Kollaborativer Roboterarm
Serienr.: Siehe Typenschild am Roboterarm, Programmierhandgerät und Schaltschrank.
Generation: 2. Generation.
Inhaltsverzeichnis

1. Identifizierung ... 4
 1.1 Lieferantendaten ... 4
 1.2 Produktbeschreibung ... 4
 1.3 Eintragung und ISO9001-Zertifikat .. 4

2 Allgemeines ... 9
 2.1 Einführung .. 9
 2.2 Funktionsbeschreibung ... 9
 2.3 Technische Begriffe und Abkürzungen ... 10

3 Sicherheit .. 11
 3.1 Einführung .. 11
 3.2 Vorsichtsmaßnahmen ... 11
 3.3 Verwendungszweck ... 11
 3.4 Unsachgemäße Verwendung ... 12
 3.5 Betriebspersonal ... 12
 3.6 Transport und Handhabung ... 13
 3.7 Sicherheit während der Inbetriebnahme und Installation .. 13
 3.8 Lagerung ... 14
 3.9 Sonstiges ... 14

4 Sicherheitscheck .. 15
 4.1 Anweisungen für eine sichere Bedienung .. 17
 4.2 Sicherheitsfunktionen .. 18
 4.2.1 Not-Aus-Funktion ... 19
 4.2.2 Schutz-Stopp ... 21

5 Produktbeschreibung .. 22
 5.1 Roboterarm-Konstruktion ... 22
 5.2 Bedienung des Roboters ... 23
 5.3 Nutzungseinschränkungen .. 24
 5.4 Platz Einschränkungen .. 24

6 Roboterarm-Spezifikationen ... 25
 6.1 Robotermodell KR810 ... 25
 6.2 Robotermodell KR1018 ... 27
 6.3 Robotermodell KR1205 ... 29
 6.4 Robotermodell KR 1410 ... 31
 6.5 Robotermodell KR1805 ... 33

7 Nutzlastdiagramm .. 35
 7.1 Bremsweg .. 35

8 Handhabung .. 38
 8.1 Auspacken und allgemeine Handhabung des Roboterarms ... 38
 8.2 Sichere Entsorgung der Verpackung und des Roboters .. 38
 8.3 Installation und Zusammenbauen des Roboterarms .. 38
9 Bedienung des Roboterarms ... 40
 9.1 Sicherer Betrieb .. 40
 9.2 Fehlersituationen ... 40
 9.3 Hard Reset des Tablets .. 41
 9.4 Signale, die beachtet werden müssen 43
 9.5 Zubehör ... 44
 9.6 Inspektionsintervalle, Wartung und Reinigung 44
 9.7 Auflistung der Ersatzteile und Verbrauchsmaterialien 44

10 Steuerung .. 45
 10.1 Steuerung außen ... 45
 10.2 Das Innere der Steuerung und elektrische Anschlüsse 46
 10.3 Stromversorgungsausgang (24 V) .. 47
 10.4 Allzweckrelais ... 47
 10.5 Not-Aus und Schutz-Stop ... 48
 10.6 Digitale Eingänge (24 V) ... 48
 10.7 Analogle Eingänge (4-20 mA) ... 48
 10.8 Analogle Eingänge (0-10 V) ... 48
 10.9 Analogle Ausgänge (4-20 mA) .. 49
 10.10 Analogle Ausgänge (0-10 V) ... 49
 10.11 Digitale Ausgänge (0-24 V) ... 49
 10.12 Sicherer E/A ... 49
 10.12.1 Sichere digitale Eingänge (SDI) 49
 10.12.2 Sichere digitale Ausgänge (SDO) 50

11 E/A des Werkzeugs ... 52
 11.1 Bewertungen für E/A des Werkzeugs 53
 11.2 E/A-Stecker des Werkzeugs ... 53
 11.2.1 M8 8-polige Buchse ... 53
 11.2.2 M8 8-poliger Stecker ... 54
1. Identifizierung

1.1 Lieferantendaten

<table>
<thead>
<tr>
<th>Hersteller:</th>
<th>Kassow Robots ApS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kajakvej 2</td>
</tr>
<tr>
<td></td>
<td>2770 Kastrup</td>
</tr>
<tr>
<td>Telefon:</td>
<td>+45 32 16 08 10</td>
</tr>
<tr>
<td>E-Mail:</td>
<td>info@kassowrobots.com</td>
</tr>
</tbody>
</table>

1.2 Produktbeschreibung

<table>
<thead>
<tr>
<th>Beschreibung:</th>
<th>Kollaborativer Roboterarm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modell: Arm 0810 / 1018 / 1205 / 1410 / 1805</td>
</tr>
<tr>
<td></td>
<td>Seriennr.: Siehe Typenschild am Roboter und am Schaltschrank.</td>
</tr>
<tr>
<td></td>
<td>Generation: 2. Generation</td>
</tr>
<tr>
<td></td>
<td>Jahr: 2023</td>
</tr>
</tbody>
</table>

1.3 Eintragung und ISO9001-Zertifikat

(Siehe die nächsten Seiten)
EC Declaration of Incorporation

Of Partly Completed Machinery in accordance with the Machinery Directive 2006/42/EC Annex II No. 1 Section B

The Manufacturer

Kassow Robots ApS
Kajakvej 2
2770 Kastrup
Denmark

Authorized to compile the technical file

Kristian Kassow, CEO
Kassow Robots ApS
Kajakvej 2, 2770 Kastrup
Denmark

hereby declares that the following product

Designation: Industrial Collaborative Robot
Generation: 02
Arm serial no. (02|type|year|SN): 02TTTTYYxxxx
Controller serial no. (02|type|year|SN): 02TTTTYYxxxx
Teach Pendant serial no. (02|type|year|SN): 02TTTTYYxxxx

fulfills the following essential health and safety requirements of the Machinery Directive (2006/42/EC).

➢ 1.1.2, 1.1.3, 1.1.5, 1.2.1, 1.2.4.3, 1.2.6, 1.3.4, 1.3.8.1, 1.5.1, 1.5.2, 1.5.6, 1.5.8, 1.6.3, 4.1.2.3

Furthermore, the partly completed machinery fulfills the EMC Directive (2014/30/EU) and the RoHS Directive (2011/65/EU) for which the product is CE marked. Additionally, all health and safety requirements in Low Voltage Directive LVD (2014/35/EU) are met.

The partly completed machinery must not be put into service until the final machinery into which it is to be incorporated has been declared to be in conformity with the provisions of the Machinery Directive (2006/42/EC).

The relevant technical documentation has been compiled in accordance with Annex VII, Part B of EC Machinery Directive 2006/42/EC. We undertake to provide the market surveillance authorities with the technical documentation in electronic form upon request within a reasonable period of time. This transmission does not affect the intellectual property rights.

Kristian Kassow, CEO
Kastrup, Denmark, 1. March 2023
UK Declaration of Incorporation

Of Partly Completed Machinery in accordance with the
Supply of Machinery (Safety) Regulations 2008 Annex II No. 1 Section B

The Manufacturer
Kassow Robots ApS
Kajakvej 2
2770 Kastrup
Denmark

Authorized to compile the technical file
Kristian Kassow, CEO
Kassow Robots ApS
Kajakvej 2, 2770 Kastrup
Denmark

hereby declares that the following product

Designation: Industrial Collaborative Robot
Generation: 02
Arm serial no. (02|type|year|SN): 02TTTTYYxxxx
Controller serial no. (02|type|year|SN): 02TTTTYYxxxx
Teach Pendant serial no. (02|type|year|SN): 02TTTTYYxxxx

fulfills the following essential health and safety requirements of the Supply of Machinery (Safety) Regulations 2008.
➢ 1.1.2, 1.1.3, 1.1.5, 1.2.1, 1.2.4.3, 1.2.6, 1.3.4, 1.3.8.1, 1.5.1, 1.5.2, 1.5.6, 1.5.8, 1.6.3, 4.1.2.3

Furthermore, the partly completed machinery fulfills the Electromagnetic Compatibility Regulations 2016 (UK EMC Regulations), the Restriction of the Use of Certain Hazardous Substances in Electrical Equipment Regulations 2012 (UK RoHS) and all health and safety requirements in the Electrical Equipment (Safety) Regulations 2016 are met.

The partly completed machinery must not be put into service until the final machinery into which it is to be incorporated has been declared to be in conformity with the provisions of the Supply of Machinery (Safety) Regulations 2008.

The relevant technical documentation has been compiled in accordance with Annex VII, Part B of Supply of Machinery (Safety) Regulations 2008. We undertake to provide the market surveillance authorities with the technical documentation in electronic form upon request within a reasonable period of time. This transmission does not affect the intellectual property rights.

Kristian Kassow, CEO
Kastrup, Denmark, 1. March 2023
Kassow Robots ApS
Kajakvej 2, 2770 Kastrup, Denmark

This is a multi-site certificate, additional site(s) are listed on the next page(s)

Bureau Veritas Certification Holding SAS – UK Branch certifies that the Management System of the above organisation has been audited and found to be in accordance with the requirements of the management system standards detailed below

ISO 9001:2015

Scope of certification

Development, production, sales, and support services of robots, elements, components, and systems of robotics.

Original cycle start date: 23-05-2023
Expiry date of previous cycle: NA
Certification / Recertification Audit date: NA
Certification / Recertification cycle start date: 23-05-2023
Subject to the continued satisfactory operation of the organisation’s Management System, this certificate expires on: 22-05-2026
Certificate No.: DK016864 Rev: 1 Issue date: 23-05-2023

Certification Body Address: 9th Floor, 66 Princes Street, London, E1 8HG, United Kingdom
Local Office: Bureau Veritas Certification Denmark A/S, Oldenborggade 25-31, 7000 Fredericia

Further clarifications regarding the scope and validity of this certificate, and the applicability of the management system requirements, please call: (+45) 77 31 1 000.
ISO 9001:2015

Scope of certification

<table>
<thead>
<tr>
<th>Site Name/Location</th>
<th>Site Address</th>
<th>Site Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kassow Robots ApS (Head Office)</td>
<td>Kajakvej 2, 2770 Kastrup, Denmark</td>
<td>Development, production, sales, and support services of robots, elements, components, and systems of robotics.</td>
</tr>
<tr>
<td>KTH Soft s.r.o</td>
<td>Drtinova 557/16, Semikov, 15000 Prague 5, Czech Republic</td>
<td>Software development and support services.</td>
</tr>
<tr>
<td>Kassow Robots GmbH</td>
<td>Lise-Münün Straße 2, 89081 Ulm, Germany</td>
<td>Sales and support services.</td>
</tr>
</tbody>
</table>
2 Allgemeines

Diese Bedienungsanleitung muss sorgfältig gelesen und verstanden werden, bevor der Roboter in Betrieb genommen wird!

Dieses Warnsymbol zeigt an, dass besondere Vorsichtsmaßnahmen getroffen werden müssen.

Wenn die Sicherheitsvorkehrungen nicht beachtet werden, kann das zu gefährlichen Situationen und zu Personen- oder Sachschäden führen.

Dieses Symbol zeigt an, dass die folgende Information wichtig ist.

2.1 Einführung

Glückwunsch! Sie haben einen unserer kollaborativen Roboterarme gekauft. In dieser Bedienungsanleitung finden Sie alle grundlegenden Sicherheits- und Wartungsinformationen sowie grundlegende Anleitungen zur Bedienung der Hardware, um sicherzustellen, dass Sie optimale Erfahrungen mit unserem Produkt machen.

Ausführlichere Anweisungen zur Bedienung der Kassow Robot Software finden Sie in unserem separaten Software-Handbuch.

Wenn Sie der Meinung sind, dass Informationen fehlen, oder wenn Sie spezifischere Fragen haben, kontaktieren Sie uns bitte direkt und wir werden uns gerne um Ihre Fragen kümmern.

Diese Anleitung muss vor der Inbetriebnahme des Roboters gelesen werden.

2.2 Funktionsbeschreibung

Der Industrieroboterarm ist ein Robotersystem für die Fertigung. Er ist automatisiert, programmierbar und imstande, sich in bis zu sieben Achsen zu bewegen.

2.3 Technische Begriffe und Abkürzungen

Die technischen Begriffe und Abkürzungen, die in dieser Bedienungsanleitung verwendet werden, sind nachfolgend beschrieben.

<table>
<thead>
<tr>
<th>Wort</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>Die Robotersteuerung (Robot Controller) ist die Hauptsteuerungseinheit, die für jeden Kassow-Roboter manipulator erforderlich ist.</td>
</tr>
<tr>
<td>TP</td>
<td>Das Programmierhandgerät (Teach Pendant) ist die tragbare Programmier- und manuelle Plattform, mit der sich alle erforderlichen Benutzerschnittstellen und Sicherheitskontrollen bedienen lassen.</td>
</tr>
<tr>
<td>TPUI</td>
<td>Teach Pendant User Interface ist die Software-Benutzerumgebung, die auf der manuellen Plattform (TP) läuft. Diese bietet alle notwendigen Softwaretools für die Roboterprogrammierung, das Teaching und den Zugriff auf Erweiterungsmodule.</td>
</tr>
<tr>
<td>Eingewiesene Person</td>
<td>Eine Person, welche die benötigte Schulung erhalten hat, um die Programmierung des Roboters in einer sicheren und verantwortungsvollen Weise vorzunehmen.</td>
</tr>
<tr>
<td>Bediener</td>
<td>Eine Person, welche die notwendige Schulung erhalten hat, um die tägliche Bedienung und Reinigung durchzuführen.</td>
</tr>
<tr>
<td>Integrator</td>
<td>Die Person, die die teilweise fertiggestellte Maschine so zusammensetzt, dass sie als Ganzes funktioniert. Der Integrator ist auch dafür verantwortlich, das Produkt zu analysieren, um potenzielle Gesundheits- und Sicherheitsrisiken zu ermitteln und geeignete Lösungen zur Minimierung dieser Risiken anzubieten. Daher ist die Anwendung nach der Analyse und Umsetzung möglicher Lösungen durch den Integrator sicher und risikofrei. Der Integrator ist auch für die Risikobewertung des Produkts verantwortlich.</td>
</tr>
</tbody>
</table>
3 Sicherheit

3.1 Einführung

In diesem Handbuch wird nicht detailliert beschrieben, wie man eine komplette Roboteranwendung konstruiert und installiert, und es wird auch nicht auf die Besonderheiten zusätzlicher Geräte in der vorgesehenen Umgebung eingegangen, die die Sicherheit beeinflussen könnten.

Wie in den Definitionen erwähnt, sollten die spezifischen Sicherheitsanforderungen vom Integrator behandelt werden, dessen Aufgabe unter anderem folgende Punkte umfasst:

- Durchführung einer Risikobewertung für das gesamte System und die Umgebung, in der es betrieben werden soll.
- Sicherstellung der korrekten Installation des Roboters.
- Sicherstellung, dass alle angemessenen Sicherheitsmaßnahmen in der Software getroffen wurden.
- Sicherstellung, dass Verfahren vorhanden sind, die verhindern, dass die Benutzer die vorgeschriebenen Sicherheitsmaßnahmen ändern.
- Mitteilung der erforderlichen Sicherheitsmaßnahmen an den Benutzer.

Bei der Verwendung des Geräts sind folgende Punkte zu beachten:

- Die Anleitungen in diesem Handbuch müssen strikt eingehalten werden.
- Vor jeder Bedienung ist immer sicherzustellen, das die Einheit gemäß der Beschreibung in dieser Anleitung gewartet wurde.
- Alle Sicherheitsvorkehrungen, die in der Bedienungsanleitung aufgeführt sind, müssen damit übereinstimmen.
- Die Einheit darf nur innerhalb der Spezifikationen dieser Anleitung betrieben werden. In Kapitel 4 sind detaillierte Spezifikationstabellen für jeden Roboter aufgeführt.

3.2 Vorsichtsmaßnahmen

Bei spezifischen Tätigkeiten ist die Verwendung von persönlicher Schutzausrüstung erforderlich. Diese Anforderung muss von allen Berufsgruppen eingehalten werden.

- Während der Reinigung und Wartung muss der Roboterarm in den Sicherheitsmodus versetzt werden.
- Der Integrator muss einen Stromkreisunterbrecher und eine Beschreibung zur Verfügung stellen, wie weitere Anschlüsse, z. B. die Luftzuführung, unterbrochen werden können.

3.3 Verwendungszweck

Der Roboterarm KR (810/1205/1410/1805/1018) ist nur für den Einbau in oder zur Montage an anderen Maschinen oder anderen, aus Teilen bestehenden Maschinen oder Geräten vorgesehen, um eine Maschine zu vervollständigen, die der Norm 2006/42/EG entspricht.
Unzweckmäßige Verwendung der Einheit kann zu Verletzungen und Sachschäden sowie zum Verlust der Garantie führen.

3.4 Unsachgemässe Verwendung

Jegliche Nutzung oder Anwendung, die vom sachgemäßen Gebrauch abweicht, wird als unsachgemäße Verwendung angesehen.

Unzweckmäßige Verwendung der Einheit kann zu Verletzungen und Sachschäden sowie zum Verlust der Garantie führen.

Beispiele für eine unsachgemäße Verwendung des Geräts sind unter anderem:

- Verwendung der Einheit zur Verarbeitung entzündlicher Materialien, die eine Explosion verursachen können.
- Verwendung der Einheit in feuchten Umgebungen (relative Luftfeuchtigkeit mind. 35 %, höchstens 85 %).
- Verwendung der Einheit für Lebensmittel.
- Verwendung der Einheit bei Temperaturen über 45 °C oder unter 0 °C.
- Installation oder Betrieb der Einheit in explosions- und/oder feuergefährdeten Bereichen.

3.5 Betriebspersonal

Der Eigentümer muss sicherstellen, dass dem Personal Schulungen und Kenntnisse vermittelt werden, damit sie mit der Einheit vertraut und in der Lage sind, sich vor Gefahren am Arbeitsplatz zu schützen.

- Nur Personen, dessen Tätigkeit dies erfordert, dürfen auf die Einheit zugreifen. Es sind angemessene Sicherheitsvorkehrungen zu treffen, wenn Mitarbeiter Zutritt zur Einheit oder Anlage benötigen.
- Tragen Sie immer eine ordnungsgemässe persönliche Schutzausrüstung gemäß dieser Anleitung oder den Angaben in den Datenblättern.
- Keine locker sitzende Kleidung, langes Haar muss hochgesteckt werden.
- Bedienen Sie die Einheit niemals, wenn Sie unter dem Einfluss von Alkohol und/oder Medikamenten stehen, die Ihr Urteilsvermögen beeinträchtigen könnten.
- Kassow Robots ApS empfiehlt, den Bereich rund um die Einheit herum immer sauber zu halten.
- Tragen Sie immer einen Sicherheitsgurt, wenn Sie in der Höhe arbeiten und keine Plattform
vorhanden ist.

- Arbeiten Sie niemals allein.
- Wenn Eingriffe über Fußbodenhöhe vorgenommen werden, muss der Eigentümer vorübergehend eine Plattform errichten.

3.6 Transport und Handhabung

Der Roboterarm, die Steuerung, das Programmierhandgerät, Kabel und Dokumente werden von Kassow Robots in zwei angemessenen Kisten geliefert und können von einer Person sicher gehandhabt werden.

- Die Einheit darf keinerlei Beschädigungen, Stößen oder Ähnlichem ausgesetzt werden, da dies die Leistung während des Betriebs beeinträchtigen kann.
- Die Einheit und dessen Komponenten sind schwer. Nutzen Sie die geeigneten Hebetechniken und tragen Sie geeignete Schutzausrüstung, wie in dieser Anleitung beschrieben. Wenn das Gerät nicht ordnungsgemäß angehoben und abgestützt wird, kann dies zu schweren Körperverletzungen und/oder Geräteschäden führen. Es wird nicht empfohlen, schwere Teile per Hand zu bewegen. Es müssen ergonomiche Risiken in Betracht gezogen werden, wenn schwere Teile per Hand bewegt werden.
- Nutzen Sie geeignetes Hebezeug und tragen Sie beim Anschlagen und Abhängen Arbeitshandschuhe.
- Stellen Sie sicher, dass das Hebezeug in ordnungsgemäßen Zustand ist.
- Es ist verboten, zu irgendeinem Zeitpunkt unter der angehobenen Last zu stehen.
- Stellen Sie sicher, dass die Hebegrüße vor scharfen Ecken geschützt sind.

3.7 Sicherheit während der Inbetriebnahme und Installation

Bei der Inbetriebnahme und Installation der Einheit sind folgende Punkte zu beachten:

1. Das Programmierhandgerät darf nicht entfernt oder angeschlossen werden, während das System eingeschaltet ist.
3. Die Einheit muss so aufgestellt werden, dass ein mechanisches Anheben möglich ist.
4. Die Einheit darf nicht in explosions- und/oder feuergefährlichen Bereichen aufgestellt und bedient werden.
5. Die Einheit darf keine explosiven Materialien verarbeiten.
6. Die Einheit muss in einer industriellen, staubfreien Umgebung im Innenbereich aufgestellt und betrieben werden.
7. Die Einheit muss so aufgestellt werden, dass eine Wartung und Reparatur möglich ist.
9. Es ist verboten, die Einheit zu betreiben, wenn sich nicht sämtliche Schutzvorrichtungen an Ihrem Platz befinden. Das schließt auch die Ein- und Auslassanlagen mit ein, welche den Zugriff zu den
gefährlichen Teilen schützen.

10. Schnittstellen der Einheit müssen gemäß dieser Anleitung angeschlossen werden.

11. Stellen Sie sicher, dass sich keine Fremdkörper in der Einheit befinden (z. B. Schrauben, Werkzeuge etc.) und überprüfen Sie, ob alle Schutzvorrichtungen angebracht und befestigt sind.

12. Die Einheit ist so entworfen und konstruiert, dass Vibrationen und Geräusche, die von der Einheit ausgehen, auf ein möglichst niedriges Niveau reduziert sind. Das bedeutet, dass die Einheit so, wie in dieser Anleitung beschrieben, installiert werden muss.

15. Kontrollieren Sie die Vorrichtung zur Unterbrechung der Stromversorgung und stellen Sie sicher, dass die Stromzufuhr immer unterbrochen ist, bevor mit irgendwelchen Elektroarbeiten begonnen wird.

17. Stellen Sie sicher, dass ausreichend Platz um die Einheit herum vorhanden ist. Dies ermöglicht Belüftung, Inspektion, Service, Wartung und Reinigung etc.

18. Der Monteur und der Benutzer der Einheit müssen sicherstellen, dass diese richtig ausgerichtet ist. Überprüfen Sie die Ausrichtung bei auf Rahmen montierten Einheiten, bevor Sie die Einheit bedienen. Nichtbeachtung kann zu Schäden an der Ausrüstung oder zu einer schlechten Leistung führen.

Vergewissern Sie sich, dass das System ausgeschaltet ist, wenn Sie das Programmierhandgerät an die Robotersteuerung anschließen oder von ihr abziehen.

3.8 Lagerung

Die Lieferkisten können auch zur Lagerung verwendet werden, falls erforderlich.

Jegliche Entsorgung und Recycling muss in einer umweltfreundlichen Weise gemäß den örtlichen Gesetzen und Vorschriften geschehen.

3.9 Sonstiges
Erdbeben

Nach sämtlichen Erdbeben, die zu Material- und strukturellen Schäden an der Maschine führen könnten, muss der Schaden an der Maschine gemäß den nachfolgenden Punkten eingeschätzt werden:

Erdbeben mit niedriger Intensität

Der Ort, an dem die Maschine aufgestellt ist, hat keinen großen Schaden erlitten (zum Beispiel wurde das Gebäude nicht beschädigt). In diesem Fall halten Sie die Maschine an und führen Sie eine Sichtüberprüfung aller Komponenten der Maschine durch, um den Schaden einzuschätzen. Starten Sie die Maschine nach der Inspektion erneut, wenn diese zufriedenstellend ausgefallen ist.

Erdbeben mit moderater Intensität

Sowohl das Gebäude als auch die Maschine haben einige Schäden erlitten: Gegenstände sind auf die Maschine gefallen, Schäden an der Konstruktion, Schäden in der peripheren Ausrüstung etc. In diesem Fall:

- Halten Sie die Maschine an, falls sie noch in Betrieb sein sollte (für den Fall, dass die Stromversorgung oder irgendeine andere Energiequelle nicht ausgefallen ist), vorausgesetzt, dies bedeutet nicht eine zusätzliche Gefahr.
- Führen Sie eine umfassende Inspektion an der Maschine durch und reparieren Sie die beschädigten Teile.
- Wenn die Maschinenstruktur einen schweren Schaden, wie Bruch, Verziehen oder Deformationen am Gehäuse, erlitten hat und dieser schwerwiegend ist, muss die Maschine außer Betrieb genommen werden.

Erdbeben von hoher Intensität

Schwerwiegende Materialschäden sind aufgetreten, wie ein Einstürzen der Maschine. In diesem Fall inspizieren Sie die Ausrüstung, wenn Sie körperlich dazu in der Lage sind.

Grenzen der Lebensdauer

Die Maschine ist für eine Betriebsdauer von 30.000 Stunden vorgesehen, sofern alle Inspektionen und Wartungen gemäß den empfohlenen Inspektionsintervallen durchgeführt wurden.

4 Sicherheitscheck

Zur Feststellung von Fehlerhäufungen ist ein manueller Funktionstest erforderlich.

Ein solcher Test muss in den folgenden Testintervallen spätestens alle 12 Monate durchgeführt werden.

Nachfolgend finden Sie eine Tabelle mit den Schritten, die vor der ersten Verwendung durchgeführt werden müssen. Bitte überprüfen Sie, ob Sie alle Punkte in dieser Tabelle beachtet haben, bevor Sie den Roboter in Betrieb nehmen.

<table>
<thead>
<tr>
<th>Vor der ersten Verwendung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Roboter muss vor dem ersten Gebrauch inspiziert werden.</td>
</tr>
<tr>
<td>Stellen Sie sicher, dass der Roboter und die Roboterkomponenten intakt sind, wenn Sie den Roboter auspacken.</td>
</tr>
</tbody>
</table>
Der Robotersockel muss ordnungsgemäß auf eine Oberfläche, die für den Zweck geeignet ist, befestigt werden.

Der Roboter muss von unten angehoben werden und kann mühe los von einer Person gehandhabt werden.

Überprüfen Sie die Verbindung zwischen dem Programmierhandgerät (Teach Pendant) und RC. Das Programmierhandgerät startet automatisch nach dem Einschalten der Fernsteuerung und zeigt nach einer Weile die Verbindung in der oberen linken Ecke an.

Abbildung 1: Not-Aus-Taste an der Robotersteuerung (links) und am Programmierhandgerät (rechts).

Prüfung der Sicherheitsschaltkreise

Sichtprüfung, ob die Not-Aus- (E-Stop) und Schutz-Stopp-Tasten (P-Stop) funktionstüchtig sind.

Bevor der Roboterarm gestartet wird, drücken Sie die Not-Aus- und P-Stopp-Taste, um zu überprüfen, dass diese unbeschädigt sind und wie beabsichtigt funktionieren.

Die manuelle Funktionsprüfung der Not-Aus-Taste wird wie folgt durchgeführt:

1. Überprüfen Sie, dass der externe Not-Aus- oder Schutz-Stopp-Stromkreis ordnungsgemäß an den E/A Abschnitt der Steuerung angeschlossen ist.
2. Geben Sie alle Sicherheitsschalter frei und schalten Sie den Hauptschalter ein.
3. Nachdem die RC hochgefahren ist, warten Sie, bis die Wiederaufnahmetaste blau zu blinken.
beginnt (~1 Minute).

4. Drücken Sie die Wiederaufnahmetaste, um den Roboterarm mit Strom zu versorgen.

5. Danach leuchtet die Wiederaufnahmetaste durchgehend blau und die RC löst die Bremslösesequenz aus, wodurch die Gelenkpositionen für jedes der 7 Gelenke in geringem Maße entriegelt und neu eingestellt werden.

6. Wenn die Initialisierung des Roboters fehlschlägt (d. h. wenn er nicht in den grünen Zustand übergeht), wiederholen Sie den Vorgang. Drücken Sie die Not-Aus-Taste und betätigen Sie die Wiederaufnahmetaste. Wenden Sie sich bitte an Ihren Anbieter, wenn die Bremslösesequenz immer wieder ausfällt.

8. Geben Sie die Not-Aus-Taste wieder frei und achten Sie darauf, dass der Roboter in den regulären Zustand zurückkehrt und die LED oder die Auslösetaste blau blinkt.

Die manuelle Funktionsprüfung der Schutz-Stopp-Taste wird wie folgt durchgeführt:

1. Überprüfen Sie die Schutz-Stopp-Tasten eine nach der anderen, indem Sie ein einfaches Programm mit einer Bewegung am Roboter erstellen.

2. Starten Sie das Programm und drücken Sie die Schutz-Stopp-Taste.

3. Achten Sie darauf, dass der Roboter die Bewegung pausiert.

4. Geben Sie die Schutz-Stopp-Taste frei und achten Sie darauf, dass der Roboter die Bewegung fortsetzt, nachdem die grüne Taste oder Fortsetzen am Programmiergerät gedrückt wurde.

Jede Schutz-Stopp-Taste und jede Not-Aus-Taste muss einzeln überprüft werden, einschließlich der externen Stromkreise, die an die Robotersteuerung angeschlossen sind.

Wiederholen Sie die Funktionstests nach jeder Installation oder Neuinstallation eines Roboterwerkzeugs.

Wenn alle Test erfolgreich durchlaufen wurden, ist der Roboter betriebsbereit.

Wenn irgendeiner der Sicherheitstests fehlschlägt, darf der Roboter nicht betrieben werden und muss Ihr Dienstanbieter für die Fehlersuche und Reparatur kontaktiert werden.

4.1 Anweisungen für eine sichere Bedienung

Bevor das Strommodul geöffnet wird, muss der Bediener 5 Sekunden warten, um sicherzustellen, dass der Roboter nicht weiter mit Strom versorgt wird.

- Nur eine eingewiesene Person darf auf das Strommodul zugreifen. Eine eingewiesene Person ist eine Person, die hinreichend informiert oder von einem Elektrofachmann beaufsichtigt wird, damit Risiken erkannt werden können und jegliche Gefahren durch Stromschlag vermieden werden (z. B.
Wartungspersonal). Siehe Abschnitt Definitionen.

- Der Roboter erzeugt ein Geräusch mit einem Pegel von <70 dB(A).
- Wenn der Roboter eine interne Überlastung festgestellt hat, schaltet er die Schutz-Stopp-Funktion ein.

4.2 Sicherheitsfunktionen

Die Sicherheitsfunktionen prüfen externe und interne Signale des gesamten Systems und können bei Bedarf sofort handeln, um den Roboter anzuhalten oder die Stromversorgung zu unterbrechen.

Der Roboter darf nur verwendet und bedient werden, wenn alle Sicherheitsfunktionen vollständig verfügbar und funktionsfähig sind! Fehlerhafte Sicherheitsfunktionen und Schutzvorrichtungen können zu Sicherheitsverlusten und gefährlichen Situationen führen.

Im Falle von fehlerhaften Sicherheitsfunktionen und Schutzvorrichtungen, gehen Sie wie folgt vor:

1. Halten Sie den Roboter sofort an (drücken Sie die Schutz-Stopp-Taste und anschließend das Programm „Terminate“) und drücken Sie die Not-Aus-Taste.
2. Stellen Sie sicher, dass der Roboter nicht wieder eingeschaltet werden kann, indem Sie die Stromversorgung zum Roboter unterbrechen.

In den folgenden Abschnitten finden Sie ausführliche Beschreibungen der am Roboter installierten Sicherheits- und Schutzfunktionen.
4.2.1 Not-Aus-Funktion

Die **Not-Aus-Funktion (E-Stop)** ist eine zusätzliche Sicherheitsfunktion, die dazu dient, eine Gefährdung durch unsachgemäßen Gebrauch des Roboters zu vermeiden. Eine Gefahr kann zu Verletzungen und Schäden am Roboter oder laufenden Arbeiten führen oder sie kann entstehen, weil eine andere Sicherheitsfunktion versagt.

Die **Not-Aus-Tasten** sind sowohl am Programmierhandgerät als auch am Robotergehäuse angebracht (siehe Abbildung 1 in Abschnitt 2.10). Diese Tasten werden verwendet, um eingebaute Sicherheitsmaßnahmen zu aktivieren und den Roboter anzuhalten und so eine potenzielle Gefahrensituation zu vermeiden.

Während die Not-Aus-Tasten eine sofortige Interaktion und Sicherheit für den Bediener bieten, werden die internen Variablen ebenfalls kontinuierlich überwacht, um interne Schäden am System zu vermeiden.

Die Integritätsüberwachungen prüfen die grundlegenden Bedingungen des Systems, einschließlich Temperatur, Spannung oder Ströme. Weitere Sicherheitsüberprüfungen verfolgen die Konsistenz der Sensordaten.

Der Not-Aus muss spätestens alle 12 Monate überprüft werden.

Der Not-Aus ist ein Stopp der Kategorie 1, gemäß der IEC60204-1

Die Notfunktion ist bei allen Bedienungsmodi des Roboters unverändert.

<table>
<thead>
<tr>
<th>Komponenten die in der Sicherheitsfunktion eingeschlossen sind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingabeteil</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Die **Not-Aus-Schaltung auf der E/A-Platine** – Programmierhandgerät – Robotersteuerung

Die **Not-Aus-Funktion wird durch Drücken einer der Not-Aus-Tasten oder durch Aktivierung des externen Not-Aus-Stromkreises**

Die **E/A-Platine**

Die E/Platine überwacht die Sicherheitsfunktion.

Die **Nutzungsduer der Steuerung beträgt 30.000 Stunden.**

Die **Sicherheitsfunktion, d. h. der Roboter, darf nicht über 30.000 Stunden hinaus verwendet**

Stromkreise

Unterbricht die Stromzufuhr zu den beweglichen Teilen.

Die Höchstanzahl der Kopplungen pro Jahr beträgt 52.

Die Nutzungsduer von Komponenten (T10d-Wert) wird auf Grundlage der

Kassow Robots ApS
Kajakvej 2
DK-2770 Kastrup

info@kassowrobots.com
kassowrobots.com
aktiviert.

Die Not-Aus-Tasten sind an folgenden Stellen am Roboter angebracht:

- Programmierhandgerät
- Schaltschrank der Robotersteuerung

(siehe Abbildung 1)

Die Komponente ist fehlerfrei und gilt als immer funktionierend, wenn die Not-Aus-Taste aktiviert wurde.

Anzeigen und Alarme

Beim Aktivieren des Not-Aus-Schalters wird der Status auf dem Programmierhandgerät angezeigt: „**externer Not-Aus-Schalter aktiviert**“

Betriebsbedingungen

Die Not-Aus-Funktion ist bei allen Bedienungsmodi des Roboters unverändert.

Wartung und Überprüfung

Die **Not-Aus**-Funktion muss vor der Inbetriebnahme nach jeder Installation oder Wiederinstallation des Roboters aktiviert und getestet werden.

Die **Not-Aus**-Funktion muss mindestens visuell überprüft und spätestens alle 12 Monate aktiviert werden.

Die Sicherheitsfunktionen entsprechen der **EN ISO 13849-1:2015**.

Die folgenden sicherheitsorientierten Funktionen sind vorkonfiguriert und können über die Sicherheitsoberfläche der Robotersteuerung in das System integriert werden.

Bediener-Sicherheit (= Anschluss für die Überwachung der physischen Sicherheitsvorrichtungen)

- Externe Not-Aus (Elektromechanischer Schalter)
4.2.2 Schutz-Stopp

Der Schutz-Stopp (P-Stop) kann vom Bediener interaktiv genutzt werden, um das Betriebsprogramm zu pausieren oder fortzusetzen.

Intern kann das System zudem den Schutz-Stopp durch die Anwendung von Energieschutzvorrichtungen am System auslösen, wenn bestimmte Bedingungen erfüllt sind, und den Benutzer warnen. Abhängig von der Art der abweichenden Werte kann das Programm seinen normalen Betrieb fortsetzen, wenn der Schutz-Stopp ausgelöst wird.

Es bestehen zwei Schutz-Stopp-Arten:

- **Schutz-Stopp Pfad:**
 Der Roboterarm hält so schnell wie möglich an, ohne von seiner Bahn abzuweichen. Das Programm kann durch Freigabe der Schutz-Stopp-Taste und anschließendes Drücken der Wiedergabetaste auf dem Bildschirm des Programmierhandgeräts oder der Pause-Wiedergabe-Tasten fortgesetzt werden.

- **Schutz-Stopp Schnell:**
 Jedes Robotergerätenutzt das volle Stoppmoment, d. h. der Roboter wird weiterhin mit Strom versorgt, wodurch die Leistungsversorgung jedoch durch ein Sicherheitsstromsystem begrenzt wird. Das Programm kann nicht fortgesetzt werden, sondern muss durch Drücken der Entriegelung auf dem Bildschirm des Programmierhandgeräts und anschließendes Drücken der Wiedergabetaste auf dem Bildschirm des Programmiergeräts oder der Pause-Wiedergabe-Tasten erneut gestartet werden.

Der Schutz-Stopp ist Stopp-Kategorie 2.

Der Schutz-Stopp muss spätestens alle 12 Monate überprüft werden.

Der Schutz-Stopp ist ein Stopp der Kategorie 2, gemäß der IEC60204-1

Anzeigen und Alarme

Wenn ein Schutz-Stopp aktiviert wurde, erscheint folgende Statusmeldung auf dem Programmierhandgerät:

„*Externer Schutz-Stopp aktiviert*“

Wartung und Überprüfung

Die folgenden sicherheitsorientierten Funktionen sind vorkonfiguriert und können über die Sicherheitsoberfläche der Robotersteuerung in das System integriert werden.

Kassow Robots ApS
Kajakvej 2
DK-2770 Kastrup
info@kassowrobots.com
kassowrobots.com
5 Produktbeschreibung

5.1 Roboterarm-Konstruktion

Der Roboter besteht aus dem Roboterarm [robot arm], einem Schalterschrank [controller cabinet], einem Programmierhandgerät [teach pendant] und den Anschlusskabeln [connection cables].
verschiedene elektrische Anschlüsse bietet.

- Die Relais auf dem Stromversorgungsbus des Roboterarms.
- Anschlüsse für die Verbindung mit einer Steckdose, einem Roboterarm und einem Programmierhandgerät.
- Eine Not-Aus-Taste.
- Eine Schutz-Stopp-Taste.
- Eine Umschalttaste für Wiedergabe/Pause/Fortsetzen.

4. Die Kabel, welche die Systemkomponenten verbindet sind folgende:

- Ein Kabel mit zwei Anschlüssen an beiden Enden zwischen dem Roboterarm und dem Schaltschrank.
- Ein Kabel ist am Programmierhandgerät befestigt und am anderen Ende mit einem Stecker versehen, um das Programmierhandgerät mit dem Schaltschrank zu verbinden.

5.2 Bedienung des Roboters

Betriebsmodi

Es ist nur der Einsatz geeigneter und standardisierter Werkzeuge vorgesehen. Der Roboter ist für den Gebrauch in einer industriellen Umgebung im Innenbereich gedacht.

Der Roboter ist nur für den professionellen Einsatz bestimmt und darf nur von Personen verwendet werden, die entsprechende Kenntnisse und Erfahrungen mit kollaborativen Robotern verfügen. Diese Dokumentation richtet sich an eingewiesene Personen mit den folgenden Fähigkeiten:

- Kenntnisse im Maschinenbau
- Kenntnisse über elektrische und elektronische Systeme
- Kenntnisse über das Roboter-Steuerungssystem

Der Roboter:

- Darf nur unter den Betriebsbedingungen, die in dieser Bedienungsanleitung angegeben sind, betrieben werden.
• Ist dafür vorgesehen, dass er von einem fachkundigen/qualifizierten Bediener programmiert und gewartet wird, der die Anweisungen in dieser Bedienungsanleitung befolgt.

• Ist nur als kollaborativer Roboter gedacht. Jede andere Verwendung über diese Betriebsbedingungen hinaus wird als nicht gemäß dieser Bedienungsanleitung angesehen und der Hersteller kann in keiner Form Haftung für Schäden oder spätere Verluste übernehmen.

5.3 Nutzungseinschränkungen

Der Integrator muss die Nutzungseinschränkungen gemäß der spezifischen Aufgabe, zu welcher der Roboterarm zu verwenden ist, definieren. Besondere Aufmerksamkeit muss angezeigt werden, gemäß EN ISO 12100 Pkt. 5.3.2

5.4 Platzeinschränkungen

Der Roboter muss auf einer festen Oberfläche aufgestellt werden, die bis zu 1000 Nm standhalten kann. Der Roboter darf nicht in einer feuchten Umgebung betrieben werden.
6 Roboterarm-Spezifikationen

Im folgenden Abschnitt werden die Spezifikationen für jeden Roboter beschrieben.

6.1 Robotermodell KR810

Abbildung 3: Grafik des Robotermodells KR810
<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reichweite [mm]</td>
<td>850</td>
</tr>
<tr>
<td>Betriebstemperaturbereich [°C]</td>
<td>0-45</td>
</tr>
<tr>
<td>Betriebsfeuchtigkeit [%RH]</td>
<td>30-85 keine Kondensation</td>
</tr>
<tr>
<td>Betriebshöhe [m]</td>
<td>3000</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td>24</td>
</tr>
<tr>
<td>Wechselstromanschluss</td>
<td>1 Phase CEE</td>
</tr>
<tr>
<td>Gewöhnlicher Stromverbrauch (bei max. Belastung) [W]</td>
<td>400-600 W</td>
</tr>
<tr>
<td>Versorgungsspannung [VAC]</td>
<td>100-120 und 200-240 (50/60 Hz)</td>
</tr>
<tr>
<td>Versorgungsstrom (Vorsicherung erforderlich) [A]</td>
<td>16</td>
</tr>
<tr>
<td>IO-Stromversorgung [VDC]</td>
<td>24</td>
</tr>
<tr>
<td>Maximale Spannungsgrenzen am digitalen Eingang [V DC]</td>
<td>Max 30 V</td>
</tr>
<tr>
<td>Max. Gelenkgeschwindigkeit [°/s]</td>
<td>225</td>
</tr>
<tr>
<td>Max. statische Kraft auf die Werkzeugflanschmitte (Nutzlast) [kg]</td>
<td>10</td>
</tr>
<tr>
<td>Max. statischer Drehmoment auf die Werkzeugflanschmitte [Nm]</td>
<td>25</td>
</tr>
<tr>
<td>Erforderliche Ebenheit der Grundplatte [mm/m]</td>
<td>0,5</td>
</tr>
<tr>
<td>Geräuschpegel [dB]</td>
<td>Unter 70 dB (A)</td>
</tr>
<tr>
<td>Eindringsschutz</td>
<td>IP54</td>
</tr>
<tr>
<td>Gelenkbereiche [°]</td>
<td>Gelenk 1,3,5,6,7 +/- 360</td>
</tr>
<tr>
<td></td>
<td>Gelenk 2,4 -70/+180</td>
</tr>
<tr>
<td>Kabellängen [m]</td>
<td>5 m von Steuerung zum Roboterarm</td>
</tr>
<tr>
<td>Fußabdruck [mm]</td>
<td>130 x 130</td>
</tr>
</tbody>
</table>
6.2 Robotermodell KR1018

Abbildung 7: Grafik des Robotermodells KR1018
<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reichweite ([\text{mm}])</td>
<td>1000</td>
</tr>
<tr>
<td>Betriebstemperaturbereich ([\text{°C}])</td>
<td>0-45</td>
</tr>
<tr>
<td>Betriebsfeuchtigkeit ([%\text{RH}])</td>
<td>30-85 keine Kondensation</td>
</tr>
<tr>
<td>Betriebshöhe ([\text{m}])</td>
<td>3000</td>
</tr>
<tr>
<td>Gewicht ([\text{kg}])</td>
<td>34</td>
</tr>
<tr>
<td>Wechselstromanschluss</td>
<td>1 Phase CEE</td>
</tr>
<tr>
<td>Gewöhnlicher Stromverbrauch (bei max. Belastung) ([\text{W}])</td>
<td>400-1200 W</td>
</tr>
<tr>
<td>Versorgungsspannung ([\text{VAC}])</td>
<td>100-120 und 200-240 (50/60 Hz)</td>
</tr>
<tr>
<td>Versorgungsstrom (Vorsicherung erforderlich) ([\text{A}])</td>
<td>16</td>
</tr>
<tr>
<td>IO-Stromversorgung ([\text{VDC}])</td>
<td>24</td>
</tr>
<tr>
<td>Maximale Spannungsgrenzen am digitalen Eingang ([\text{VDC}])</td>
<td>Max 30 V</td>
</tr>
<tr>
<td>Max. Gelenkgeschwindigkeit ([\text{°/s}])</td>
<td>163/225</td>
</tr>
<tr>
<td>Max. statische Kraft auf die Werkzeugflanschmitte (Nutzlast) ([\text{kg}])</td>
<td>18</td>
</tr>
<tr>
<td>Max. statischer Drehmoment auf die Werkzeugflanschmitte ([\text{Nm}])</td>
<td>25</td>
</tr>
<tr>
<td>Erforderliche Ebenheit der Grundplatte ([\text{mm/m}])</td>
<td>0,5</td>
</tr>
<tr>
<td>Geräuschpegel ([\text{dB}])</td>
<td>Unter 70 dB (A)</td>
</tr>
<tr>
<td>Eindringsschutz</td>
<td>IP54</td>
</tr>
<tr>
<td>Gelenkbereiche ([\text{°}])</td>
<td>Gelenk 1,3,5,6,7 +/- 360</td>
</tr>
<tr>
<td></td>
<td>Gelenk 2,4 -70/+180</td>
</tr>
<tr>
<td>Kabellängen ([\text{m}])</td>
<td>5 m von Steuerung zum Roboterarm</td>
</tr>
<tr>
<td></td>
<td>4,5 m von Steuerung zum Programmierhandgerät</td>
</tr>
<tr>
<td>Fußabdruck ([\text{mm}])</td>
<td>160 x 160</td>
</tr>
</tbody>
</table>
6.3 Robotermodell KR1205

Abbildung 4: Grafik des Robotermodells KR1205
<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reichweite [mm]</td>
<td>1200</td>
</tr>
<tr>
<td>Betriebstemperaturbereich [°C]</td>
<td>0-45</td>
</tr>
<tr>
<td>Betriebsfeuchtigkeit [%RH]</td>
<td>30-85 keine Kondensation</td>
</tr>
<tr>
<td>Betriebshöhe [m]</td>
<td>3000</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td>25</td>
</tr>
<tr>
<td>Wechselstromanschluss</td>
<td>1 Phase CEE</td>
</tr>
<tr>
<td>Gewöhnlicher Stromverbrauch (bei max. Belastung) [W]</td>
<td>400-600 W</td>
</tr>
<tr>
<td>Versorgungsspannung [VAC]</td>
<td>100-120 und 200-240 (50/60 Hz)</td>
</tr>
<tr>
<td>Versorgungsstrom (Vorsicherung erforderlich) [A]</td>
<td>16</td>
</tr>
<tr>
<td>IO-Stromversorgung [VDC]</td>
<td>24</td>
</tr>
<tr>
<td>Maximale Spannungsgrenzen am digitalen Eingang [V DC]</td>
<td>Max 30 V</td>
</tr>
<tr>
<td>Max. Gelenkgeschwindigkeit [°/s]</td>
<td>225</td>
</tr>
<tr>
<td>Max. statische Kraft auf die Werkzeugflanschmitte (Nutzlast) [kg]</td>
<td>5</td>
</tr>
<tr>
<td>Max. statischer Drehmoment auf die Werkzeugflanschmitte [Nm]</td>
<td>25</td>
</tr>
<tr>
<td>Erforderliche Ebenheit der Grundplatte [mm/m]</td>
<td>0,5</td>
</tr>
<tr>
<td>Geräuschpegel [dB]</td>
<td>Unter 70 dB (A)</td>
</tr>
<tr>
<td>Eindringsschutz</td>
<td>IP54</td>
</tr>
<tr>
<td>Gelenkbereiche [°]</td>
<td>Gelenk 1,3,5,6,7 +/- 360</td>
</tr>
<tr>
<td></td>
<td>Gelenk 2,4-70/+180</td>
</tr>
<tr>
<td>Kabellängen [m]</td>
<td>5 m von Steuerung zum Roboterarm</td>
</tr>
<tr>
<td></td>
<td>4,5 m von Steuerung zum Programmierhandgerät</td>
</tr>
<tr>
<td>Fußabdruck [mm]</td>
<td>130 x 130</td>
</tr>
</tbody>
</table>
6.4 Robotermodell KR 1410

Abbildung 5: Grafik des Robotermodells KR1410
<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reichweite [mm]</td>
<td>1400</td>
</tr>
<tr>
<td>Betriebstemperaturbereich [°C]</td>
<td>0-45</td>
</tr>
<tr>
<td>Betriebsfeuchtigkeit [%RH]</td>
<td>30-85 keine Kondensation</td>
</tr>
<tr>
<td>Betriebshöhe [m]</td>
<td>3000</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td>35</td>
</tr>
<tr>
<td>Wechselstromanschluss</td>
<td>1 Phase CEE</td>
</tr>
<tr>
<td>Gewöhnlicher Stromverbrauch (bei max. Belastung) [W]</td>
<td>400-1200 W</td>
</tr>
<tr>
<td>Versorgungsspannung [VAC]</td>
<td>100-120 und 200-240 (50/60 Hz)</td>
</tr>
<tr>
<td>Versorgungsstrom (Vorsicherung erforderlich) [A]</td>
<td>16</td>
</tr>
<tr>
<td>IO-Stromversorgung [VDC]</td>
<td>24</td>
</tr>
<tr>
<td>Maximale Spannungsgrenzen am digitalen Eingang [V DC]</td>
<td>Max 30 V</td>
</tr>
<tr>
<td>Max. Gelenkgeschwindigkeit [°/s]</td>
<td>163/225</td>
</tr>
<tr>
<td>Max. statische Kraft auf die Werkzeugflanschmitte (Nutzlast) [kg]</td>
<td>10</td>
</tr>
<tr>
<td>Max. statischer Drehmoment auf die Werkzeugflanschmitte [Nm]</td>
<td>25</td>
</tr>
<tr>
<td>Erforderliche Ebenheit der Grundplatte [mm/m]</td>
<td>0,5</td>
</tr>
<tr>
<td>Geräuschpegel [dB]</td>
<td>Unter 70 dB (A)</td>
</tr>
<tr>
<td>Eindringsschutz</td>
<td>IP54</td>
</tr>
<tr>
<td>Gelenkbereiche [°]</td>
<td>Gelenk 1,3,5,6,7 +/- 360</td>
</tr>
<tr>
<td></td>
<td>Gelenk 2,4 -70/+180</td>
</tr>
<tr>
<td>Kabellängen [m]</td>
<td>5 m von Steuerung zum Roboterarm</td>
</tr>
<tr>
<td></td>
<td>4,5 m von Steuerung zum</td>
</tr>
<tr>
<td></td>
<td>Programmierhandgerät</td>
</tr>
<tr>
<td>Fußabdruck [mm]</td>
<td>160 x 160</td>
</tr>
</tbody>
</table>
6.5 Robotermodell KR1805

Abbildung 6: Grafik des Robotermodells KR1805
<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reichweite [mm]</td>
<td>1800</td>
</tr>
<tr>
<td>Betriebstemperaturbereich [°C]</td>
<td>0-45</td>
</tr>
<tr>
<td>Betriebsfeuchtigkeit [%RH]</td>
<td>30-85 keine Kondensation</td>
</tr>
<tr>
<td>Betriebshöhe [m]</td>
<td>3000</td>
</tr>
<tr>
<td>Gewicht [kg]</td>
<td>38</td>
</tr>
<tr>
<td>Wechselstromanschluss</td>
<td>1 Phase CEE</td>
</tr>
<tr>
<td>Gewöhnlicher Stromverbrauch (bei max. Belastung) [W]</td>
<td>400-1200 W</td>
</tr>
<tr>
<td>Versorgungsspannung [VAC]</td>
<td>100-120 und 200-240 (50/60 Hz)</td>
</tr>
<tr>
<td>Versorgungsstrom (Vorsicherung erforderlich) [A]</td>
<td>16</td>
</tr>
<tr>
<td>IO-Stromversorgung [VDC]</td>
<td>24</td>
</tr>
<tr>
<td>Maximale Spannungsgrenzen am digitalen Eingang [V DC]</td>
<td>Max 30 V</td>
</tr>
<tr>
<td>Max. Gelenkgeschwindigkeit [°/s]</td>
<td>163/225</td>
</tr>
<tr>
<td>Max. statische Kraft auf die Werkzeugflanschmitte (Nutzlast) [kg]</td>
<td>5</td>
</tr>
<tr>
<td>Max. statischer Drehmoment auf die Werkzeugflanschmitte [Nm]</td>
<td>25</td>
</tr>
<tr>
<td>Erforderliche Ebenheit der Grundplatte [mm/m]</td>
<td>0,5</td>
</tr>
<tr>
<td>Geräuschpegel [dB]</td>
<td>Unter 70 dB (A)</td>
</tr>
<tr>
<td>Eindringsschutz</td>
<td>IP54</td>
</tr>
<tr>
<td>Gelenkbereiche [°]</td>
<td>Gelenk 1,3,5,6,7 +/- 360</td>
</tr>
<tr>
<td></td>
<td>Gelenk 2,4 -70/+180</td>
</tr>
<tr>
<td>Kabellängen [m]</td>
<td>5 m von Steuerung zum Roboterarm</td>
</tr>
<tr>
<td></td>
<td>4,5 m von Steuerung zum Programmierhandgerät</td>
</tr>
<tr>
<td>Fußabdruck [mm]</td>
<td>160 x 160</td>
</tr>
</tbody>
</table>
7 Nutzlastdiagramm

Als Faustregel gilt, dass der Schwerpunkt der Nutzlast nicht mehr als die Nennreichweite des Roboters plus 100 mm von Achse eins und Achse zwei und niemals mehr als die Hälfte der Nennreichweite plus 100 mm von Achse drei und vier beim KR810, 150 mm beim KR1018 und KR1205 und 250 mm beim KR1410 und KR1805 entfernt sein darf.

Abbildung 8: Nutzlastdiagramm für alle Robotertypen

7.1 Bremsweg

Konservative Schätzungen der Bremszeit und des Bremsweges werden getätigt, indem zunächst ermittelt wird, wie schnell sich die langsамsten Gelenke verlangsamen können. Dies hängt von der Nutzlast, der Richtung, in welche sich die Nutzlast relativ zur Schwerkraft bewegt, und dem Abstand zwischen der Last oder TFC und der Gelenkachse 1 oder 2 ab, je nachdem, welcher Abstand am längsten ist.

Die Werte sind in der nachfolgenden Tabelle angegeben.

Die Bremszeit kann jetzt konservativ anhand der eingestellten Geschwindigkeit im Roboterprogramm eingeschätzt werden. Wenn die eingestellte Geschwindigkeit eine Gelenkgeschwindigkeit ist, wird genau dieser Wert verwendet. Wenn es sich bei der eingestellten Geschwindigkeit um eine Linearbeschleunigung des TCP oder eine allgemeine Geschwindigkeitsbegrenzung am Arbeitsplatz [mm/s²]. Dieser Wert wird in die Gelenkgeschwindigkeit umgerechnet, wobei wiederum der Abstand zwischen den Schultergelenken und entweder der Last oder der Mitte des Werkzeugflansches [mm] verwendet wird.

\[
\omega = 180 \frac{v_{\text{max}}}{r \pi} \quad \text{[deg s}^{-1}]\]

Die Unterbrechungszeit \(t_{\text{brake}} \) [seconds] und der Unterbrechungsabstand \(s_{\text{brake}} \) [mm] werden nun wie folgt berechnet:

\[
t_{\text{brake}} = \frac{\omega}{a_{\text{brake}}} + 0,020 \quad \text{[s]}
\]

\[
s_{\text{brake}} = \frac{\left(t_{\text{brake}} + 0,02 \right) \pi r \omega}{360} \quad \text{[mm]}
\]

Ein Beispiel ist auf der nächsten Seite zu sehen.
Beispiel:

Der Roboter läuft im reduzierten Geschwindigkeitsmodus („Rabbit“), entsprechend einer Höchst-Rahmengeschwindigkeit von 1000 mm/s.

In einem Abschnitt des Programms, in dem der Roboter schnell läuft, beträgt die Last 5 kg und bewegt sich in horizontaler Ebene ungefähr 750 mm von der Achse von Gelenk 1, wenn dieser Abstand am höchsten ist. Eine horizontale Bewegungsebene entspricht einem Winkel zwischen Schwerkraft und Last von 90 Grad.

In der Tabelle oben ist zu sehen, dass der Roboter imstande ist, bei 1117 deg/s². Die Winkelgeschwindigkeit, Bremszeit und der Bremsweg betragen:

\[
\begin{align*}
\omega &= 180 \frac{v_{\text{max}}}{\pi r} = 180 \frac{1000}{750 \pi} \approx 76,4 \quad \text{[deg/s]} \\
\omega &= 180 \frac{1000}{750 \pi} \approx 76,4 \\
\omega &= 180 \frac{1000}{750 \pi} \approx 76,4 \\
\end{align*}
\]

\[
\begin{align*}
t_{\text{brake}} &= \frac{\omega}{a_{\text{brake}}} + 0,020 = \frac{76}{1117} + 0,020 = 0,088 \quad \text{[s]} \\
\end{align*}
\]

\[
\begin{align*}
s_{\text{brake}} &= \frac{(t_{\text{brake}} + 0,02) \pi r w}{360} = \frac{(0,088 + 0,02) \pi \times 750 \times 76}{360} \approx 54 \quad \text{[mm]} \\
\end{align*}
\]
8 Handhabung

Dieser Abschnitt beschreibt, wie der Roboter in verschiedenen Situationen bedient werden muss. Dort, wo spezielle Personalqualifikationen erforderlich sind, ist dieses angegeben.

Die Installation und der Abbau des Roboters muss von qualifiziertem und geschultem Personal vorgenommen werden. Alle Sicherheitsanweisungen müssen beachtet werden, um Unfälle zu vermeiden.

Wie oben erwähnt, werden der Roboterarm, die Steuerung, das Programmierhandgerät, Kabel und Dokumente von Kassow Robots in zwei angemessenen Kisten geliefert und können von einer Person sicher gehandhabt werden.

Die Lieferkisten können auch zur Lagerung verwendet werden, falls erforderlich.

8.1 Auspacken und allgemeine Handhabung des Roboterarms

Beim Auspacken des Roboters muss überprüft werden, ob der Roboter während des Transports beschädigt wurde. Jede Beschädigung, die Einfluss auf die Funktion oder Sicherheit hat, muss vor der Inbetriebnahme des Roboters repariert werden.

Auspacken des Roboterarms:

- Der Roboterarm kann von zwei Personen direkt aus der Kiste auf die Befestigungsplattform gesetzt werden. Eine Person hält den Roboterarm, während die andere die Robotergrundplatte mit vier Schrauben befestigt.
- Wenn der Roboterarm vorübergehend abgestellt werden muss, nachdem er aus Kiste entnommen wurde, sollte er auf einer weichen Unterlage abgestellt werden.
- Die Robotersteuerung kann direkt auf dem Boden oder mit der Wandhalterung an der Wand befestigt werden.
- Das Programmierhandgerät kann in die Programmierhandgerätehalterung vor der Steuerung oder an der Wand angebracht werden.
- Kabel sind unter der Steuerung angeschlossen und der Roboterarm ist ordnungsgemäß befestigt.

8.2 Sichere Entsorgung der Verpackung und des Roboterarms

Verpackungsmaterialien, Roboterarm, Steuerungskasten und Handgerät müssen gemäß der örtlichen Gesetzgebung entsorgt werden.

8.3 Installation und Zusammenbauen des Roboterarms

8.3.1 Elektroinstallation

Der Roboter darf nur von einem autorisierten Elektriker angeschlossen werden. Die Installation unterliegt der nationalen Gesetzgebung.

Für einen ordnungsgemäßen Anschluss und Informationen zur Stromspannung und zum Stromverbrauch, siehe Spezifikationstabelle in Kapitel 4.

Der Roboter wird mit der Stromversorgung über den einphasigen CEE-Stecker an der Vorderseite geliefert. Die Anlage muss mit 16 A vorgesichert sein.

Stellen Sie sicher, dass die Eingangsspannung zur Steuerung mit einem Fehlerstromschutzschalter (RCD) ausgestattet ist.
Die Steuerung muss ordnungsgemäß über den Masseanschluss im Stromkabel geerdet sein. Stellen Sie immer sicher, dass elektrische Installationen sternförmig angeordnet werden, wenn der Roboter neben anderer Ausrüstung installiert wird, an der hohe Stromtransienten wie elektrische Motoren, Elektromagneten, Schweißgeräte usw. vorhanden sind.

Die Sicherung des Roboters befindet sich an der linken Seite des Schaltschranks.

8.3.2 Installieren des Roboters

Im Folgenden finden Sie Anweisungen zur Installation des Roboters:

1. Zuerst muss eine stabile Halterung für den Roboter konstruiert werden (siehe Kapitel 4 für die Gestaltung der Unterlage).

3. Die Halterung **MUSS** in der Lage sein, 500 Nm und 1000 N Kraft in jede Richtung standzuhalten. Je fester, desto besser. Jede Biegsamkeit in der Halterung wird am Ende des Werkzeugs vervielfacht, was sich auf die Präzision bezüglich der Nutzlast und Geschwindigkeit auswirkt. Im Allgemeinen sollte die Biegsamkeit nicht höher als höchstens 3-5 mm unter Höchstgeschwindigkeit und -last betragen.

9 Bedienung des Roboterarms

Nachfolgend wird beschrieben, wie der Roboterarm ordnungsgemäß und sicher betrieben wird. Die Sicherheitsanweisungen in dieser Bedienungsanleitung müssen beachtet werden.

Lesen Sie die Dokumentation zur Softwareanleitung und zum Schaltschrank für eine genauere Beschreibung.

9.1 Sicherer Betrieb

Der Integrator des kollaborativen Roboters muss mit einer allgemeinen Konformitätserklärung (CE) bezüglich des Arbeitsbereichs versehen sein. Besondere Aufmerksamkeit muss auf die am kollaborativen Roboter angewandten Werkzeuge und externen Not-Aus- und Sicherheitsfunktionen gelegt werden.

9.2 Fehlersituationen

Fehler werden auf dem Programmierhandgerät angezeigt. Durch Drücken auf das rote Dreieck oben rechts auf dem Display, PUNKT 8 in Abbildung 10, kann auf die Fehlerbeschreibungen zugreifen werden. Lesen Sie die Softwareanleitung für nähere Einzelheiten.

Abbildung 9: Werkzeugflansch des Roboterarms
9.3 Hard Reset des Tablets

Wenn sich das Programmierhandgerät nach einer Softwarewiederherstellung aufgehängt hat, kann ein Hardware-Rest notwendig sein. Dieser Vorgang ist ganz einfach:
1. Suchen Sie die kleine Öffnung mit 2 mm Ø an der linken Seite des Programmierhandgeräts.
2. Verwenden Sie das kleine Werkzeug, welches mit dem Roboter* mitgeliefert wurde, und führen Sie es in die Öffnung.
3. Drücken Sie es hinein, bis Sie fühlen, dass die Taste im Inneren eingedrückt ist.
4. Halten Sie diese eingedrückt, bis die Neustartoption auf dem Bildschirm erscheint und wählen Sie anschließend diese Option aus.
5. Das Programmierhandgerät startet neu, fährt hoch und öffnet automatisch den Bildschirm der Robotersteuerung.
6. Sie haben das Programmierhandgerät jetzt erfolgreich neu gestartet.

Wenn die Neustartoption sich nicht öffnet:
1. Halten Sie die Taste weiter (8 Sek.) eingedrückt, bis das Programmierhandgerät herunterfährt.
2. Lassen Sie die Taste los und drücken Sie sie erneut, um das Programmierhandgerät zu starten.
3. Das Programmierhandgerät startet neu, fährt hoch und öffnet automatisch den Bildschirm der Robotersteuerung.
4. Sie haben das Programmierhandgerät jetzt erfolgreich neu gestartet.

*Sollte dieses Teil nicht vorhanden sein, können Sie den Stiel eine 2-mm-Bohrers verwenden (verwenden Sie nicht das scharfe Ende des Bohrers!).
9.4 Signale, die beachtet werden müssen

Eine Taste auf dem Programmierhandgerät zeigt die verschiedenen Zustände des Roboters.

Grün
Der Roboter funktioniert ordnungsgemäß

Blinkt grün
Der Roboter hält in seiner Position inne, pausiert also. Das Programm kann fortgesetzt werden.

Rot
Not-Aus/Schutz-Stopp ist aktiviert

Gelb
RC erkennt eine ungewöhnliche Situation.

Blinkt blau
Zeigt an, dass sich der Roboter in der „Bereit zur Initialisierung“-Phase befindet.

Blau
Der Roboter wird initialisiert

Abbildung 12: Programmierhandgerät (Taste zum Umschalten/Fortsetzen)
9.5 Zubehör
Wenn der Roboterarm in einer extrem staubigen, nassen, heißen oder kalten Umgebung aufgestellt ist, setzen Sie sich bitte mit Kassow Robots in Verbindung, um sich hinsichtlich zusätzlicher Ausrüstung beraten zu lassen.

9.6 Inspektionsintervalle, Wartung und Reinigung
Das tägliche Abstauben und Reinigen des Roboters und seines Umfelds wird vom Bediener oder von speziell geschultem Reinigungspersonal vorgenommen. Während dieser Tätigkeit gelten die gleichen Anforderungen an die Nutzung der Werkzeuge und der persönlichen Schutzausrüstung wie bei der Bedienung des Roboters.

Es wird empfohlen, die sichtbaren und erreichbaren Oberflächen, die kontaminiert sind, mit einem feuchten Tuch und etwas Seife zu reinigen. Es wird empfohlen, die Inspektion des Roboters spätesten alle 12 Monate durchzuführen.

9.7 Auflistung der Ersatzteile und Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Bestellnummer des Teils</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20080150</td>
<td>Steuerung AC</td>
</tr>
<tr>
<td>22050200</td>
<td>Steuerung AC mit Profinet</td>
</tr>
<tr>
<td>22102521</td>
<td>Steuerung DC</td>
</tr>
<tr>
<td>23092722</td>
<td>Steuerung DC mit Profinet</td>
</tr>
<tr>
<td>19010155</td>
<td>Programmierhandgerät</td>
</tr>
<tr>
<td>23020651</td>
<td>Kabel vom Controller zum Arm</td>
</tr>
<tr>
<td>20090810</td>
<td>Stromkabel</td>
</tr>
<tr>
<td>20091977</td>
<td>Unterlage 100</td>
</tr>
<tr>
<td>20091978</td>
<td>Unterlage 80</td>
</tr>
<tr>
<td>20091979</td>
<td>Biegung 100</td>
</tr>
<tr>
<td>20091980</td>
<td>Biegung 60</td>
</tr>
<tr>
<td>20091981</td>
<td>Biegung 80</td>
</tr>
<tr>
<td>20092021</td>
<td>Gerade 50</td>
</tr>
<tr>
<td>20092022</td>
<td>Gerade 60</td>
</tr>
<tr>
<td>20092023</td>
<td>Gerade 80</td>
</tr>
<tr>
<td>20092026</td>
<td>T-Teil 50</td>
</tr>
<tr>
<td>20092027</td>
<td>Werkzeug 50</td>
</tr>
<tr>
<td>20092028</td>
<td>Werkzeugflansch mit Toolboard</td>
</tr>
<tr>
<td>22101701</td>
<td>E/A-Platine</td>
</tr>
</tbody>
</table>

10 Steuerung

Dieser Abschnitt enthält allgemeine Informationen über die Steuerung sowie detaillierte Informationen über die Teile der Steuerung, die der Benutzer direkt verwendet.

Die Steuerung erfüllt die folgenden 3 Hauptzwecke:

1. Stromversorgung für den Roboterarm und die Steuerung.

10.1 Steuerung außen

Abb. 13: Außen der Steuerung

- Die Steuerung und jeder Roboter, der daran angeschlossen ist, schalten sich ein, wenn der Hauptschalter ein/aus in Position „1“ geschaltet wird.
- Wenn der Schalter in Position „0“ geschaltet wird, löst dies ein Herunterfahren aus und nur nach Abschalten des farbigen Lichtanzeigerings wird das Gehäuse nicht mehr mit Strom versorgt.
- Öffnen Sie niemals die Abdeckung der Steuerung, ohne vorher den Stecker aus der Wandsteckdose zu ziehen.
- Die Steuerung wird mithilfe von Ventilatoren belüftet, die in den Gehäuseboden eingebaut sind. Die Luft muss für die Roboterausführung sowohl für die Ansaugung als auch für die Abluft dienen.
zugänglich sein.

- Die Steuerung sollte niemals eingeschaltet werden, während Sie auf dem Fußboden stehen oder sich in einer staubigen Umgebung befinden, da der Staub von den Ventilatoren in das Gehäuse gesaugt werden oder den Ventilatorfilter verstopfen kann, was zu einer Überhitzung und möglicherweise zu Schäden am Gehäuse führt.

- Das austauschbare, durch die Öffnung in der Platte verlaufende Kabel ermöglicht es dem Benutzer, den Kasten z. B. mit einer geeigneten Öffnung in der Platte mit einem Kabelbaum zu versehen, der zu den elektrischen Anschlüssen der Steuerung in einer bestimmten Roboterinstallation führt.

- Die Klappe in der Steuerung kann mit einem Schlüssel geöffnet werden, der im Lieferumfang der Steuerung enthalten ist.

Der Ein-/Aus-Hauptschalter ist nicht als Not-Aus gedacht.

10.2 Das Innere der Steuerung und elektrische Anschlüsse

Die Ausgänge können insgesamt 6 A liefern, verteilt auf alle Ausgänge. Dazu gehören die Gleichstromversorgung sowie die digitalen und analogen Ausgänge.
10.3 Stromversorgungsausgang (24 V)
Die Steuerung verfügt über einen einzigen Stromversorgungsausgang, der direkt vom internen 24-V-DC-Netzteil gespeist wird.
Dieser Ausgang kann bis zu 6 A liefern.
Bei einer Stromaufnahme von mehr als 6 A geht das Netzteil in den Überstromschutz und schaltet den Roboter ab.

10.4 Allzweckrelais
Es sind 4 Allzweckrelais vorhanden, die entweder normalerweise-offen oder normalerweise-geschlossen sein können. Jeder Relaisausgang ist für maximal 250 VAC/5 A oder 24 VDC/5 A ausgelegt.
Installationen über 50 V müssen unter diesen Umständen die IEC 60664-1 einhalten:
- Überspannungskategorie II.
- Verschmutzungsgrad 2.
Die Relais können über die TP-Benutzeroberfläche gesteuert und für die Programmierung auf benutzerdefinierte Variablen abgebildet werden. Jedes Relais verfügt über seine eigene Anzeige, die aufleuchtet, wenn das Relais aktiviert ist.
10.5 Not-Aus und Schutz-Stopp

Abbildung 17: Schaltplan der externen Not-Aus- oder Schutz-Stop-Schaltung, blau und lila zeigen die beiden einzelnen Kontaktsätze.

10.6 Digitale Eingänge (24 V)

Alle Erdungen an allen Steckern sind gleich und dienen auch als Masse für den Rest des Systems.

Jeder Eingang verfügt über eine Anzeigendiode, die aufleuchtet, wenn der Eingang als hoch erkannt wird (über 7-9 V).

Die digitalen Eingangswerte können direkt in Echtzeit über die TPUI überwacht und für die Programmierung auf benutzerdefinierte Variablen abgebildet werden.

10.7 Analogans Eingänge (4-20 mA)
Die Steuerung ist mit zwei 4-20 mA Eingängen ausgestattet, die 2-drahtige, 3-drahtige und 4-drahtige 4-20 mA Ausgänge unterstützen.

Die Auflösung beträgt 12 Bit. Eine Anzeigendiode leuchtet auf, wenn der Eingang über 4 mA beträgt.

Die analogen Eingangswerte können direkt in Echtzeit über die TPUI überwacht und für die Programmierung auf benutzerdefinierte Variablen abgebildet werden.

10.8 Analogans Eingänge (0-10 V)
Die Benutzerschnittstelle der Steuerung bietet zwei analoge 0-10 VDC Eingänge.

Die Eingangsimpedanz beträgt 4 Kohm. Die Auflösung beträgt 12 Bit. Eine Anzeigendiode leuchtet auf,
wenn der Eingang über 1,2 V DC beträgt. (Die Eingänge sind so ausgelegt, dass sie bei falschem Anschluss +/- 24V überstehen)

Die analogen Eingangswerte können direkt in Echtzeit über die TPUI überwacht und für die Programmierung auf benutzerdefinierte Variablen abgebildet werden.

10.9 Analog Ausgänge (4-10 mA)

Die Benutzerschnittstelle der Steuerung bietet zwei 4-20 mA Ausgänge.

Die Auflösung beträgt 12 Bit. Die Anzeigendiode leuchtet auf, wenn der Ausgang über 4 mA beträgt.

Analoge Ausgangswerte können über die TP-Benutzeroberfläche gesteuert und für die Programmierung auf benutzerdefinierte Variablen abgebildet werden.

10.10 Analog Ausgänge (0-10 V)

Die Steuerung ist mit zwei 0-10 V DC Ausgängen ausgestattet.

Die Ausgangsimpedanz beträgt 10 Ohm, die maximale Strombelastung beträgt 10 mA.

Die Auflösung beträgt 12 Bit. Eine Anzeigendiode leuchtet auf, wenn der Ausgang über 2 V DC beträgt.

Analoge Ausgangswerte können über die TP-Benutzeroberfläche gesteuert und für die Programmierung auf benutzerdefinierte Variablen abgebildet werden.

10.11 Digitale Ausgänge (0-24 V)

Die Steuerung ist mit acht hochstromfähigen 24 V DC Ausgängen ausgestattet.

Die Ausgänge sind auf zwei Steckverbindungen aufgeteilt. Jeder Stecker hat 5 Stifte, 4 Ausgänge und 1 gemeinsame Masse.

Die 8 Ausgänge sind für 1 A pro Ausgang ausgelegt. Das interne 24VDC-Netzteil liefert eine maximale Gesamtleistung von 6 A.

Eine Anzeigendiode leuchtet auf, wenn der Eingang hoch ist (24 V).

Digitale Ausgangswerte können über die TP-Benutzeroberfläche gesteuert und für die Programmierung auf benutzerdefinierte Variablen abgebildet werden.

10.12 Sicherer E/A

Die Kassow Robots RC bietet sichere digitale Eingänge (SDI) und sichere digitale Ausgänge (SDO), über die das Robotersystem mit Peripheriegeräten und Steuerungen in Anwendungen integriert werden kann, bei denen ein redundanter und höchst zuverlässiger digitaler Signalaustausch erforderlich ist.

10.12.1 Sichere digitale Eingänge (SDI)

Die digitalen Eingänge DI01-DI08 können als 4 einzelne sichere digitale Eingänge SDI01-SDI04 mit der folgenden Zuordnung konfiguriert werden.
<table>
<thead>
<tr>
<th>Sicherer digitaler Eingang</th>
<th>Digitaler Eingang der E/A-Platine</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDI01</td>
<td>D101</td>
<td>Sicherer Eingang 1 Signal A</td>
</tr>
<tr>
<td></td>
<td>D102</td>
<td>Sicherer Eingang 1 Signal B</td>
</tr>
<tr>
<td>SDI02</td>
<td>D103</td>
<td>Sicherer Eingang 2 Signal A</td>
</tr>
<tr>
<td></td>
<td>D104</td>
<td>Sicherer Eingang 2 Signal B</td>
</tr>
<tr>
<td>SDI03</td>
<td>D105</td>
<td>Sicherer Eingang 3 Signal A</td>
</tr>
<tr>
<td></td>
<td>D106</td>
<td>Sicherer Eingang 3 Signal B</td>
</tr>
<tr>
<td>SDI04</td>
<td>D107</td>
<td>Sicherer Eingang 4 Signal A</td>
</tr>
<tr>
<td></td>
<td>D108</td>
<td>Sicherer Eingang 4 Signal B</td>
</tr>
</tbody>
</table>

Die Konfiguration des sicheren Eingangs kann über die TPUI erfolgen.

<table>
<thead>
<tr>
<th>Eingangskonfiguration</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaktiviert</td>
<td>Digitale Eingänge funktionieren wie im Abschnitt „Digitale Eingänge (24 V)“ beschrieben.</td>
</tr>
<tr>
<td>Aktiviert</td>
<td>Ermöglicht die Zuordnung von SDI zu einer Programmvariable und die Verwendung im Aufgabenprogramm.</td>
</tr>
</tbody>
</table>

Bei der Konfiguration „Aktiviert“ stellt die Diagnose sicher, dass die Signale A und B des sicheren Eingangs gegeneinander geprüft werden, und führt bei einem Verstoß zu einem Stopp der Kategorie 1. Ein Verstoß liegt vor, wenn sich die beiden Signale um mehr als 200 ms unterscheiden.

10.12.2 Sichere digitale Ausgänge (SDO)

Die digitalen Ausgänge **D001-D008** können als 4 einzelne sichere digitale Eingänge **SD001-SD004** mit der folgenden Zuordnung konfiguriert werden.

<table>
<thead>
<tr>
<th>Sicherer digitaler Ausgang</th>
<th>Digitaler Ausgang der E/A-Platine</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD001</td>
<td>D001</td>
<td>Sicherer Ausgang 1 Signal A</td>
</tr>
<tr>
<td></td>
<td>D002</td>
<td>Sicherer Ausgang 1 Signal B</td>
</tr>
<tr>
<td>SD002</td>
<td>D003</td>
<td>Sicherer Ausgang 2 Signal A</td>
</tr>
<tr>
<td></td>
<td>D004</td>
<td>Sicherer Ausgang 2 Signal B</td>
</tr>
<tr>
<td>SD003</td>
<td>D005</td>
<td>Sicherer Ausgang 3 Signal A</td>
</tr>
<tr>
<td></td>
<td>D006</td>
<td>Sicherer Ausgang 3 Signal B</td>
</tr>
<tr>
<td>SD004</td>
<td>D007</td>
<td>Sicherer Ausgang 4 Signal A</td>
</tr>
<tr>
<td></td>
<td>D008</td>
<td>Sicherer Ausgang 4 Signal B</td>
</tr>
</tbody>
</table>

Die Konfiguration des sicheren digitalen Ausgangs kann über die TPUI erfolgen.

<table>
<thead>
<tr>
<th>Sichere Konfiguration des digitalen Ausgangs</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaktiviert</td>
<td>Digitale Ausgänge funktionieren wie im Abschnitt „Digitale Ausgänge (0-24 V)“ beschrieben.</td>
</tr>
<tr>
<td>Aktiviert</td>
<td>Ermöglicht die Zuordnung von SDO zu einer Programmvariablen und die Verwendung im Aufgabenprogramm.</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>P-Stopp zugeordnet</td>
<td>SDO-Übergang von hoch zu niedrig, wenn das System einen Schutz-Stopp-Vorgang durchführt.</td>
</tr>
</tbody>
</table>

Bei allen SDO-Konfigurationen mit Ausnahme der deaktivierten stellt die Diagnose sicher, dass die Signale A und B des sicheren Ausgangs gegeneinander geprüft werden, und führt bei einem Verstoß zu einem Stopp der Kategorie 1. Ein Verstoß liegt vor, wenn sich die beiden Signale um mehr als 200 ms unterscheiden.
11 E/A des Werkzeugs

Kassow-Roboter sind mit einem erweiterten Werkzeugflansch ausgestattet, welcher 2 Stecker und einen Drucktaster enthält.

Abbildung 19: Anschlüsse für E/A des Werkzeugs

Lesen Sie bitte die Software-Anleitung und die Online-Dokumentation von Kassow Robots, um zu erfahren, wie die E/A des Werkzeugs programmiert und bedient wird.

11.1 Bewertungen für E/A des Werkzeugs

Der kombinierte Gesamtstrom, der aus dem E/A des Werkzeugs gezogen werden kann, liegt kontinuierlich bei 3 A. 4 A Spitze für jeweils 500 ms; max. 3 A RMS.

Die M8-Steckerstifte sind für jeweils 1,5 A ausgelegt. Für mehr als 1,5 A müssen mehrere Ausgänge und die doppelte Erdung verwendet werden. Eine Überschreitung der Spezifikation kann die Elektronik beschädigen bzw. führt dazu, dass der Roboter anhält.

11.2 E/A-Stecker des Werkzeugs

Weitere Einzelheiten zur Programmierung und zum Routing finden Sie in der Software-Dokumentation.

11.2.1 M8 8-polige Buchse

![Abbildung 20: E/A des Werkzeugs M8 8-polige Buchse (1)](image)

<table>
<thead>
<tr>
<th>Pin-Nr.</th>
<th>M8 8-polige Buchse</th>
<th>Spezifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stromeingang 4-20 mA in +</td>
<td>Max. 12 V im Verhältnis zur Masse</td>
</tr>
<tr>
<td>2</td>
<td>Stromeingang 4-20 mA in -</td>
<td>Max. 12 V im Verhältnis zur Masse</td>
</tr>
<tr>
<td>3</td>
<td>Analog Ausgang 1</td>
<td>4-20 mA oder 0-10 V</td>
</tr>
<tr>
<td>4</td>
<td>Analog Ausgang 2</td>
<td>4-20 mA oder 0-10 V</td>
</tr>
<tr>
<td>5</td>
<td>Mehrzweck-Eingang/-Ausgang 1</td>
<td>Digitaler Ausgang: Getrennt oder 24 V Analog in: Nennwert 0-10 V, maximal 30 V</td>
</tr>
<tr>
<td>6</td>
<td>Mehrzweck-Eingang/-Ausgang 2 oder Masse</td>
<td>Digitaler Ausgang: Getrennt oder 24 V Analog in: Nennwert 0-10 V, maximal 30 V Masse = 0 V</td>
</tr>
<tr>
<td>7</td>
<td>Mehrzweck-Eingang/-Ausgang 3</td>
<td>Digitaler Ausgang: Getrennt oder 24 V Analog in: Nennwert 0-10 V, maximal 30 V</td>
</tr>
<tr>
<td>8</td>
<td>Masse</td>
<td>Masse = 0 V</td>
</tr>
</tbody>
</table>

Die digitalen Ausgänge sind PNP-Ausgängen und der Pin wird auf 24 V gezogen, wenn dies auf aktiviert eingestellt ist.

Stecken Sie niemals einen Stecker ein oder aus, wenn ein Ausgang aktiviert ist. Kassow Robots empfiehlt, den Roboter auszuschalten, wenn Sie Kabel anschließen oder trennen.

Schließen Sie Pin 6 nicht direkt an Pin 5 oder 7 an. Wenn die doppelte Stromkapazität benötigt wird, sind Pin 5 und 7 parallel zu verwenden. Die Ausgänge
können beim Einschalten für ~10 ms aktiviert werden.

11.2.2 M8 8-poliger Stecker

Abbildung 21: E/A des Werkzeugs M8 8-poliger Stecker (2)

<table>
<thead>
<tr>
<th>Pin-Nr.</th>
<th>M8 8-polig, Stecker</th>
<th>Spezifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS 485 +</td>
<td>Baudrate programmierbar bis zu 1 Mbps</td>
</tr>
<tr>
<td>2</td>
<td>RS 485 -</td>
<td>Baudrate programmierbar bis zu 1 Mbps</td>
</tr>
<tr>
<td>3</td>
<td>Mehrzweck-Eingang/-Ausgang 4</td>
<td>Digitaler Ausgang: Getrennt oder 24 V Analog in: Nennwert 0-10 V, maximal 30 V</td>
</tr>
<tr>
<td>4</td>
<td>Mehrzweck-Eingang/-Ausgang 5</td>
<td>Digitaler Ausgang: Getrennt oder 24 V Analog in: Nennwert 0-10 V, maximal 30 V</td>
</tr>
<tr>
<td>5</td>
<td>Mehrzweck-Eingang/-Ausgang 6</td>
<td>Digitaler Ausgang: Getrennt oder 24 V Analog in: Nennwert 0-10 V, maximal 30 V</td>
</tr>
<tr>
<td>6</td>
<td>Mehrzweck-Eingang/-Ausgang 7 oder Masse</td>
<td>Digitaler Ausgang: Getrennt oder 24 V Analog in: Nennwert 0-10 V, maximal 30 V Masse = 0 V</td>
</tr>
<tr>
<td>7</td>
<td>Mehrzweck-Eingang/-Ausgang 8</td>
<td>Digitaler Ausgang: Getrennt oder 24 V Analog in: Nennwert 0-10 V, maximal 30 V</td>
</tr>
<tr>
<td>8</td>
<td>Masse</td>
<td>Masse = 0 V</td>
</tr>
</tbody>
</table>

Die digitalen Ausgänge sind PNP-Ausgängen und der Pin wird auf 24 V gezogen, wenn dies auf aktiviert eingestellt ist.

Stecken Sie niemals einen Stecker ein oder aus, wenn ein Ausgang aktiviert ist. Kassow Robots empfiehlt, den Roboter auszuschalten, wenn Sie Kabel anschließen oder trennen.

Schließen Sie Pin 6 nicht direkt an Pin 5 oder 7 an. Wenn die doppelte Stromkapazität benötigt wird, sind Pin 5 und 7 parallel zu verwenden. Die Ausgänge können beim Einschalten für ~10 ms aktiviert werden.