| Cordulus Farm | | | | |---|---|--|-----------------------------------| | COI duius Farm | | Total Conservative Savings
Per Year (EUR) | Maximum Savings Per Year
(EUR) | | | | 2,461 | 14,562 | | Benefits Workbook | | | | | June, 2023 | | Currency | EUR | | Disclaimer: | | Conversion Rate | 1.00 | | These scenarios are described with a limited
number of factors and does not account for all
possible aspects of the scenarios. The
purpose of the scenarios is to provide
inspiration on the magnitude of potential
savings. | This is not financial advice nor a guarentee of economic savings by using our services. Cordulus cannot be held accountable for any damages. The document is provided "as-is" and may be subject to errors. | Farm Size: Arable Land
Coverage / Weather Station
(ha) | 250 | | RoundUp Efficiency | | | | Source | Source | | Source | | | | |---|--|-----------------------------------|----------------------------------|----------------------|-----------------|---------------------------|-------------------------------------|-------------------|-----------------------|----------------------------------| | Scenario | Weather Benefit | Conservative Savings / year (EUR) | Maxmimum Savings / year
(EUR) | Conservative Savings | Maximum Savings | Application Hectares (ha) | Roundup PowerMax
Cost (EUR / ha) | Activities / Year | Cost / Activity (EUR) | Approximate Cost /
Year (EUR) | | Yearly Roundup application in a stubble field to combat grassweeds. | Approximately double the efficacy under
correct conditions, which could result in
50% savings by reducing the dose for
the same effect. Reduce use to maintain
right of use. | 647 | 6,468 | 5% | 50% | 250 | 52 | 1 | 12,937 | 12,937 | | | | | | | | | | | | | | Harvest Grain Moisture | | | | Source | | | | | Source | Source | Source | Source | Source | |--|--|--|---|--|--------------------------|--|------------------------------------|-----------------------------------|----------------------|-----------------------------|--------------------------------------|------------------|-----------------| | Scenario | Weather Benefit | Conservative Savings / year
(EUR) (20%) | Maxmimum Savings / year
(EUR) (100%) | Average winter bread
wheat yield for Pondus
and Informer during
field trials (hkg/ha) | Hectares to Harvest (ha) | Total yield of winter
bread wheat (hkg) | Water Content Before
Drying (%) | Water Content After
Drying (%) | Dry Matter Loss (kg) | Energy Consumption
(kWh) | CO2 emission for Natural
Gas (kg) | Gas Volume (m^3) | Gas Price (EUR) | | Harvest with propper grain moisture and plan drying accordingly. | Equilibrium charts used to estimate grain
moisture content using local air
temperature and humidify
measurements. The farmer harvests with
a grain moisture content of 16% instead
of 17% leading to less drying. That 1%
difference leads to a siginifiant energy
and CO2 saving on natural gas. | 720 | 3,598 | 119 | 250 | 29,800 | 16 | 15 | 35,059 | 49,082 | 10,013 | 4,462 | 3,598 | | Needless Driving | | | | | | | Source | Estimate | Source | | | Source | | |--|---|--|---|----------------------------------|----------------------------|--------------------|---------------------------------------|---------------------------------|------------------------------------|--|------------------------------|----------------------|-------------------------------------| | Scenario | Weather Benefit | Conservative Savings / year /
tractor (save 1 trip for 1
tractor per year) (EUR) | Maxmimum Savings / year /
tractor (save 3 trips for 1
tractor per year) (EUR) | Roundtrip distance to field (km) | Traktor speed
(km/hour) | Time spent (hours) | Machinery cost per
hour (EUR/hour) | Pilot hourly wage
(EUR/hour) | Liter Diesel / Ton / Km on
road | Total weight (ton) - 10
ton traktor + 3 ton
implement and
weights | Total diesel consumption (L) | Diesel price (EUR/L) | Roundtrip cost per tractor
(EUR) | | unsuitable weather conditions. Save transport
time, fuel, hourly wages, and machine wear. | Oftentimes wind and rain can prevent a
range of field activities such as spraying
growth regulators, pesticides, herbicides,
fungicides. Real-time data and local
forecasts help knowing which fields are
workable at any time and for how long. | 68 | 285 | 40 | 30 | 1.33 | 28 | 24 | 0.03 | 13 | 16 | 12 | 88 | | Spraying Half-life | | | | | | | Source | | Source | | Source | | | | |---|---|-------------------------------------|-------------------------------|-------------------------------|--|---|------------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------------------|---|---|------------| | Scenario | Weather Benefit | Conservative total delay cost (EUR) | Maxmimum Savings / year (EUR) | Total sprayer capacity
(L) | Application rate per
hectare (L/ha) | Total coverage per
sprayer tank (ha) | Product rate per
hectare (L/ha) | Total amount of
product (L) | Product price + fee
(EUR/L) | Total product price
(EUR) | Product 24h Half-Time
(maximum) | Conservative frequency of
accidents / year ("once
every 3 years") | Potential frequency of
accidents / year ("once
every year") | Refil cost | | Avoid delaying the application of mixed de
chemistry that is subject to aggressive half-life, for
leading to extraneous use of chemistry. | Typically wind conditions are the
determining factor when farmers are kept
from spraying. Having local readings in
working height (2m) allows for remote
decision making. | 154 | 461 | 5,000 | 150 | 33 | 2 | 66.7 | 13.8 | 922.9 | 0.50 | 0.33 | 1.00 | 461.47 | | Wash-off Prevention | | | | Estimate | Source | Estimate | Source | | Estimate | | | | | Source | Source | | | | |--|---|---|---|---------------------------------|---------------------------------------|------------------------------|---------------------------------|----------------------------------|-------------------------------|--------------------------------|------------------|--|--------------------------------|---------------------------------|-----------------------------|--|------------------------------------|---| | Scenario | | Conservative Savings / year
(1 time every 5 years) (EUR) | Maxmimum Savings / year (1 time every year) (EUR) | Pilot hourly wage
(EUR/hour) | Machinery cost per
hour (EUR/hour) | Fuel consumption
(L/hour) | Fuel costs / hour
(EUR/hour) | Total hourly costs
(EUR/hour) | Time spent per hectare (hour) | Operations costs / ha
(EUR) | Hectares Covered | Water application rate per
hectare (L/ha) | Water price per hectare (L/ha) | Product rate per hectare (L/ha) | Product price + fee (EUR/L) | Total input price per hectare (EUR/ha) | Total cost per hectare
(EUR/ha) | Total cost per application on 30 ha wheat (EUR) | | Avoid wash-off of plant protection leading to
extra applications. Example: Proline EC 250 to
combat Sentoria | Many products require several hours of
dry weather after application. Rain
eliminates the effect and can result in
wash-off. | 360 | 1,798 | 24 | 28 | 12 | 14 | 67 | 0.125 | 8 | 30 | 150 | 1.4 | 0.8 | 62.8 | 50 | 60 | 1,798 | | Securing Harvest | | | | | | | | Source | Source | Source | | | |---|---|---|----------------------------------|----------------------|-------------------------------------|---|--------------------|----------------------------|--|-----------------------------------|--|---| | Scenario | Weather Benefit | Conservative Savings / year
(EUR) (25% good harvesting
hours recovered) | Maxmimum Savings / year
(EUR) | Number of harvesters | Harvester hourly capacity (ha/hour) | Good Harvesting
Hours Recovered
(hours) | Hectares Harvested | Grain Mass Harvested (hkg) | Avoided Yield Loss Mass
from Breathing Out (1%
loss) (hkg) | Avoided Yield Loss
Value (EUR) | Conservative Potential of
Recovered Harvesting Hours
(%) | Potential Recovered
Harvesting Hours (%) | | matter loss by optimising good harvesting hours. A single relocation decision to continue | Timing of harvest hours to avoid rain and
secure the harvest before drying causes
the evaporation of water to lead to dry
matter loss as well. | | 1,971 | 2 | 2.5 | 12 | 60 | 7152 | 71.52 | 1,970.65 | 25% | 100% |