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Capture more with less
The Qualisys Miqus camera fits everything you need for your next 
motion capture project in a small and lightweight camera body.

Just like our premium cameras, the Miqus  cameras are designed to 
capture accurate mocap data with very low latency. It is just as suitable in 
small 3-camera systems as in large 100+ camera systems. This makes the 
Miqus suitable for a wide range of applications.

With daisy-chaining and combined power and Ethernet, setting up a 
mocap system has never been easier. The new connector means that a 
single cable that carries both data and power connects the line of cameras.

The Miqus is now available in three models:  
Miqus M1, Miqus M3 and Miqus M5.

FEATURES

• High-speed motion capture

• Resolution: 1, 2 & 4 MP

• Wide field of view

• Low latency for real-time applications

• Fast setup with combined power & 
Ethernet

• Daisy-chaining (no switch required)

• Silent operation

• Identification LED-ring

• Kensington lock

qualisys.com  sales@qualisys.com 

2020-01-10
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Data SetsSystem

Scene Input & VDB Grid

CAD files describing scene and domain of 
interest as input.


CSG operation creating B+ tree (openvdb.org) of 
investigated volume.


Sampled data sparse, prediction of field dense.


Cut through signed distance field of investigated volume
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Data SetsSystem

Scene Input & VDB Grid

CAD files describing scene and domain of 
interest as input.


CSG operation creating B+ tree (openvdb.org) of 
investigated volume.


Sampled data sparse, prediction of field dense.


Welford’s online algorithm for mean and variance.


Smoothing of data for further processing.

 

fy active
nodes

ih Noir
I

in
Assignment of sampled values along path to grid nodes.
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Data SetsSystem

Scene Input & VDB Grid

Assignment of sampled values along path to grid nodes.

CAD files describing scene and domain of 
interest as input.


CSG operation creating B+ tree (openvdb.org) of 
investigated volume.


Sampled data sparse, prediction of field dense.


Welford’s online algorithm for mean and variance.


Smoothing of data for further processing.
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Data SetsSystem

Data Model

Model field properties: 

• pressure (scalar field)

• velocity (vector field)


Gaussian Process Regression / Kriging with 
anisotropic Radial Basis Function (RBF) kernel.


Limitations with fast updates (streaming data) and 
large data sets. Cubic time complexity  due to 
matrix inversion.


𝒪(N3)

Rasmussen, C. E. & Williams, C. K. I. (2006) Gaussian processes for machine learning . Cambridge, Mass: MIT Press.
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Figure 2. Exemplary path of a probe guided by the user. The ar-
rows indicate the activated voxels within the grid of potential grid
points.

integer index representing a node is calculated.

Rectangle defined as the domain under investigation
and high fidelity CAD drawing of object’s surface, CSG
operation. Representation of the physical measurement
setup. Points on the digital surface of the object are known
to adhere to the no-slip flow condition and get initialized
with a vanishing flow velocity vector.
The grid is important to to accurately resample the mea-
sured instances to the correct cell (no spill over on other
side of body)

Model alignment either measured with the motion
capture system manually or alignment with modern depth
cameras (e.g. Intel RealSense, Microsoft Kinect Azure,
etc...) from given high CAD representations of the physical
object under investigation.
Due to the index space representation of the OpenVDB
grid, a nearest neighbor search is easily done...
...

The current probe velocity allow to test against for
the validity of the data, correct the measured flow velocity
by the movement and also makes sure the data reduction of
the streaming data from the grid to the I-SSGPR model is
in compliance with the possible update rates of the model...

operatorHMD

sensor data

probe
calibration

velocity
correction

position data

add/update
vdb voxel

I-SSGPR

hyperparameter
optimization

acquisition
function

visualization
element

guides probe

pi

p,u

x

p,u,x

p̄ijk, ūijk, xijk

R,b, l,�F

p̄, ū,x

xoptim.

w,⌦

Figure 3. SmartAir flow chart for the processed data and informa-
tion. Dark blue sections are processed at the rate of the incoming
data stream as where the update rates of the lighter blue sections
are lower.

Aw = y (1)

A = K (X,X) + �2
nI (2)

Kij = k(xi,xj) = �2
F e(�

1
2 (xi�xj)

TM(xi�xj)) (3)

R = cholesky (A) (4)

w = R \
�
RT \ y

�
(5)

v = RT \ k (X,x) (6)

µ(x⇤) = k (x⇤,X) w (7)

�2(x⇤) = k (x⇤,x⇤)� vTv (8)
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Data SetsSystem

Model field properties: 

• pressure (scalar field)

• velocity (vector field)


Sparse Spectrum Gaussian Process Regression (SSGPR).


Approximation of RBF kernel with trigonometric basis 
functions => covariance function with fixed size.

Data Model

Lázaro-Gredilla, M., Quinonero-Candela, J., Rasmussen, C.E. and Figueiras-Vidal, A.R., 2010. Sparse spectrum Gaussian process regression. The Journal of Machine 
Learning Research, 11, pp.1865-1881.

Gijsberts, A. and Metta, G., 2013. Real-time model learning using incremental sparse spectrum gaussian process regression. Neural networks, 41, pp.59-69.
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⌦ ⇠ l N (0, I) (9)

�(x) =
�fp
D

h
sin (⌦x)T , cos (⌦x)T

iT
(10)

� = [�(x1),�(x2), ...,�(xn)] (11)

A = �T�+ �2
nI (12)

b = �y (13)

µ(x⇤) = �(x⇤)T R \
�
RT \ b

�
(14)

�2(x⇤) = �2
n + �2

n ||R \ �(x⇤)||2 (15)

h (16)

Classical Gaussian Process Regression (GPR) [?] ...

R = cholesky
�
K (X,X) + �2

nI
�

(17)

anisotropic Radial Basis Function (RBF) kernel

Kij = k(xi,xj) = �2
F e(�

1
2 (xi�xj)

TM(xi�xj)) (18)

w = R \
�
RT \ y

�
(19)

µ(x) = k (x,X) w (20)

v = RT \ k (X,x) (21)

�2(x) = k (x,x)� vTv (22)

The problem of the bad scalability but very expressiveness
of the GPR gave rise of many approximative formulations
[?]. The approximate kernel methods try to decrease the
size of the covariance matrix to make inversion feasible.
Sparse Spectrum Gaussian Processes (SSGPR) [?] use es-
timate the RBF of the kernel with trigonometric functions
of randomly drawn frequencies. This allows to express the
correlation in the data efficiently holding the covariance ma-
trix at a fixed size. Optimizing the SSGPR hyperparameters
over the given data set enables the approximative functions
to represent the data while reducing the computational cost
dramatically.

�(x) =
�fp
D

⇥
sin

�
!T
1 x

�
, cos

�
!T
1 x

�
, ...

⇤
(23)

...
To handle streaming data, common in robotics tasks, [?]
implemented the SSGPR algorithm using a cholesky rank
one update of the covariance matrix after every new data
sample. ...
In case of the SmartAir implementation no prior infor-
mation on the flow field under investigation is available.
This requires the algorithm to be able to update the model
with additional data on the one hand and on the same time
update its hyperparameters to optimally fit the data on the
other. Our implementation combines the two approaches of
SSGPR and is able to update model at high frequencies at

the one hand and optimizing the model hyperparameters on
the other. This comes at the price of the model loosing a
few seconds of samples during the update of the new model
values after the update, but allows for the expression of
sampled fields without any prior knowledge of the expected
data’s characteristics.
...

Algorithm 1 3D SSGPR
1: for iteration = 1, 2, . . . do
2: x = 1+2
3: end for

For every new measurement point, the sparse signed dis-
tance field of the domain representation is sampled at that
very location. If the sign of the derived sample is negative,
the measurement point must be located within the domain
and will be further processed. Otherwise no computational
recourses are wasted and measurement sample will not be
used.
Points within the domain of interest are added to the nearest
grid point.
This is necessary to reduce the vast amounts of data
sampled by the probe and make the data set suitable for a
real time application.

The sampled quantities are added in an online man-
ner to the nearest grid point. From the sampled values the
arithmetic mean

x̄n =
1

n

nX

i

xi (24)

and variance

�2
n =

1

n

nX

i

(xi � µ)2 (25)

are calculated. The nature of the setting of the high fre-
quency data stream, Welford’s online algorithm [?] where
the update of the mean value with an additional data in-
stance becomes

x̄n = x̄n�1 +
xn � x̄n�1

n
(26)

and the update of the variance

M2,n =
nX

i

(xi � x̄n)
2 (27)

M2,n = M2,n�1 +
xn � x̄n�1

xn � x̄n
(28)

�2
n =

M2,n

n
(29)
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Data SetsSystem

Model field properties: 

• pressure (scalar field)

• velocity (vector field)


Sparse Spectrum Gaussian Process Regression


Periodically online optimization of sparse kernel 
Hyperparameters with neg. log. marginal likelihood. Combining 
SSGPR and Iterative-SSGPR allows for minimal prior knowledge. 
Implemented via PyTorch C++ Interface.


=> goal to still run on portable computer (Laptop)…
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stream. All considered computing algorithms have to
be able to handle the incoming additional data with an
high frequency. Linear mapping the physical space to the
index space of OpenVDB’s tree structure makes a nearest
neighbor query. The probe data’s world coordinates are
mapped to floating point index coordinates and the closest
integer index representing a node is calculated.

Rectangle defined as the domain under investigation
and high fidelity CAD drawing of object’s surface, CSG
operation. Representation of the physical measurement
setup. Points on the digital surface of the object are known
to adhere to the no-slip flow condition and get initialized
with a vanishing flow velocity vector.
The grid is important to to accurately resample the mea-
sured instances to the correct cell (no spill over on other
side of body)

Model alignment either measured with the motion
capture system manually or alignment with modern depth
cameras (e.g. Intel RealSense, Microsoft Kinect Azure,
etc...) from given high CAD representations of the physical
object under investigation.
Due to the index space representation of the OpenVDB
grid, a nearest neighbor search is easily done...
...

The current probe velocity allow to test against for
the validity of the data, correct the measured flow velocity
by the movement and also makes sure the data reduction of
the streaming data from the grid to the I-SSGPR model is
in compliance with the possible update rates of the model...

Classical Gaussian Process Regression (GPR) [?] ...

R = cholesky
�
K (X,X) + �2

nI
�

(1)

anisotropic Radial Basis Function (RBF) kernel

Kij = k(xi,xj) = �2
F e(�

1
2 (xi�xj)

TM(xi�xj)) (2)

w = R \
�
RT \ y

�
(3)

µ(x) = k (x,X) w (4)

v = RT \ k (X,x) (5)

�2(x) = k (x,x)� vTv (6)

The problem of the bad scalability but very expressiveness
of the GPR gave rise of many approximative formulations
[?]. The approximate kernel methods try to decrease the
size of the covariance matrix to make inversion feasible.
Sparse Spectrum Gaussian Processes (SSGPR) [?] use es-
timate the RBF of the kernel with trigonometric functions
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Figure 3. SmartAir flow chart for the processed data and informa-
tion. Dark blue sections are processed at the rate of the incoming
data stream as where the update rates of the lighter blue sections
are lower.

of randomly drawn frequencies. This allows to express the
correlation in the data efficiently holding the covariance ma-
trix at a fixed size. Optimizing the SSGPR hyperparameters
over the given data set enables the approximative functions
to represent the data while reducing the computational cost
dramatically.

�(x) =
�fp
D

⇥
sin

�
!T
1 x

�
, cos

�
!T
1 x

�
, ...

⇤
(7)

...
To handle streaming data, common in robotics tasks, [?]
implemented the SSGPR algorithm using a cholesky rank
one update of the covariance matrix after every new data
sample. ...
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Human Agent / HoloLens

Data SetsSystem



Julian Humml 7 Apr 2021
12

Human Agent / HoloLens

Data SetsSystem
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Robotic Agent

Data SetsSystem
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???

Agent
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ROS Node / moveIt!
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Scene Input
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moves probe

Active Sampled Voxels

ZeroMQ + agreed data format/serialization

Proposed collaboration interface: 

Option 1: low model throughput

compare 
SmartAIR active 
voxels data set
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DAQ
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Physical Object, Domain of Interest 

???

Agent

Human / HoloLens


ROS Node / moveIt!
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moves probe

Proposed collaboration interface: 

Option 2: high model throughput

ZeroMQ + agreed data format/serialization

compare 
SmartAIR 
random path 
data set
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Data Sets Available


A. Wind Tunnel Measurements


i. Ahmed Body Traverse


ii. Ahmed Body SmartAIR “random” path


B. Computational Fluid Dynamics (CFD) Simulations


i. Ahmed Body (3D / stationary)


ii. Von Kármán Vortex Shedding (2D / non stationary)

17

Data SetsSystem
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Data sets available


A.i.) Ahmed Body Traverse Measurement

18

Project motivation:


Measurement took 25minutes.

Measure the actual flow, sparse data. 
Difficult to visualize and post process.


Compare corresponding CFD case. 
Rich data allows extensive post 
processing. Very difficult to get the 
physics right. 


SmartAIR => short measurement time 
with data richness comparable to CFD.

Data SetsSystem
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Data sets available


A.i.) Ahmed Body Traverse Measurement — Variance Field
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Data SetsSystem
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Data sets available


A.ii.) Ahmed Body SmartAIR random path
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Data SetsSystem
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Data sets available


B.i.) Ahmed Body CFD
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Data SetsSystem
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Data sets available


B.i.) Ahmed Body CFD
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Data SetsSystem

Project motivation:


Measurement took 25minutes.

Measure the actual flow, sparse data. 
Difficult to visualize and post process.


Compare corresponding CFD case. 
Rich data allows extensive post 
processing. Very difficult to get the 
physics right. 


SmartAIR => short measurement time 
with data richness comparable to CFD.
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Data sets available


B.ii.) Von Kármán Vortex Street
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Data SetsSystem
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Data sets available


B.ii.) Von Kármán Vortex Street
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Data SetsSystem
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Questions and Discussion. 
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