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BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is often associated with hepatitis B virus (HBV) infection. Cells of most HBV-
related HCCs contain HBV-DNA fragments that do not encode entire HBV antigens. We investigated whether these integrated HBV-
DNA fragments encode epitopes that are recognized by T cells and whether their presence in HCCs can be used to select HBV-
specific T-cell receptors (TCRs) for immunotherapy.

METHODS: HCC cells negative for HBV antigens, based on immunohistochemistry, were analyzed for the presence of HBV
messenger RNAs (mMRNAs) by real-time polymerase chain reaction, sequencing, and Nanostring approaches. We tested the ability of
HBV mRNA-positive HCC cells to generate epitopes that are recognized by T cells using HBV-specific T cells and TCR-like antibodies.
We then analyzed HBV gene expression profiles of primary HCCs and metastases from 2 patients with HCC recurrence after liver
transplantation. Using the HBV-transcript profiles, we selected, from a library of TCRs previously characterized from patients with
self-limited HBV infection, the TCR specific for the HBV epitope encoded by the detected HBY mRNA. Autologous T cells were
engineered to express the selected TCRs, through electroporation of mRNA into cells, and these TCR T cells were adoptively
transferred to the patients in increasing numbers (1 x 10°-10 x 10° TCR+ T cells/kg) weekly for 112 days or 1 year. We monitored
patients’ liver function, serum levels of cytokines, and standard blood parameters. Antitumor efficacy was assessed based on serum
levels of alpha fetoprotein and computed tomography of metastases.

RESULTS: HCC cells that did not express whole HBV antigens contained short HBVY mRNAs, which encode epitopes that are
recognized by and activate HBV-specific T cells. Autologous T cells engineered to express TCRs specific for epitopes expressed from
HBV-DNA in patients’ metastases were given to 2 patients without notable adverse events. The cells did not affect liver function over
a 1-year period. In 1 patient, 5 of 6 pulmonary metastases decreased in volume during the 1- year period of T-cell administration.
CONCLUSIONS: HCC cells contain short segments of integrated HBV-DNA that encodes epitopes that are recognized by and activate
T cells. HBV transcriptomes of these cells could be used to engineer T cells for personalized immunotherapy. This approach might be
used to treat a wider population of patients with HBV- associated HCC.
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«. 7 HBV mMRNA Fragments Are Present in HBV-HCC Cells With
Ar Undetectable HBV Antigens
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Figure 1. HBV-HCC lines negative for HBV antigens can contain fragments of HBV mRNA. (A) Immunofluorescence staining of HBV-HCC lines with HBsAg- (red), HBcAg-
specific antibody (blue), and 4',6-diamidino-2-phenylindole (DAPI) (white). The scale bars are 15 um in length and the images are representative of 2 independent
experiments. (B) Quantification of HBsAg and HBcAg expression in HBV-HCC lines by flow cytometry. Bars show the average geometric mean fluorescence intensities
(MFI) and each circle denotes a single experiment. A representative experiment is shown in the histogram insert. Significant differences with P < .05 are indicated. (C)
HBV-transcript profile of HBV-HCC lines obtained from lllumina high-throughput targeted sequencing using probes spanning across the entire HBV genome. Expression
levels are shown as the number of reads mapped per nucleotide. (D) HBV-transcript profile of HBV-HCC lines (black) obtained using Nanostring probes covering the HBV
genome. Radar plot shows the normalized counts of each HBV-specific probe expressed on a Logq scale. The profile from HepG2 is overlaid in each radar plot (red). The
open reading frames of HBV and relative positions of each Nanostring probe are annotated in a similar fashion to Supplementary Figure 1.
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- . Iranslation of HBV mRNA Fragments Generates Functional T-cell
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ﬁf HBV-HCC Tissues Contain Short HBV mRNA Fragments Without
52 HBsAg or HBcAg Expression
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ﬁr Profiling of HBV mRNA in Tumor Cells Guides Personalized T-cell
Immunotherapy of HBV-HCC
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ﬁf Safety of the Autologous HBV-specific TCR T-cell Immunotherapy
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ﬁf Efficacy of the Autologous HBV-specific TCR T-cell Immunotherapy
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Figure 6. Monitoring of treatment response in both TCR T-cell-treated
patients. Serum concentrations of AFP in patient 1 (A) and patient 2 (C) from
before treatment until the end of the indicated treatment phases are
shown. Vertical dotted lines denote each TCR T-cell infusion and the different
phases of the treatment are indicated. (B) The largest cross-sectional area of
all tumor nodules detected in the lungs of patient 1 (Supplementary Figure 8)
were measured at specific intervals during the therapy and 3 representative
nodules are shown. Gray-shaded areas represent the serum AFP
concentrations. CT images of the corresponding tumor nodules at 3 indicated
time points (red, blue, and orange) are shown and the lesions are indicated
by the red arrow. (C) CT images of 2 representative tumor nodules in the
lungs of patient 2 at the indicated time points (red and cyan) are shown and
the lesions are indicated by the red arrow.
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