GMO

MITIGATING SEQUENCE OF RETURN RISK

Ben Inker, James Montier, Martin Tarlie

September 29, 2022

~100 RESPONSES TO INVITATION SURVEY

91% response rate—thank you!

Do you incorporate sequence risk when building portfolios?

On a scale of 1-5, how concerned are you about sequence of returns risk? (1 is least, 5 is most)

What is your preferred approach to mitigating sequence risk?

Most common results:

- Bucket strategies
- ✓ Bond ladders
- ✓ Cash reserve
- Asset allocation

BEHAVIORAL STUMBLING BLOCKS

Moving your assets: Simple but not easy

Source: Behavior Gap

RECENCY BIAS: WHAT'S PAST IS PROLOGUE

Greed and Fear – welcome to the human condition

THE BRAIN DAMAGED HAVE THE EDGE!

% OF PLAYERS INVESTING DIVIDED INTO THE OUTCOMES FROM THE PREVIOUS ROUND

Source: Marc Faber, Editor and Publisher of "The Gloom, Boom & Doom Report" (left); Bechara et al. (2004) (right)

STUDIES SHOW THE DANGERS OF POORLY TIMED DECISIONS

Poor decision timing results in roughly a 2% p.a. drag on returns

RETURNS % P.A. OVER THE LAST DECADE - U.S. FUNDS

Source: Morningstar "Mind the Gap 2021"

RISK: FINANCES' FAVORITE FOUR-LETTER WORD

But its least understood concept

SEQUENCE RISK IS A FINANCING RISK

The disarmingly simple arithmetic of sequence risk

No cash flow, no sequence risk

If you start with \$100, earn +10% in year 1, and -10% in year 2 you end up with \$99 = \$100*1.10*0.90. If the returns in years 1 and 2 are reversed, you still end up with \$99 at the end of year 2 because 0.90*1.10 is equal to 1.10*0.90.

If you withdraw \$5 at end of year 1, you want high returns in year 1 (sell high)

If you earn +10% in year 1 and -10% in year 2, you end up with \$94.5 = (\$110-\$5)*0.90. If instead you earn the low return first and the high return second you get \$93.5 = (\$90-\$5)*1.10, which is \$1 less than the first case.

If you contribute \$5 at end of year 1, you want low returns in year 1 (buy low)

If you earn 10% in year 1 and -10% in year 2, you end up with \$103.5 = (\$110+\$5)*0.90. If instead you earn the low return first and the high return second you get \$104.5 = (\$90+\$5)*1.10, which is \$1 more than the first case.

Source: Englich, Mussweiler and Strack (2005)

WAYS OF DEALING WITH SEQUENCE RISK

1. Frame your risk in a sensible way – ask the right question

2. Move your assets — buy low, sell high

EXPECTED SHORTFALL AS A USEFUL LENS

Minimizing the risk of "not having what you need it" leads to sensitivity to key life events

A "MINIMAL SHORTFALL" GLIDEPATH

Weight in stocks falls at an accelerating rate as retirement approaches

Source: GMO Horizontal axis is age in years.

MOVING YOUR ASSETS

Within the context of minimizing shortfall risk

VALUATION SENSITIVE OPTIMAL ESF (VSF)

Imposing ± 20-point bands does not materially reduce the effectiveness of "moving your assets"

Source: GMOHorizontal axis is age in years.

THE DERBY

Start with \$1M at age 65, withdraw \$50,000* every year

THE THREE HORSES

Valuation Sensitive Optimal ESF

PROBABILITY OF RUIN

Withdrawal Rate	Common Glidepath	Optimal Shortfall	Valuation Sensitive Optimal Shortfall**
	HISTORICAL	BACKTEST	
3%	0%	0%	0%
4%	7.3%	3.1%	0.8%
5%	51%	25%	19%
	MONTE CARLO	SIMULATIONS	
3%	0.8%	0.5%	0.2%
4%	7.8%	4.3%	2.8%
5%	28%	18%	14%

Ask the right

question

Move your

assets

Source: GMO (charts left); Source: Robert Shiller, GMO (table right)

*Withdraw \$50,000 in real terms

^{**}The stock weights in the Valuation Sensitive Optimal Shortfall results are constrained to lie between 20-percentage-point bands around the Optimal Shortfall stock weights (see Exhibit 4). For the historical backtests, the results for the unconstrained Valuation Sensitive Optimal Shortfall strategy are 0.7% and 18% for the 4% and 5% withdrawal rates, respectively. For the Monte Carlo simulations, the unconstrained results for the 4% and 5% withdrawal rates are 2.7% and 13%, respectively. Historical backtests use Robert Shiller data from 1926-2018. Monte Carlo results are based on 10,000 simulations.

1970s WASN'T JUST ABOUT BAD HAIR

Arguably the worst time to retire was late 1960s, early 1970s

EVOLUTION OF WEALTH

Source: GMO

The red arrow labeled "88" indicates that for the Common Glidepath, wealth turns negative at age 88.

RETIRING INTO THE TEETH OF THE GFC

Stocks down ~50% out of the gate is pretty terrifying

EVOLUTION OF WEALTH

Source: GMO

FROM THEORY TO PRACTICE

The Nebo platform operationalizes minimizing shortfall, aligning the plan with the portfolio

QUESTIONS & ANSWERS

Copyright © 2022 by GMO LLC. All rights reserved. For Institutional Use Only.