

Water level prediction using a multi-task ranking approach

SDSC-EcoVision kick-off "4Real"

Catchment: 709 (2500x3000)

DEM 709 element analysis

Total elements	7575000
Non-data elements	3165650
Data elements	4409350

Dataset details

Training:

- tr5
- tr20
- tr50
- tr2-2
- tr10-2
- tr20-2
- tr50-2
- tr5-3
- tr10-3
- tr100-3

Validation

- tr100-2
- tr2-3

Test

- tr2
- tr10
- tr100
- tr5-2
- tr20-3
- tr50-3

Table 1. Hyetographs used for simulations

	40.00	General Section	Rainfall intensity (mm/h) 0-5											
Name	Test set	Return period									50-55 min	55-60 min		
tr2	yes	2	8.7	9.9	11.5	14.3	20.1	80.1	27.3	16.5	12.7	10.6	9.2	8.3
tr5	no	5	12.3	13.8	16.1	19.8	27.6	104.9	37.2	22.8	17.7	14.8	13.0	11.7
trIO	yes	10	14.9	16.7	19.4	23.8	33.0	120.1	44.1	27.3	21.3	17.9	15.7	14.2
tr20	no	20	17.4	19.5	22.6	27.5	37.9	133.7	50.5	31.6	24.7	20.9	18.4	16.6
tr50	no	50	20.9	23.3	26.9	32.6	44.5	150.4	58.8	37.2	29.3	24.9	22.0	19.9
tr100	yes	100	24.1	26.8	30.7	37.0	50.1	161.4	65.6	42.1	33.4	28.6	25.3	23.0
tr2-2	nó	2	9.6	9.6	13.5	13.5	53.7	53.7	18.3	18.3	11.1	11.1	8.5	8.5
tr5-2	yes	5	13.4	13.4	18.7	18.7	71.1	71.1	25.2	25.2	15,4	15.4	12.0	12.0
tr10-2	no	10	16.2	16.2	22.5	22.5	82.1	82.1	30.1	30.1	18.7	18.7	14.5	14.5
tr20-2	no	20	19.0	19.0	26.1	26.1	92.1	92.1	34.7	34.7	21.7	21.7	17.0	17.0
tr50-2	no	50	22.7	22.7	31.0	31.0	104.6	104.6	40.9	40.9	25.9	25.9	20.4	20.4
tr100-2	no	100	26.1	26.1	35,2	35.2	113.5	113.5	46.1	46.1	29.6	29.6	23.5	23.5
tr2-3	no	2	8.8	8.8	8.8	14.5	14.5	14.5	42.5	42.5	42.5	10.7	10.7	10.7
tr5-3	no	5	12.3	12.3	12.3	20.1	20.1	20.1	56.6	56.6	56.6	14.9	14.9	14.9
tr10-3	no	10	14.9	14.9	14.9	24.1	24.1	24.1	65.7	65.7	65.7	18.0	18.0	18.0
tr20-3	yes	20	17.5	17.5	17.5	27.9	27.9	27.9	74.0	74.0	74.0	21.0	21.0	21.0
tr50-3	yes	50	20.9	20.9	20.9	33.1	33.1	33.1	84.6	84.6	84.6	25.0	25.0	25.0
tr100-3	no	100	24.1	24.1	24.1	37.5	37.5	37.5	92.4	92.4	92.4	28.7	28.7	28.7

Experiment details

- Architectures: UNet, ResNet-34
- Masking of non-data cell values
- Input: 3 channels, (256 x 256 x 3)
- Objective function: L1 loss

DEM	water_depth _(t1)	dem rainfall _(t1)
-----	-----------------------------	------------------------------

- Output:
 - 1 channel (256 x 256)
 - water_depth_(t2)

Experiments

- With/without x, y coordinates
- With/without gradient

Baseline:

- One timestep baseline
 - with input taken as the prediction
- Two-time step baseline
 - $pred = WD_2 + (WD_2 WD_1)$
 - WD: water depth
- One timestep with gradient features

Toy Catchment

Same experiments repeated here

| 8

Performance Evaluation

- $p \leftarrow$ prediction array, $q \leftarrow$ ground truth array
- $t \leftarrow \text{timesteps}$, $sum_error \leftarrow \text{sum of errors}$

```
sum error = 0
for all t:
  load p
  load q
  a \leftarrow take absolute difference of p and q
  take sum of all values in a
  mean step ← sum/ number of elements
  add mean step to sum error
```


One timestep experiments - Toy catchment

Experimen t	tr2 (MAE m)	tr10 (MAE m)	tr100 (MAE m)	tr5_2 (MAE m)	tr20_3 (MAE m)	tr50_3 (MAE m)	Average (MAE m)
NN with x, y coordinates	0.0163	0.0176	0.0230	0.0179	0.0192	0.0209	0.0191
NN without x,y coordinates	0.0122	0.0145	0.0215	0.0146	0.0189	0.0211	0.0171
Baseline 1timestep	0.0332	0.0535	0.0726	0.0451	0.0593	0.0668	0.0551
NN with gradient	0.0213	0.0305	0.0491	0.0283	0.0350	0.0402	0.0341

One timestep experiments – 709 (new code)

Experiment	tr2 (MAE m)	tr10 (MAE m)	tr100 (MAE m)	tr5_2 (MAE m)	tr20_3 (MAE m)	tr50_3 (MAE m)	Average (MAE m)
unet, ~75, without_xy	0.0611	0.0766	0.0904	0.0734	0.0760	0.0837	0.0769
Baseline 1timestep	0.0358	0.0593	0.0850	0.0486	0.0653	0.0755	0.0616
NN without x,y coordinates	0.1164	0.1417	0.1534	0.1376	0.1383	0.1497	0.1395
UResNet, ~80, ts=1, without_xy	0.0683	0.0895	0.1052	0.0848	0.0855	0.0961	0.0882

- 1

One timestep experiments – 709 (new code)

- We see improvement on performance with new updated code on 709 catchment
- The performance of Unet is better than Uresnet
- The baseline performance where we take input as our output for a timestep still outperforms our models.

EXAMPLE

Boxplot (catchment 709)

| 14

Boxplot

Boxplot

| 19

Can you put here a full image of the catchmetnt?

Highlight the areas that you are displaying in the following slides

| 20

Patches

Patches

Performance evaluation

- MAE
 - acceptable MAE error? 5-10% of groundtruth
- Predicting 5-6 timesteps ahead?

Next Steps:

- Bayesian DL
- Add more data? e.g. new catchments
- Implement conv_lstm (multi step ahead prediction)
 - This should already beat the baseline

Bayesian DL

Motivation:

- Get well-calibrated uncertainty outputs per pixel for the flood model
- Understand where the model makes trustworthy predictions
- Instead of point prediction output, we predict a distribution over the output to approximate the conditional distribution.

References

- What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, NIPS, 2017
- Global canopy height estimation with GEDI LIDAR waveforms and Bayesian deep learning, 2021

Global canopy height estimation with GEDI LIDAR waveforms and Bayesian deep learning, 2021

Gaussian negative log likelihood (NLL)

$$-\log p_{\theta}(y_n|\mathbf{x}_n) = \frac{\log \sigma_{\theta}^2(\mathbf{x})}{2} + \frac{(y - \mu_{\theta}(\mathbf{x}))^2}{2\sigma_{\theta}^2(\mathbf{x})} + \text{constant}.$$

Predictive Uncertainty

epistemic uncertainty

aleatoric uncertainty

$$Var(\hat{y}) = \frac{1}{M} \sum_{m=1}^{M} \hat{\mu}_m^2 - \left(\frac{1}{M} \sum_{m=1}^{M} \hat{\mu}_m\right)^2 + \frac{1}{M} \sum_{m=1}^{M} \hat{\sigma}_m^2,$$

Implementation of variance output

- They enforced the positivity constraint on the variance by passing the second output through the softplus function
- log(1 + exp(.)), and add a minimum variance (e.g. 1e-6) for numerical stability.

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS, 2017

Numerically stable

$$\mathcal{L}_{BNN}(\theta) = \frac{1}{D} \sum_{i} \frac{1}{2} \exp(-s_i) ||\mathbf{y}_i - \hat{\mathbf{y}}_i||^2 + \frac{1}{2} s_i.$$

- In practice, we train the network to predict the log variance.
- it is more numerically stable than regressing the variance, σ², as the loss avoids a potential division by zero.

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, NIPS, 2017

Layer (type)	Output Shape
conv2d_1(Conv2D)	(None, 120, 120, 6)
activation_1 (Activation)	(None, 120, 120, 6)
conv2d_2 (Conv2D)	(None, 120, 120, 16)
activation_2 (Activation)	(None, 120, 120, 16)
conv2d_3 (Conv2D)	(None, 120, 120, 32)
activation_3 (Activation)	(None, 120, 120, 32)
conv2d_4 (Conv2D)	(None, 120, 120, 64)
activation_4 (Activation)	(None, 120, 120, 64)
conv2d_5 (Conv2D)	(None, 120, 120, 128)
activation_5 (Activation)	(None, 120, 120, 128)
conv2d_6 (Conv2D)	(None, 120, 120, 1)

Experiments

- One timestep experiments
 - input: 3 channels, (n x n x 3)
 - output: 1 channel (n x n x1)
- Data: toy
- Models:
 - Basic conv Net (Tc net)
 - Unet
 - Uresnet
 - Resnet
- Performance evaluation:
 - MAE (mean MAE across the catchment, at each time step)
 - acceptable MAE error: 5-10% WD

DEM	water_depth _(t1)	dem rainfall _(t1)
-----	-----------------------------	------------------------------

Toy catchment

Experimen t	tr2 (MAE m)	tr10 (MAE m)	tr100_1 (MAE m)	tr5_2 (MAE m)	tr20_3 (MAE m)	tr50_3 (MAE m)	Average (MAE m)
UNet L1	0.0091	0.0106	0.0186	0.0129	0.0140	0.0178	0.0139
tc_net L1 (Ir=1e-4)	0.0108	0.0114	0.0181	0.0126	0.0164	0.0181	0.0146
tc_net L2 (Ir=1e-4)	0.0127	0.0139	0.0222	0.0141	0.0182	0.0207	0.0170

Baseline 1timestep	0.0332	0.0535	0.0726	0.0451	0.0593	0.0668	0.0551
-----------------------	--------	--------	--------	--------	--------	--------	--------

Toy catchment

Experimen t	tr2 (MAE m)	tr10 (MAE m)	tr100_1 (MAE m)	tr5_2 (MAE m)	tr20_3 (MAE m)	tr50_3 (MAE m)	Average (MAE m)
tc_net bay (Ir=1e-4)	0.0188	0.0220	0.0372	0.0209	0.0280	0.0331	0.0267
tc_net L1 (Ir=1e-4)	0.0108	0.0114	0.0181	0.0126	0.0164	0.0181	0.0146
tc_net L2 (Ir=1e-4)	0.0127	0.0139	0.0222	0.0141	0.0182	0.0207	0.0170

Baseline 1timestep	0.0332	0.0535	0.0726	0.0451	0.0593	0.0668	0.0551
-----------------------	--------	--------	--------	--------	--------	--------	--------

Box plots of residuals - toy catchment

| 36

Box plots of residuals - toy catchment

Tests with other models

- Unet
- Uresnet
- Resnet

Validation loss curve - UNet (toy)

Validation loss curve - Resnet (toy)

Validation loss curve - Uresnet (709)

Toy catchment - Bayesian DL - Conclusions

- We use Bayesian approach as it directly provides a well-calibrated uncertainty together with every estimate.
- We estimate uncertainty with an ensemble of five separate TcNet models that were trained independently, starting from different random initializations.
- Prediction MAE: 2.67 cms
- UNet, UResNet not working on toy dataset

Laplacian Negative Log Likelihood

 By assuming the noise is Laplacian, the negative log-likelihood to be minimized is:

$$-\log p(y|\tilde{y},\sigma) = \frac{|y-\tilde{y}|}{\sigma} + \log \sigma + const.$$

 Key idea is to predict a posterior probability distribution for each pixel parameterized with its mean as well as its variance p(y|ỹ, σ) over ground-truth labels y.

D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry, CVPR, 2020

Validation curve

Gt vs Pred, tr50_3, ts=4500

Gt vs Pred, tr50_3, ts=4500, patches

(x1,x2,y1,y2): (560, 720, 619, 812)

Gt vs Pred, tr50_3, ts=4500, patches

(x1,x2,y1,y2): (2010, 2120, 1320, 1450)

Res vs Pred uncertainty, tr50_3, ts=4500

resnet, ~233 epochs, tr50_3, t(sec)=4500

Res vs Pred uncertainty, tr50_3, 4500, patches

Res vs Pred uncertainty, tr50_3, 4500, patches

(x1,x2,y1,y2): (1905, 2000, 1764, 1830)

Histogram of tr50_3 rainfall event

Update Summary

- Code is up-to-date and merged
- Experiments when taking p% or more data elements in patches is not generalizing well
 - Due to limited validation set size, and patches of p% data elements, model is not able to learn.
 - Either generate random sample for validation set with no minimum data element condition
 - Fix indices of validation set.

MAE(cm) for absolute value prediction vs. difference prediction

Absolute value

Difference prediction

Boxplots(cm) for absolute value prediction vs. difference prediction

Further catchments to consider

Faster training - Joao's paper

Table 2. Average time performance of the prediction model

name	terrain image size (pixel)	terrain image pre- processing	¹ prediction time (no patch overlaps)	¹ prediction time (use mean value)	¹ prediction time (use median value)	¹ prediction time (use max value)	1 simulation time	² training time
Luzem	3369 × 3110	1.898 s	0.678 s	2.693 s	14.749 s	2.556 s	2 h 20 min	5 h 25 min
Zurich	6175 × 6050	6.627 s	1.366 s	5.677 s	75.12 s	5.293 s	4 h 54 min	
Coimbra	1625 × 2603	0.636 s	0.242 s	0.965 s	5.048 s	0.902 s	2 h 18 min	

¹ The times are averaged and per rainfall event.

 "We tested our approach with only elevation and with all the features and found that introducing features makes training significantly faster."

² For each catchment area, the amount of training data and training parameters were the same, and identical meta parameters were used; therefore, the average time is presented.

Catchment Features

Elevation

- Slope
- Aspect
- Curvature
- Mask

- The slope is defined as the magnitude of the gradient vector at each raster cell
- The aspect identifies the direction of the water flow at each raster cell and is the directional component of the gradient vector.
- The curvature is defined as the second derivative of the polynomial where two meaningful values can be calculated: the profile and plan curvature.