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Water level prediction using a multi-task ranking 
approach
SDSC-EcoVision kick-off "4Real"
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Catchment: 709  (2500x3000)
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Dataset details

04.11.2020PRIYANKA CHAUDHARY

Training:
▪ tr5

▪ tr20

▪ tr50

▪ tr2-2

▪ tr10-2

▪ tr20-2

▪ tr50-2

▪ tr5-3

▪ tr10-3

▪ tr100-3

Validation

▪ tr100-2

▪ tr2-3

Test

▪ tr2

▪ tr10

▪ tr100

▪ tr5-2

▪ tr20-3

▪ tr50-3



|| 5



|| 6

Experiment details
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▪ Architectures: UNet, ResNet-34
▪ Masking of non-data cell values
▪ Input: 3 channels, (256 x 256 x 3)
▪ Objective function: L1 loss

▪ Output: 
▪ 1 channel (256 x 256)
▪ water_depth(t2)

DEM water_depth(t1) dem rainfall(t1)
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Experiments

▪ With/without x, y coordinates
▪ With/without gradient

▪ Baseline:
▪ One timestep baseline

▪ with input taken as the prediction

▪ Two-time step baseline
▪ pred = WD_2 + ( WD_2 - WD_1)
▪ WD: water depth

▪ One timestep with gradient features
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Toy Catchment

Same experiments repeated here
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Performance Evaluation

▪ p ← prediction array, q ← ground truth array
▪ t ← timesteps, sum_error ← sum of errors

sum_error = 0
for all t:
    load p
    load q
    a ← take absolute difference of p and q
    take sum of all values in a
    mean_step ← sum/ number of elements
    add mean_step to sum_error
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One timestep experiments - Toy catchment
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Experimen
t

tr2     
(MAE m)

tr10   
(MAE m)

tr100 
(MAE m)

tr5_2 
(MAE m)

tr20_3 
(MAE m)

tr50_3 
(MAE m)

Average
(MAE m)

NN with x, y 
coordinates

0.0163 0.0176 0.0230 0.0179 0.0192 0.0209 0.0191

NN without 
x,y 

coordinates

0.0122 0.0145 0.0215 0.0146 0.0189 0.0211 0.0171

Baseline 
1timestep

0.0332 0.0535 0.0726 0.0451 0.0593 0.0668 0.0551

NN with 
gradient

0.0213 0.0305 0.0491 0.0283 0.0350 0.0402 0.0341
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One timestep experiments – 709 (new code)

Experiment tr2     
(MAE m)

tr10   
(MAE m)

tr100 
(MAE m)

tr5_2 
(MAE m)

tr20_3 
(MAE m)

tr50_3 
(MAE m)

Average 
(MAE m)

unet,  ~75,
without_xy

0.0611 0.0766 0.0904 0.0734 0.0760 0.0837 0.0769

Baseline 
1timestep

0.0358 0.0593 0.0850 0.0486 0.0653 0.0755 0.0616

NN without x,y 
coordinates

0.1164 0.1417 0.1534 0.1376 0.1383 0.1497 0.1395

UResNet, ~80, 
ts=1, 

without_xy

0.0683 0.0895 0.1052 0.0848 0.0855 0.0961 0.0882
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▪ We see improvement on performance with new updated 
code on 709 catchment

▪ The performance of Unet is better than Uresnet

▪ The baseline performance where we take input as our 
output for a timestep still outperforms our models.

12

One timestep experiments – 709 (new code)
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EXAMPLE

http://drive.google.com/file/d/1jRWDRg4IilQwoYPfuQMrtkO6yH8i1NQv/view
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Boxplot  (catchment 709)
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Histogram of residual values
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Boxplot
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Histogram of residual values
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Boxplot
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Can you put here a full image of the 
catchmetnt?

Highlight the areas that you are displaying in the following slides
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Patches
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Patches
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▪ MAE
▪ acceptable MAE error? 5-10% of groundtruth

▪ Predicting 5-6 timesteps ahead?

Next Steps: 
▪ Bayesian DL
▪ Add more data? e.g. new catchments
▪ Implement conv_lstm (multi step ahead prediction)

▪ This should already beat the baseline ….
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Performance evaluation
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Bayesian DL

Motivation:

▪ Get well-calibrated uncertainty outputs per pixel for the 
flood model

▪ Understand where the model makes trustworthy 
predictions

▪ Instead of point prediction output, we predict a 
distribution over the output to approximate the conditional 
distribution.
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▪ What Uncertainties Do We Need in Bayesian Deep 
Learning for Computer Vision?, NIPS, 2017

▪ Global canopy height estimation with GEDI LIDAR 
waveforms and Bayesian deep learning, 2021
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References
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Global canopy height estimation with GEDI LIDAR waveforms and Bayesian deep 
learning, 2021
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Gaussian negative log likelihood (NLL)

Predictive Uncertainty
epistemic uncertainty aleatoric uncertainty
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Implementation of variance output

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS, 
2017

▪ They enforced the positivity constraint on the variance by 
passing the second output through the softplus function

▪ log(1 + exp(.)), and add a minimum variance (e.g. 1e-6) 
for numerical stability.
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Numerically stable

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 
NIPS, 2017

▪ In practice, we train the network to predict the log 
variance.

▪ it is more numerically stable than regressing the 
variance, σ2, as the loss avoids a potential division by 
zero.
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TC_Net
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- One timestep experiments
- input: 3 channels, (n x n x 3)
- output: 1 channel (n x n x1)

- Data: toy 
- Models:

- Basic conv Net (Tc_net)
- Unet
- Uresnet
- Resnet

- Performance evaluation:
- MAE  (mean MAE across the catchment, at each time step)
- acceptable MAE error: 5-10% WD
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Experiments

DEM water_depth(t1) dem rainfall(t1)
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Toy catchment

Experimen
t

tr2     
(MAE m)

tr10   
(MAE m)

tr100_1 
(MAE m)

tr5_2 
(MAE m)

tr20_3 
(MAE m)

tr50_3 
(MAE m)

Average
(MAE m)

UNet L1 0.0091 0.0106 0.0186 0.0129 0.0140 0.0178 0.0139

tc_net L1 
(lr=1e-4)

0.0108 0.0114 0.0181 0.0126 0.0164 0.0181 0.0146

tc_net L2
(lr=1e-4)

0.0127 0.0139 0.0222 0.0141 0.0182 0.0207 0.0170

Baseline 
1timestep

0.0332 0.0535 0.0726 0.0451 0.0593 0.0668 0.0551
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Toy catchment

Experimen
t

tr2     
(MAE m)

tr10   
(MAE m)

tr100_1 
(MAE m)

tr5_2 
(MAE m)

tr20_3 
(MAE m)

tr50_3 
(MAE m)

Average
(MAE m)

tc_net bay
(lr=1e-4)

0.0188 0.0220 0.0372 0.0209 0.0280 0.0331 0.0267

tc_net L1 
(lr=1e-4)

0.0108 0.0114 0.0181 0.0126 0.0164 0.0181 0.0146

tc_net L2
(lr=1e-4)

0.0127 0.0139 0.0222 0.0141 0.0182 0.0207 0.0170

Baseline 
1timestep

0.0332 0.0535 0.0726 0.0451 0.0593 0.0668 0.0551
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https://docs.google.com/file/d/1tIbc-hFX0OQUVJuYSu71_BC5sxHB1pDh/preview
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https://docs.google.com/file/d/1UPXozLQVmkQWmsBI7Rj8hzIideRastbx/preview
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Box plots of residuals - toy catchment
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Box plots of residuals - toy catchment
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▪ Unet

▪ Uresnet

▪ Resnet

Tests with other models
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Validation loss curve - UNet (toy)
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Validation loss curve - Resnet (toy)
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Validation loss curve - Uresnet (709)
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▪ We use Bayesian approach as it directly provides a 
well-calibrated uncertainty together with every estimate.

▪ We estimate uncertainty with an ensemble of five 
separate TcNet models that were trained independently, 
starting from different random initializations.

▪ Prediction MAE: 2.67 cms

▪ UNet, UResNet – not working on toy dataset
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Toy catchment - Bayesian DL - Conclusions
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▪ By assuming the noise is Laplacian, the negative 
log-likelihood to be minimized is:

▪ Key idea is to predict a posterior probability distribution 
for each pixel parameterized with its mean as well as its 
variance p(y|ỹ, σ) over ground-truth labels y.
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Laplacian Negative Log Likelihood

D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry, 
CVPR, 2020
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Training curve
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Validation curve
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Gt vs Pred, tr50_3, ts=4500
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Gt vs Pred, tr50_3, ts=4500, patches
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Gt vs Pred, tr50_3, ts=4500, patches
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Res vs Pred uncertainty, tr50_3, ts=4500
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Res vs Pred uncertainty, tr50_3, 4500, patches
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Res vs Pred uncertainty, tr50_3, 4500, patches



|| 55

Histogram of tr50_3 rainfall event
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▪ Code is up-to-date and merged

▪ Experiments when taking p% or more data elements in 
patches is not generalizing well

▪ Due to limited validation set size, and patches of p% data 
elements, model is not able to learn.

▪ Either generate random sample for validation set with no 
minimum data element condition

▪ Fix indices of validation set.
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Update Summary
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MAE(cm) for absolute value prediction vs. 
difference prediction

Difference predictionAbsolute value
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Boxplots(cm) for absolute value prediction vs. 
difference prediction

Absolute value

With outliers

Difference prediction

With outliers
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Further catchments to consider
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Faster training - Joao’s paper

▪ “We tested our approach with only elevation and with all 
the features and found that introducing features makes 
training significantly faster.”
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▪ Elevation

▪ Slope

▪ Aspect

▪ Curvature

▪ Mask

61

Catchment Features

▪ The slope is defined as the magnitude of the 
gradient vector at each raster cell

▪ The aspect identifies the direction of the 
water flow at each raster cell and is the 
directional component of the gradient vector.

▪ The curvature is defined as the second 
derivative of the polynomial where two 
meaningful values can be calculated: the 
profile and plan curvature.


