
 

  

e-Share REST API Guide 
Information on using e-Share REST API to create and manage trusted shares  

 

 



 

Page 1 

Table of Contents 
SHARES API ................................................................................................................................................................... 2 

ENDPOINTS ........................................................................................................................................................................... 4 

EVENTS API .................................................................................................................................................................... 9 

ENABLE PUBLISHING OF EVENTS FOR A SPECIFIC SHARE .................................................................................................................... 9 

DISABLE PUBLISHING OF EVENTS FOR A SPECIFIC SHARE ................................................................................................................. 10 

GET EVENTS ........................................................................................................................................................................ 10 

MOUNT API .................................................................................................................................................................. 14 

ENDPOINTS ......................................................................................................................................................................... 17 

TASKS API.................................................................................................................................................................... 26 

TASK RESULTS ..................................................................................................................................................................... 27 

 

  



 

Page 2 

Shares API 
The Shares API provides a way to create, update and get information about Trusted Shares. Trusted Shares can be 
created either by the user/owner making the request or on behalf of someone else. An example of the second use 
case is e-Share's Secure Mail Gateway. Secure Mail Gateway (SMG) is an application that receives e-mails and creates 
Trusted Shares with the files and body of the e-mail. The application (SMG) makes requests to e-Share server, but 
such requests in turn create a Trusted Share on behalf of the e-mail sender. 

A Trusted Share has three required properties:  

1. Recipients – A list of email(s) that the Trusted Share should be send to  
2. Shared item – The Item can either be already located in the provider or can be uploaded later 
3. Options – Permissions that the recipients will have on the shared item 

Recipients are defined with a list of valid emails and for each recipient a separate URL is created by e-Share. Each 
such URL is called “Collaboration”.  

The shared item can be already located in the provider, in which case a mount point and an item id are required to 
create the TS. If these two are not supplied with the request, then e-Share will create a new folder in the provider 
under a folder called “outbox” to put all files that the user may upload.  

Options are the permissions given to the recipients by the user/owner. It’s a JSON object with the following properties: 

• “can_read” (Boolean): Recipient can view/read items  
• “can_create” (Boolean): Recipient can create new folders and files  
• “can_edit” (Boolean): Recipient can edit files on-line.  
• “can_delete” (Boolean): Recipient can delete files and folders.  
• “can_download” (Boolean): Recipient can download files  
• “watermark” (Boolean): If the file must be watermarked with recipient’s email and ip  
• “login_required” (Boolean): The user must login in e-Share prior to accessing the TS  
• “enforce_openid” (Boolean): If e-Share detects that the recipient has an OpenID enabled email, enforce to 

login with OpenID. E-Share checks for GSuite and Office365 accounts.  
• “require_terms_of_use” (Boolean): Recipient must agree to the Terms Of Use before accessing the TS  
• “show_terms_once” (Boolean): If e-Share should show the terms of use only once if the user has agreed to 

them.  
• “expiration” (integer): The time in seconds this TS should remain accessible.  
• “pin_protected” (Boolean): Recipient must enter a pin (security code) before accessing the TS  
• “pin” (string): Pin value  
• “send_pin_on_email” (Boolean): e-Share will send the pin with an email  



 

Page 3 

• “secure_conversation_enabled” (Boolean): If the Secure Conversation should be enabled for this TS (defaults 
True)  

• “only_message_owner” (Boolean): When Secure Conversations are enabled, recipient messages will be visible 
to thw TS owner (default False)  

• “message” (string): A brief message to be displayed to the recipient. 

Authentication 
All Shares API requests are authenticated by using the Authorization header with the device token of the user making 
the request. 

Authorization: NCC token=<your_token> 

Available Endpoints 
• Get My Shares  
• Get Shared with Me Shares  
• Create a Share  
• Get info about a TS  
• Add recipients to a TS and 

Responses 
Status codes are REST compliant, 2xx for successes, 3xx for redirects, 4xx for request errors, 5xx for server errors.  

The main object returned in this set of endpoints is a ShareData Object, which holds the attributes of the share. It may 
include a list of recipients which is represented by a list of ShareRecipient Objects. 

ShareData Object  

{  

• mount_id (string): Unique identifier of the current user's mount to the collaboration  
• identity_id (string): Unique identifier of the identity created the TS  
• name (string): The collaboration's name  
• url (string): URL the current user can view the collaboration online with,  
• category (integer): The Share category (3: TS, 4:SM, 5: Bot sharepoint share)  
• type (string): The Share type  
• is_offline (boolean): Whether the share can be made offline in a client device  
• is_swml_share (boolean): Whether the share was created through ShareWithMe              functionality  
• swml_share_unsubscribed (boolean): Whether the ShareWithMe Share originator            used the 

unsubscribe link to disable it  
• is_single_file (boolean): Whether the share is a single file  
• created (string): Creation date  



 

Page 4 

• last_modified (string): Modification date  
• metadata_revision (string): A unique identifier that changes when the share                      properties are 

changed  
• id (string): Unique identifier of the share  
• recipients (array[ShareRecipient]): Recipient dependent share url  
• can_create (boolean): Whether the share has can_create option  
• can_read (boolean): Whether the share has can_read option  
• can_download (boolean): Whether the share has can_download option  

}  

ShareRecipient Object  

{  

• id (string): Unique identifier of the share recipient,  
• email (string): Email of the share recipient  
• url (string): URL the recipient can view the collaboration online with  
• last_accessed (string): Last access date  
• expires_at (string): Expiration date, null if the share does not expire  
• is_active (boolean): Whether the share is active  
• communication_status (string): Status of email send to recipient  
• communication_log (string): Logs of email sending process  
• is_deleted (Boolean): Whether the recipient is permanently removed  

} 

Endpoints 

Get My Shares 
Method: GET  

URL: /api/3.0/shares/by-me/  

Optional query parameters:  

• name (string): Return Shares with matching name  
• mount_id (string): Return matching mount point id  
• offline (Boolean): Whether to return collaborations that are available offline.  
• category (integer): Only return Shares of certain category (3: TS, 4: SM, 5: Bot)  
• type (string): Only return Shares of certain type:  
• TS: Trusted Share  



 

Page 5 

• SM: Secure Mail  
• BOT: Bot Share  
• BOT-SP: Bot share through SharePoint  
• SWML: ShareWithMeLink Share  
• BLOB: TS using Blob Storage  
• inactive (Boolean): Whether to return inactive collaborations, defaults to false  
• shares_revision (string): The current 'shares_revision'. If unchanged, no shares are returned  
• include_url (Boolean): Include a CWP URL in response  
• include_recipients (boolean): Include ShareRecipient objects in response  

The shares_revision parameter can be used to gat incremental listing of the user’s shares. When given without any 
value a value for this will be returned in the response. If this value is included in a subsequent request, only the new 
shares will be returned and a new shares_revision identifier  

 Response:  

{  

• shares (array[ShareData]): Shares owned by me. Not returned if the passed shares_revision is the 
latest,  

• shares_revision (string): An identifier that changes whenever the active list of my shares is modified. 
This value concerns all my shares, not just the ones currently filtered by this query  

} 

Get Shared With Me Shares 
Method: GET  

URL: /api/3.0/shares/with-me/  

Optional query parameters:  

• name (string): Return Shares with matching name  
• mount_id (string): Return matching mount point id  
• offline (Boolean): Whether to return collaborations that are available offline.  
• category (integer): Only return Shares of certain category (3: TS, 4: SM, 5: Bot)  
• type (string): Only return Shares of certain type:  
• TS: Trusted Share  
• SM: Secure Mail  
• BOT: Bot Share  
• BOT-SP: Bot share through SharePoint  
• SWML: ShareWithMeLink Share  
• inactive (Boolean): Whether to return inactive collaborations, defaults to false  



 

Page 6 

• shares_revision (string): The current 'shares_revision'. If unchanged, no shares are returned  
• include_url (Boolean): Include a CWP URL in response  
• can_download (Boolean): Whether to return only collaborations that allow downloads  
• watermarked (Boolean): Whether to return only collaborations that apply watermarking  

The shares_revision parameter can be used to gat incremental listing of the user’s shares. When given without any 
value a value for this will be returned in the response. If this value is included in a subsequent request, only the new 
shares will be returned and a new shares_revision identifier  

 Response:  

{  

• shares (array[ShareData]): Shares owned by me. Not returned if the passed shares_revision is the 
latest,  

• shares_revision (string): An identifier that changes whenever the active list of my shares is modified. 
This value concerns all my shares, not just the ones currently filtered by this query  

} 

Create Trusted Share 
Creating a TS is a complex process and may include many steps until a TS is created. A separate document describes 
all the use cases and how to this endpoint.  Here we give a brief description of the attributes being used.  

 Method: POST  

URL: /api/3.0/shares/  

Body:  

{  

• action (string): One of: ‘create’ (default),’initialize’, ‘send’ and ‘finalize’  
• recipients (array Email): Required. A list of recipient emails  
• options (Options Object): Required. The options to be used  
• identity_id (string): Required. The guid of the sender’s identity  
• sharing_policy_id (integer): The sharing policy id used to verify the given options, if not present the 

options will be verified against the default Organization policy  
• mount_id(integer): If not set (as in the thin client), server will generate the mount point, creating any 

container folders as necessary  
• item_id (string): If set, an existing item located in the provider defined from mount_id will be shared  
• share_id (string): This is the TS guid. If not set by client, server will generate it. Required in case the 

action is ‘send’ or ‘finalize’  



 

Page 7 

• share_name (string): A name for this share. If not present the TS will be named after the folder or the file 
being shared  

• share_message_id (integer): Id of first shared message. It is used during finalization of TS in order to 
insert items metadata in message  

• category (string): TS or SM default is TS   

}  

The response varies upon the arguments given and the action being done. The most use case is “action”: “create” with 
mount_id and Item_id. In this case the following object is returned.  

 {  

• share (ShareData Object): The share object created  
• mount_point (string): String respresantation of the mount point  
• item_id (string): The item_id that is shared  

}  
Example:  

Request: POST /api/3.0/shares/  

Body:  

{  
"recipients": ["<recipient_email>"],  
"mount_id": <mount_point_id>,  
"item_id": "<item_id>",  
"options": {  

"can_read": true,  
"can_download": true,  
"expiration": 86400  

},  
"identity_id": "<identity_guid"  
}  

• mount_id: Can be found by getting the list of proivder mounts with /api/3.0/mounts/list?category=1  
• item_id: Can be found by getting a list of items with /api/3.0/mounts/<mount_id>/items  
• identity_id: Can be found by issuing a GET request to /api/3.0/identities  

 Response:  

{  
    "share": {  
        "mount_id": "2587",  
        "identity_id": "Cebw2e6kj6zY",  



 

Page 8 

        "name": "local_folder1",  
        "url": "…...",  
        "category": 3,  
        "type": "Trusted Share",  
        "is_offline": false,  
        "is_swml_share": false,  
        "swml_share_unsubscribed": false,  
        "is_single_file": false,  
        "created": "2020-01-09T13:41:22Z",  
        "last_modified": "2020-01-09T13:41:22Z",  
        "metadata_revision": "2e1f59e1-0558-4876-9547-b6e53d1c066f",  
        "id": "a6RYpKx8bqZM",  
        "recipients": [  
            {  
                "id": "4647",  
                "email": "sv11jsb@yopmail.com",  
                "url": "…...",  
                "last_accessed": null,  
                "expires_at": "2020-01-10T13:41:22Z",  
                "is_active": true,  
                "communication_status": "in_flight",  
                "communication_log": "",  
                "is_deleted": false  
            }  
        ]  
    },  
    "mount_point": "NnZV82oS /local_folder1/",  
    "item_id": "/local_folder1/"  
}  

 

Get information about a Share 
Method: GET  

URL: /api/3.0/shares/<share_id>  

Optional query parameters:  

• include_recipients(Boolean): Return recipient info  
• include_options (Boolean): Return options info  

Response:   

{  



 

Page 9 

• “share” (ShareData Object): A share data object, with optionally recipient and options info  

} 

Events API 
e-Share provides an Events API which can be used to get events of Trusted Shares, such as file uploads, file deletions 
etc.   

Description  
Authentication of the request is performed through the Authorization header, having the device token of the user that 
owns the TS. The user must first enable publishing for specific shares and then poll the Events endpoint to get any 
new events.  

Cursor  
The endpoint provides a ‘cursor’ for each event it sends. The user must save the last cursor and send it in a 
subsequent request to get only the new events that have happened since the last request, otherwise all events, from 
the time the shared got published, will be returned.  

Event types  
The user can supply the event types that wants to get events for. The following types are supported:  

• file_add – New file added to the TS  
• file_updated – File updated  
• file_edit – Edited online  
• file_open – Opened/Viewed  
• file_download - Downloaded  
• file_delete – Deleted  
• file_rename – Renamed  

Limit  
The user can limit the amount of events to be returned from the endpoint. Default is 100 events. Maximum is 500. If 
there are more events to be returned than the limit, then the “has_more” attribute will be true. The user can get the 
next bunch of events by supplying the latest cursor value.  

Enable publishing of events for a specific share  
Headers: Authorization: NCC token=<device_token>  

Method: POST  

URL: /api/3.1/shares/<share_id>/publish-events  



 

Page 10 

  

Response:  

Content-type: application/json  
Status code: 200  
Body: {}  

Disable publishing of events for a specific share  
Headers: Authorization: NCC token=<device_token>  

Method: POST  

URL: /api/3.1/shares/<share_id>/unpublish-events  

Response:  

Content-type: application/json  
Status code: 200  
Body: {} 

Get events  
Headers: Authorization: NCC token=<device_token>  

Method: GET  

URL: /api/3.1/events  

Query Params:  

share_id: comma separated list of share ids the user wants events from  
event_type: comma separated list of event types  
since: last cursor value  
limit: number if events to return, default 100, max 500. 

 
Response:  

Content-type: application/json  
Status code: 200  
Body: {  

• “events”: [<list_of_event_objects>],  
• “has_more”: <boolean>  

} 
 



 

Page 11 

Event Object:  

• id (string): Unique identifier of the event,  
• type (choice) = The event type,  
• created_at (string): Creation timestamp of the event, as recorded by,  
• recorded_at (string): Timestamp when the event was received and recorded by the server,  
• actor (EventActorObject),  
• context (EventContextObject),  
• cursor (string): A cursor identifying the event sequence at this event.   

Event Actor Object:  
• email (string): The email of the user that generated the event,  
• user (EventActorUserObject ): User information available if the event actor is a user,  
• identity (EventActorIdentityObject ): Identity information if the event actor has an identity,  
• organization (EventActorOrganizationObject ): Organization information if the event actor belongs to an 

organization  

Event Actor User Object:  
• id (string): Unique identifier of the user that generated the event,  
• name (string): The user's name  

Event Actor Identity Object:  
• id (string): Unique identifier of the user's identity,  
• name (string): The user's identity name  

Event Actor Organization Object:  
• id (string): Unique identifier of the actor's organization,  
• name (string): The organization's name  

Event Context Object:  
• file (FileEventContextObject)  

File Event Context Object  
• id (string): Unique file identifier,  
• name (string): The file name,  
• etag (string): The file Etag,  
• version (string): The file version, can be used to download that version of the file,  
• path_at_provider (string): The full path of the file at the provider,  
• mounts (array[FileMountObject]): The mounts and shares the file belongs to, may be more than one,  
• created (string),  
• last_modified (string),  



 

Page 12 

• size (integer)  

File Mount Object:  
• mount_id (string): Unique identifier of the mount the file belongs to,  
• share_id (string): Unique identifier of the share the file belongs to,  
• path_at_mount (string): The path of the file at this mount  

Example  
Request  

GET 
/api/3.1/events?share_id=jpwUMHCuxnkB,k8D4nSrPrDJy&event_type=file_add,file_edit&since=eyJ2IjogMSwgInAiOiB
beyJwIjogOTAsICJvIjogMzF9XX0=  

Response  

{  
    "events": [  
        {  
            "id": "qBe7yZQ5ZfLZ",  
            "type": "file_add",  
            "created_at": "2019-12-31T09:41:18Z",  
            "recorded_at": "2019-12-31T09:41:18Z",  
            "actor": {  
                "email": "sv11jsb@yopmail.com"  
            },  
            "context": {  
                "file": {  
                    "id": "015ZE4P2RV4LHXD5G66BA3KCRD63JCC2M6",  
                    "name": "500shares_production.png",  
                    "etag": "\"{71CFE235-DEF4-41F0-B50A-23F6D221699E},1\"",  
                    "version": "1.0",  
                    "path_at_provider": "/ppe_events/500shares_production.png",  
                    "mounts": [  
                        {  
                            "mount_id": "164034",  
                            "share_id": "jpwUMHCuxnkB",  
                            "path_at_mount": "/500shares_production.png"  
                        }  
                    ],  
                    "created": "2019-12-31T09:41:17Z",  
                    "last_modified": "2019-12-31T09:41:17Z",  
                    "size": 23664  
                }  



 

Page 13 

            },  
            "cursor": "eyJ2IjogMSwgInAiOiBbeyJwIjogOTAsICJvIjogMjN9XX0="  
        },  
        {  
            "id": "a4iQHieTUVAN",  
            "type": "file_add",  
            "created_at": "2019-12-31T10:19:35Z",  
            "recorded_at": "2019-12-31T10:19:35Z",  
            "actor": {  
                "email": "sv11jsb@yopmail.com"  
            },  
            "context": {  
                "file": {  
                    "id": "015ZE4P2QPOORWLBJRYRGJUFMC42EZGCP6",  
                    "name": "accounts1.png",  
                    "etag": "\"{65A3730F-3185-4CC4-9A15-82E6899309FE},1\"",  
                    "version": "1.0",  
                    "path_at_provider": "/ppe_events2/accounts1.png",  
                    "mounts": [  
                        {  
                            "mount_id": "164035",  
                            "share_id": "k8D4nSrPrDJy",  
                            "path_at_mount": "/accounts1.png"  
                        }  
                    ],  
                    "created": "2019-12-31T10:19:34Z",  
                    "last_modified": "2019-12-31T10:19:34Z",  
                    "size": 197082  
                }  
            },  
            "cursor": "eyJ2IjogMSwgInAiOiBbeyJwIjogOTAsICJvIjogMjR9XX0="  
        },  
    ],  
    "has_more": false  
}  

Remarks  
In this example the user asked for events of shares jpwUMHCuxnkB and k8D4nSrPrDJy, for event types file_add and 
file_edit, since the eyJ2IjogMSwgInAiOiBbeyJwIjogOTAsICJvIjogMzF8FFg= cursor.  

The response includes one event per share, both are file_add events and information about who uploaded the file and 
about the new file.  

It is assumed that a publish request has already been done for each share, example is below.  



 

Page 14 

POST /api/3.1/shares/jpwUMHCuxnkB/publish-events  
POST /api/3.1/shares/k8D4nSrPrDJy/publish-events  

 

The only information about the ‘uploader’ that is returned is the email, because the user does not have an account 
with e-Share. If the has an account in e-Share application, the user’s name, identity and probably organization objects 
would had been returned.  

All timestamps are returned in UTC time.  

Mount API 
Description 
e-Share provides a consistent way to work with your files regardless where these files are stored. The user needs to 
provide a Mount Point Id. Mount Point is an e-Share term which is used to describe a specific folder located in a 
specific provider. e-Share will contact the provider to get information or data thus making the whole process 
transparent to the user. The Mount Point ID can be found in the response of a Create Share request, in the response of 
the Events request or can be provided by e-Share.  

Authentication  
All Mount API requests are authenticated by using the Authorization header with the device token of the user making 
the request.  

Authorization: NCC token=<your_token>  

Content type  
All requests expect and return json format data. An exception is the upload request which must be multipart/form-
data because the binary content of the file will be in the request body.  

Available actions  
• List all mounts  
• List files and folders of mount point root folder  
• Create new folder in mount point’s root folder  
• List files and folders of a specific folder  
• Create new folder in a folder  
• Get metadata of a folder or file  
• Delete files or folders  
• Copy files  
• Move files  
• Download files  



 

Page 15 

• Upload files  

Responses  
Status codes are REST compliant, 2xx for successes, 3xx for redirects, 4xx for request errors, 5xx for server errors.  

When listing files or folders a FileOrFolderMetadata object is returned for each one.  

FileOrFolderMetadata:  

• cloud_provider (string),  
• name (string),  
• original_name (string),  
• guid (string),  
• id (string),  
• is_shared (boolean),  
• full_path (string),  
• type (choice) = ['folder' or 'google_team_drive' or 'file']: The type of items,  
• created (string): RFC 3339 timestamp of the item creation date, may be missing,  
• last_modified (string): RFC 3339 timestamp of the item modification date, may be missing for folders,  
• view_url (string): The URL through which the item is viewable on the web client,  
• mimetype (string),  
• revision (string): The file's Etag, can be used to determine if the file has been modified and for conditional 

requests. Might be different than the file's version depending on the provider.,  
• version (string): The file's version, which can be used to download specific versions of a file. Might be 

different than the Etag depending on the provider,  
• size (integer),  
• is_zip (boolean),  
• version_id (string): The current version of the folder,  
• is_versioned (boolean): Whether this folder is versioned,  
• version_date (string): When the current version was published,  
• version_update_topic_id (string): Topic id for this folder's version updates notifications,  
• version_is_outdated (boolean): Is current folder state from cloud provider different from latest published 

state,  
• is_folder (boolean): Whether the item is a folder  

There also two stripped-down versions of this object representing either a file or folder.  

FolderMetadata  

• cloud_provider (string),  
• name (string),  



 

Page 16 

• original_name (string),  
• guid (string),  
• id (string),  
• is_shared (boolean),  
• full_path (string),  
• type (choice) = ['folder' or 'google_team_drive' or 'file']: The type of items,  
• created (string): RFC 3339 timestamp of the item creation date, may be missing,  
• last_modified (string): RFC 3339 timestamp of the item modification date, may be missing for folders,  
• view_url (string): The URL through which the item is viewable on the web client,  
• version_id (string): The current version of the folder,  
• is_versioned (boolean): Whether this folder is versioned,  
• version_date (string): When the current version was published,  
• version_update_topic_id (string): Topic id for this folder's version updates notifications,  
• version_is_outdated (boolean): Is current folder state from cloud provider different from latest published 

state  

FileMetadata  

• cloud_provider (string),  
• name (string),  
• original_name (string),  
• guid (string),  
• id (string),  
• is_shared (boolean),  
• full_path (string),  
• type (choice) = ['folder' or 'google_team_drive' or 'file']: The type of items,  
• created (string): RFC 3339 timestamp of the item creation date, may be missing,  
• last_modified (string): RFC 3339 timestamp of the item modification date, may be missing for folders,  
• view_url (string): The URL through which the item is viewable on the web client,  
• mimetype (string),  
• revision (string): The file's Etag, can be used to determine if the file has been modified and for conditional 

requests. Might be different than the file's version depending on the provider  
• version (string): The file's version, which can be used to download specific versions of a file. Might be 

different than the Etag depending on the provider,  
• size (integer),  
• is_zip (boolean)  

 The most important fields are:  

• id – Will be used in a subsequent request as <item_id>  



 

Page 17 

• name – The name of file or folder  
• is_folder – Boolean  
• mimetype – The mimetype of the file  
• size – Size of file  

Endpoints 

List all mounts 
This endpoint returns a list of all Secure Views owned by the user. A Secure View is the object containing information 
about a Mount Point and a Cloud Provider.  

Method: GET  

URL: /api/3.0/mounts/list  

Optional query parameters:  

• Category: Return only that category mounts. Valid categories are:  
o 1 – Provider mounts  
o 2 – Not used, deprecated  
o 3 – Trusted Share  
o 4 – Secure Mail  
o 5 – Bot share  

• provider: Return only providers with this name  

Response:  

{  
    “pagination” (PagintionObject): Information about the paged results  
    “results” (arraySecureViewObject): List of mounts  
}  

 

Pagination Object:  

{  
    “results” (integer): Total number of results  
    “pages” (integer): Number of pages needed to display all results  
    “links” (object): {  
         “next” (string): Next page URL,  
         “previous” (string): Previous page URL  
     }  
} 



 

Page 18 

Secure View Object:  

{  
    id (string): Secure View ID  
    is_corporate (Boolean): If this a corporate entity or personal  
    mount_points (array[MountPointsObject]): list of Mount Points  
    last_modified (string): Timestamp  
    created (string): Timestamp  
    guid (string): Secure View GUID  
    slug (string): Unique name of Secure View  
    name (string): Name of Secure View  
    category (choice): ['1' or '2' or '3' or '4' or '5'],  
    active (Boolean): If the Secure View is active  
    hidden (Boolean): If the Secure View is hidde  
    identity_id (string): Owner identity of this secure view,  
    type_id (string): Type of identity  
}  

 

Mount Point Object:  

{  
    id (string): Mount Point ID  
    created (string) Timestamp  
    last_modified (string): Timestamp  
    is_folder (Boolean): If this represents a folder  
    encrypted (Boolean): If it’s encrypted  
    cloud_provider_auth (CloudProviderObject)  
}  

  

Cloud Provider Object:  

{  
    id (string): Provider ID  
    provider_slug (string): Unique name of provider  
} 

List files and folders of mount point root folder  
Method: GET  

URL: /api/3.0/mounts/<mount_id>/items  

Optional query parameters:  



 

Page 19 

• name: Return only metadata for a specific item  
• is_folder: If True, return only folder items. If False, return only file items. If not present, then both folder and 

file items are returned  

Response:  
{  
    “items”: [  
        FileOrFolderMetadata object  
    ]  
} 

List files and folders of a specific folder 
Method: GET  

URL: /api/3.0/mounts/<mount_id>/items/<item_id>/items  

Response:  

{  
    “items”: [  
        FileOrFolderMetadata object  
    ]  
}  

Optional query parameters:  

• name: Return only metadata for specific item  
• is_folder: If True, return only folder items. If False, return only file items. If not present, then both folder and 

file items are returned 

Create new folder in a folder  
Method: POST  

URL: /api/3.0/mounts/<mount_id>/items/<item_id>/items  

Body:  

{  

• folder_name(string): New folder’s name  
• folder_type(string): One of “public”, “private”, “shared”  

}  
Response:  

{  

• item_id(string): The Id of the new folder  



 

Page 20 

• full_path(string): The full path if it’s available (maybe is the same as item_id)  
• guid(string): The guid of the new folder (maybe is the same as item_id)  

}  
Error response codes:  

• 409 – Conflict. There is already a file or folder named the same  
• 422 – Unprocessable. The item_id given in the url is not a folder 

Get metadata of specific folder or file  
Method: GET  

URL: /api/3.0/mounts/<mount_id>/items/<item_id>  

Response:  

{  

• metadata (FileOrFolderMetadata): Metadata for the specified item,  
• subfolders (array[FolderMetadata]): Metadata for the specified item's subfolders,  
• files (array[FileMetadata]): Metadata for the specified item's files  

}  
  

Optional query parameters:  

• include_subfolders: whether to include metadata of subfolders  

 

Rename files or folders  
Method: PATCH  

URL: /api/3.0/mounts/<mount_id>/items/<item_id>  

Body:  

{  

• rename_to(string): New name of the folder or file  

}  
Response:  

{  

• metadata (FileOrFolderMetadata): Metadata for the specified item  

}  



 

Page 21 

 
 

Delete files or folders  
Method: DELETE  

URL: /api/3.0/mounts/<mount_id>/items/<item_id>  

Response:  

{  

• item(string): The item id that was deleted  

}  
 
Warning: This method performs a direct request to the cloud storage provider to delete the item. There is no 
confirmation step. If the item is a folder, all its contents will be deleted.  

 

Copy files  
Method: POST  

URL: /api/3.0/mounts/<mount_id>/items/copy  

Body:  

{  

• source_items(array): List of items to copy  
• destination_id(string): Destination folder id  

}   
 

Response:  

{  

• task_id (string): ID of started Celery task,  
• task_url (string): Url for checking status of started Celery task  

}  
 

Description:  

The source_items field accepts an array of item objects. The item object must contain at least the fields item_id and 
name.  



 

Page 22 

The response has a task_id which can be queried with the Tasks API to get the progress of the copy process.  

 

Move files  
Method: POST  

URL: /api/3.0/mounts/<mount_id>/items/move  

Body:  

{  

• source_items(array): List of items to move  
• destination_id(string): Destination folder id  

}  
 

Response:  

{  

• task_id (string): ID of started Celery task,  
• task_url (string): Url for checking status of started Celery task  

}  
 

Description:  

The source_items field accepts an array of item objects. The item object must contain at least the fields item_id and 
name.  

The response has a task_id which can be queried with the Tasks API to get the progress of the move process  

 

Downloading and uploading files  
Download and upload are two step processes when working with e-Share.  

For download, the requested file needs to be downloaded to e-Share server and maybe decrypt it and then the user 
can download it locally. For upload, the file first needs to be uploaded to e-Share server, maybe encrypt it and then 
upload it to the provider space. It is recommended to break up large files (>30MB) into chunks and upload each chunk 
separately. If a chunk is not uploaded correctly it can be retried.  

 



 

Page 23 

Initialize download  
Method: POST  

URL: /api/3.0/mounts/<mount_id>/items/download  

Body:  

{  

• items(array[Item]): List of items to download  
• is_download(boolean): If this is a download request and no conversion will take place.  

}  
 

Response:  

{  

• tasks (array[Task]): List of task info objects  

} 
 

Task object:  

{  

• item_id (string): Id of item.,  
• ready (boolean): If the latest item revision is present in our cache.,  
• task_id (string): Id of started Celery task.,  
• task_url (string): The URL to check for task status,  
• revision (string): Revision of the item to be downloaded,  
• counts (Counts): Counts of items enumerated for the download.,  
• download_url (string): url to download the item once it is ready.,  
• preview_url (string): url to preview the item once it is ready.,  
• office_url (string): url to start edit the item in Office Online once it is ready.,  
• office_preload_url (string): url to preload Office Online resources.,  
• error_type (choice) = ['password-protected' or 'sensitive-document' or 'download-prohibited-by-policy' 

or 'permissions-denied' or 'key-access-forbidden' or 'download-size-limit-exceeded' or 'directory-is-
empty']: Error code.,  

• error_message (string): Friendly error message.,  
• error_details (string): Extra information related to the error.  

}  
 

Count object:  

{  

• folders (integer): Number of folders to download.,  



 

Page 24 

• subfolders (integer): Number of subfolders to download.,  
• files (integer): Number of files to download.,  
• total_size (integer): Total downloaded size in bytes.  

}  
  

Description  

The array of Item to send in the request must include at least the field item_id. The file is downloaded and stored in e-
Share’s cache. The file can be retrieved with the Downlaod content request.  

The response has a task_id which can be queried with the Tasks API to get the progress of the move process. 

 

Download content  
Method: GET  

URL: /api/3.0/mounts/<mount_id>/items/<item_id>/content  

Response: Binary content of the file requested  

Description: The file must be already located in e-Share’s cache, or else it will fail.  

  

Initialize upload  
Method: POST  

URL: /api/3.0/mounts/<mount_id>/items/upload  

Body:  

{  

• mount_id(string): Required – Id of mount point  
• parent_id(string): The id of the folder to upload into. If not specified, the upload will take place into 

the root folder of the mount.  
• file_name(string): Required – File name  
• size(integer): Required – Size of file in bytes  
• overwrite(bool): Overwrite existing file. Default is false  

}  
 
 Response:  



 

Page 25 

{  

• upload_id (string): New upload id.  
• parent_id (string): The id of the item the file will be uploaded to.  

}  
 

Upload chunk  
Method: POST  

URL: /api/3.0/mounts/<mount_id>/items/upload/<upload_id>/  

Type: multipart/form-data  

Body form data:  

• mount_id: Required – Id of mount point  
• file_name: Required - File name to create  
• chunk: Required Binary – Contents of chunk  
• checksum: Required – MD5 checksum of chunk’s contents  
• chunk_order: Required Integer - The sequence order of this chunk, zero indexed  
• is_last_chunk: Boolean – True if this is the last chunk  

  

Response:  

If the uploaded chunk is not the last one:  

{  

• size(integer): The size of the received chunk  

}  
If the chunk is the last one:  

{  

• task_id(string): The task_id to query the Tasks API for results.  

}  
 

Get information about upload status  
During or after the upload of chunks you can request information about the upload status. It’s simpler to use this url 
to get information instead of the Tasks API.  



 

Page 26 

Method: GET  

URL: /api/3.0/mounts/<mount_id>/items/upload/<upload_id>/  

Response:  

{  

• upload (UploadObject): The upload session  

}  
  

Upload Object:  

• id (string),  
• type (choice) = ['copy' or 'encrypt' or 'folder_transfer' or 'move' or 'decrypt' or 'upload'],  
• status (choice) = ['failed' or 'finished' or 'receiving_chunks' or 'in_progress' or 'initialized'],  
• reason (string): Failure reason,  
• mount_id (string),  
• parent_id (string): The id of the folder to upload into,  
• filename (string): File name to create,  
• file_created (string): The creation date of the file,  
• file_last_modified (string): The last modification date of the file,  
• overwrite (boolean): Whether to overwrite an existing file,  
• encrypt (string),  
• created (string),  
• expired (boolean),  
• size_received (integer): Size in bytes of the file chunks received so far,  
• item (string): JSON with the item metadata,  
• share_message (string): Shared message  

The upload is successful when all chunks are uploaded to e-Share and the Upload Sessions status field is finished. 

Tasks API 
Description  
Many of our process can be completed with one-pass. For example, if a user requests to view a file that is being 
watermark protected, the file must first be downloaded from the provider, get decrypted, apply the watermark and 
then sent to browser for viewing. Depending on the file size this whole process can take several seconds. In order to 
complete it, a task is fired for every step. When a task has completed its job, it fires the next task that must be 
executed and so on.  



 

Page 27 

Getting the results usually results in a new task that must be queried to get results from. When there is no next task to 
query the whole process has been finished.  

Authentication  
All Tasks API requests are authenticated by using the Authorization header with the device token of the user making 
the request.  

Authorization: NCC token=<your_token>  

Task results  
Method: GET  

URL: /api/3.1/tasks/<task_id>  

Response:  

{  

• id (string): The task unique identifier,  
• status (choice) = ['RECEIVED' or 'RETRY' or 'REVOKED' or 'SUCCESS' or 'STARTED' or 'FAILURE' or 

'PENDING']: The task status,  
• result (object): The task result if it is available  

}  
  

The result object may vary if the first has started one or many parallel tasks.  

1. If there are many parallel tasks then an array of Task Info objects are returned.  

{  

• tasks_info(arrayTaskInfo): List of tasks that have been started  

}  
Task Info object:  

{  

• item_id(string): Item Id  
• task_id(string): Task id to query for results  
• is_folder(bool): If the Item is a folder  
• name(string): Name of the item  

}  

2.  If a single task has been started then the result will be:  



 

Page 28 

{  

• next_task(string): The next task id to query  
• progress(integer): An integer indicating the progress of the whole process. 100 means there is 

nothing else pending to do.  

}  

3. If there is no next_task, then the result is:  

{  

• next_task: null  
• result(objectFileOrFolderMetadata): Object with information about the performed action  

}  
 

Azure Blob Usage API 
Description  
Depending on the storage provider used by an organization, use of traditional cloud storage services like OneDrive, 
SharePoint, Google Drive, etc. may not be suitable for mass usage. Especially organizations using 
OneDrive/SharePoint as a storage provider may have experienced throttling from Microsoft’s Graph API with high 
number of file transactions.   

To address the issue, e-Share also supports API endpoint by using Azure’s Storage as a provider for creation of 
Trusted Shares. Additionally, usage of API endpoint for Azure Blob is simpler and more suitable for sending large 
number of single files in each Trusted Share. Instead of issuing two or three requests to create, upload and send the 
Trusted Share, only one is needed with this API endpoint. The Azure Blob storage API endpoint requires a one-time 
setup and then can be used as detailed in the Usage section below. 

Usage  
The Azure Blob API endpoint accepts content type multipart/form-data and not application/json. This is because the 
file to be send will be also included in the request.  

URL: /api/3.0/shares/blob/ 

Method: POST  

Authorization:  

When using 3.0: Authorization: NCC token=<your_token>  
When using 3.1: Authorization: NCCAPP token=<your_token>  
                           NCC-IDENTITY-EMAIL: <email_of_the_sender>  



 

Page 29 

  

Fields:  

recipients: email of recipient – Required  
recipients_cc: email of cc recipient  
recipients_bcc: email of bcc recipient  
 

Due to the type of the request, you can include more than ‘recipients’ fields to have the same file sent to multiple 
recipients.  

share_name: Your own name for the share  
share_id: Your own id for the share  
message: Short message  
identity_id: required when version 3.0 is used.  
pin: required if the policy has ‘pin protected’ option set.  
file: the content of the file to be send. max. size 10MB - Required  
 

Response:  

The response will be a Share object containing information about the created share, and about the recipients, e.g. 

{  
  "share": {  
    "mount_id": "2582",  
    "identity_id": "hbU9sVPafdqG",  
    "name": "payslip201912-4",  
    "url": null,  
    "category": 3,  
    "type": "Trusted Share (through Blob Storage)",  
    "is_offline": false,  
    "is_swml_share": false,  
    "swml_share_unsubscribed": false,  
    "is_single_file": false,  
    "created": "2019-12-03T09:10:27Z",  
    "last_modified": "2019-12-03T09:10:27Z",  
    "metadata_revision": "30d906ec-280e-4023-843b-fb6d6d3cdcb2",  
    "id": "ebad3b8e-e31d-483b-bf58-df784cd8d304",  
    "recipients": [  
      {  
        "id": "4630",  
        "email": "<recipient_email>",  
        "url": "<unique_recipient_url>",  



 

Page 30 

        "last_accessed": null,  
        "expires_at": "2020-02-03T09:10:27Z",  
        "is_active": true,  
        "communication_status": "not_sent",  
        "communication_log": "",  
        "is_deleted": false  
      }  
    ]  
  }  
}  

  

The authorization, response and the field names are the same as the general API endpoints described above. The 
main difference is the type of the request and that only one request is required to create and send a Trusted Share.  

 


