine or EVM is a piece of software that executes smart contracts and computes the
state of the Ethereum network after each new block is added to the chain. The EVM sits on top of Ethereum's
hardware and node network layer.

IDE: An integrated development environment is a software application that provides comprehensive facilities to
computer programmers for software development. An IDE normally consists of at least a source code editor, build
automation tools, and a debugger.

Lightweight: In computing, lightweight software also called lightweight program and lightweight application, is a
computer program that is designed to have a small memory footprint and low CPU usage, overall a low usage of
system resources.

Libraries: In computer science, a library is a collection of non-volatile resources used by computer programs, often for
software development. These may include configuration data, documentation, help data, message templates,
pre-written code and subroutines, classes, values, or type specifications.

Etherscan - Etherscan is a block explorer for the Ethereum blockchain. It allows users to easily search and browse
transactions and blocks. It also provides information about each transaction and block, such as the hash and
timestamp. You can think of Etherscan as the Google of Ethereum.

Heterogenous Workflow Engine: An extremely lightweight comprehensive development engine that Is able to work
with a variety of different networks and protocols in a variety of ways. This is achieved through integrating multiple
programming languages such as Solidity, Yul, and Bytecode.

Semantic Virtual Machine: A virtual machine designed to work with multiple different syntaxes of code such as Yul,
Bytecode, and Solidity.

Decentralized Semantic GUI - A block explorer which displays Smart Contract information as interactive visual
diagrams.

www.arc.market
ARC

