
Conclave: An Introduction

Richard Gendal Brown∗

December 2021

Abstract
We present Conclave: a platform for the rapid development and execution
of ‘privacy-first’ applications; and a set of privacy-first cloud services that are
themselves built using the Conclave platform. Conclave applications can remotely
‘attest’ to users how their information will be handled and which parties, if any,
can influence this execution or access the data. Building on the power of Trusted
Execution Environments, Conclave puts the power of hardware roots of trust
into the hands of mainstream developers and their users.

∗richard@r3.com

1

mailto:richard@r3.com

Contents
Abstract 1

Executive Summary 3

Motivation and Background 3
Real-World Privacy Problems Conclave Can Solve 4

Background 4

The Three Reasons We Share Data 5
Outsourced Computation . 6
Independent Verification of Information 7
Multi-Party Collaboration . 8
Discussion: Different Scenarios, Same Problem 9

Hardware-Based Privacy-Enhancing Techniques 10

Overview of Conclave 13
Conclave Core . 15

Enclave . 15
Client . 17
Host . 17
Attestation . 18
Mail . 19
Persistence . 19
Upgrades and Recovery from Security Vulnerabilities 20

Conclave Cloud . 20
Key Derivation and Distribution 20
Compute . 22
Functions . 22
Store and Watch . 22

Comparison to Software-Based ‘privacy-enhancing’ technologies 23
Background . 23
Outsourced Computation . 24
Independent Verification . 25
Multi-Party Collaboration . 25
Discussion . 25

Threat Model 27

Conclusion 28

Bibliography 29

Acknowledgements 29

2

Executive Summary
Privacy-first applications and services can prove how they will process their
inputs, can prove that their outputs are the result of a specific program, and
their execution cannot be observed or tampered with.

Conclave enables developers to write privacy-first applications with ease, by
putting the power of Trusted Execution Environments such as Intel SGX [1]
into a form they can exploit using the productive high-level languages they’re
already using to develop their existing solutions. This focus on productivity
stands in contrast to the learning curve associated with competing software-
based cryptographic approaches. Conclave further distinguishes itself through
the speed with which developers familiar with languages such as Java, JavaScript,
Kotlin and Python can develop compelling, privacy-first applications, providing
very high level APIs that solve messaging and storage problems that inhibit
adoption of competing TEE platforms. Integrating tightly with public cloud
platforms, Conclave enables users to build, deploy and integrate privacy-first
services at scale.

We expect Conclave to be of particular benefit to firms who process sensitive
data on behalf of other firms, and to those seeking reassurance about how their
data will be handled when shared with cloud services. We also expect it to be
beneficial to firms where sharing data between departments or across borders is
presently difficult.

Conclave is likely also to find adoption amongst those who have explored software-
based privacy-enhancing cryptographic techniques such as Zero-Knowledge
Proofs, Fully Homomorphic Encryption, and Secure Multi-Party Computa-
tion but found the complexity and lack of general-purpose tools an inhibitor to
success.

Conclave’s ability to support ‘privacy-first’ application derives from its ability
to provably execute code that runs as designed and cannot be tampered with.
Privacy is the obvious and most immediate application for such a capability,
and is the focus of this paper. However, we also anticipate Conclave being used
in time to disrupt entirely different markets, through its more general ability
to eliminate certain types of trusted third parties through the substitution of
attestably tamper-resistant code.

Conclave heralds the mainstream era of ‘privacy-first’ computation.

Motivation and Background
The technical heart of the ‘data privacy and control’ problem is that anybody
in control of a computer is able to observe the data it has access to, and can
arbitrarily modify what the computer does with that data.

This means that if you send a piece of information to somebody else’s computer,

3

you must assume that this person can both see this information and can configure
their computer to do anything with it they choose.

“Privacy-enhancing techniques”, both software- and hardware-based, solve this
problem, and have been widely available for some time. But it is only with
the advent of Conclave that it has become a realistic proposition for main-
stream businesses to consider applying these techniques to solve their real-world
problems.

Real-World Privacy Problems Conclave Can Solve
Here we provide motivation for what follows by outlining five otherwise difficult
privacy-related business problems that can now be easily solved with Conclave:

• Train a machine learning model in the cloud without the cloud provider
seeing your training data

• Collaborate with peers in your industry to identify suspicious patterns
of behaviour across your customer sets, without any competitor or third
party actually having access to your proprietary data

• Build an online exchange that can prove to buyers and sellers that sophis-
ticated insiders cannot ‘front run’ their trades

• Run online opinion polls whose participants can be sure their responses
will never be revealed

• Implement a ‘burst-mode’ cloud-hosted computation feature to a mobile
app with the same privacy and integrity assurances as code that runs
locally

And, as discussed in the introduction, Conclave can also be used to disinter-
mediate any business model that exists solely because of an historical inability
to remotely verify that a third party has done what they said they would. For
example, Conclave could be used to implement an entirely decentralised system
for verifying control of websites, and issuing of certificates.

Background
The spread of the Internet into all facets of life in the first two decades of the
2000s has created enormous value for billions of people. But in the breakneck
race to connect everybody and everything, the IT industry has been less quick
to ensure the data being so freely shared was sufficiently protected when in the
hands of others.

So it is perhaps not surprising how many of the most urgent public policy issues
of the early 2020s are a direct consequence of this revolution. And it is striking
how many of today’s technology policy issues share a single cause: the explosion
in the movement and sharing of information amongst firms and individuals has

4

vastly outpaced our ability to control what happens to that information when it
leaves the control of its owner.

Consider this list of technology policy issues on the agendas of most developed
nations at the start of the 2020s:

• Social networks are accused of misusing users’ personal data for corporate
gain [2].

• Advertisers, and the large technology firms whose platforms display their
ads, are accused of tracking users without their knowledge, and of in-
appropriately combining disparate datasets to violate users’ reasonable
expectations that different online behaviours and personas can be kept
separate [3].

• Firms of all sorts are accused of using data they obtained about an individ-
ual for one purpose to pursue unrelated business goals, without informed
consent [4].

• Data that firms legitimately capture about users is often stored or processed
with insufficiently strong controls, leading to data loss or exposure, by
malicious outsiders or rogue insiders [5].

• Firms frequently wish to share data with other firms, but are unable to
control this data once it leaves their systems. They fear the resulting
liability, and so forego otherwise promising opportunities for themselves or
their customers.

These issues all share a single cause: today’s networked economy requires
individuals and firms to share data with third parties or other parts of the
same firm on an unprecedented scale, yet today’s technology provides no way to
control how that data is then used, or for what purpose.

The blunt reality is that once you have shared a piece of information with a
third party, they can do whatever they like with it. The only things constraining
them are ‘soft’ controls: reputation, regulation and contract law. The internet
revolution has made it extraordinarily easy and cheap to share information, but
has provided no comparably powerful tools to control the monster we unleashed.

In what follows, we begin by enumerating three reasons individuals and firms
share data with third parties. We then introduce hardware Trusted Execution
Environments (TEEs) as a maturing, but difficult to use, technology that can
enable data sharing with privacy. The Conclave platform is then introduced
as an easy and accessible toolkit and set of cloud services for harnessing TEEs,
thus unlocking their potential.

The Three Reasons We Share Data
There are at least three distinct reasons we share information with third parties:

5

• ‘Outsourced Computation’

– Example: cloud computing

• ‘Independent Verification of Information’

– Example: demanding proof that a service consumer is old enough

• ‘Multi-Party Collaboration’

– Example: buyers and sellers utilising a centralised exchange to facili-
tate trade

In what follows, we explore these scenarios to elucidate their fundamental
characteristics, and identify requirements a privacy-enhancing technology would
need to meet in order to improve the privacy of each type of service.

Outsourced Computation
Outsourced computation is an increasingly common way in which firms and
individuals experience computing services today:

• IT administrators run workloads on cloud Infrastructure as a Service (IaaS)
services to benefit from economies of scale and variable pricing.

• Developers utilise cloud Platform as a Service (PaaS) offerings, such as
managed database services or ‘function as a service’, to eliminate the need
to run their own infrastructure for commoditised components of their
solutions.

• Business people increasingly rely on Software as a Service (SaaS) offerings,
such as customer relationship management or enterprise resource planning.

Figure 1: When you share information with a third party, traditional technology
provides no assurances over what that party can do with the information they
receive

6

These scenarios can all be thought of as ‘outsourced computation’ and share the
property that the consumer is trusting their provider completely, as depicted
in Figure 1. There is nothing today at a technological level that prevents the
cloud provider from viewing all the consumer’s information or tampering with
how the service works, whether deliberately or inadvertently, perhaps owing to
a hack or rogue insider. And this observation is intrinsic to how such services
operate today. For example, a social media site needs to be able to know who
your friends are if it is to show you stories about them. A bank needs to know
what you’ve spent money on if it is to produce accurate statements.

Independent Verification of Information
Another reason one party shares information with another is because that party
wishes to verify that a particular fact is true.

In the real world, for example, a nightclub bouncer may wish to know that a
guest is legally old enough to enter. Or the user of a web browser may wish to
know that the site to which it is connected is owned by the firm the site claims
to represent. In the world of blockchains, the recipient of a payment transaction
wishes to know that the ‘coins’ they are receiving actually exist.

It often turns out that the fact being asserted, or verified, is not particularly
sensitive. However, the only available evidence that can be independently verified
may contain far more information than the minimal fact in question.

For example, as shown in Figure 2, a physical passport would enable a bouncer
to verify I am over eighteen years old. But the bouncer would also learn my
actual age, full name, nationality and all the countries I visited in recent years.

In the blockchain world, the recipient of a payment transaction can verify without
reliance on any third party whatsoever that the money they have received exists
and is theirs. But to do this they must analyse all the historic blocks on the
blockchain to verify that the coins really were correctly mined at some point
in the past, and that value has been conserved ever since. But this means the
recipient also learns a great deal about the history of the coin, which could
enable them to learn something about other participants on the network.

And these examples are typical. Very often, the only available ‘evidence’ that a
verifier can rely on reveals far more than they actually need to know.

So we find ourselves sharing lots of information with third parties, purely because
of this ‘impedance mismatch’ between what they need to verify and the evidence
we possess that can prove this fact. This will be increasingly difficult to justify
to regulators or other third parties, especially as they become increasingly aware
that technology solutions to this problem now exist.

7

Figure 2: In many situations it is necessary to ‘prove’ a fact to a third party,
but without revealing the full document that provides the evidence

Multi-Party Collaboration
The third major reason for sharing information with a third party is because
many parties want to achieve some business outcome but none of them possess
sufficient information by themselves to do this, as depicted in Figure 3. And so
the parties have to ‘pool’ their information in some way.

For example, if I wish to sell some stock I own, how do I find somebody who
might be interested in buying it? If I need to hire a new CTO for my firm, how
do I find out what the current market rates are in my industry? If I’m processing
an insurance claim how do I know if the customer has fraudulently filed a similar
claim with another insurer?

Furthermore, the emergence of Machine Learning as a mainstream technology
has revealed important situations where the best results depend on multiple
firms being able to share data securely. For example, one firm may wish to train
their model on data owned by another whilst being able to demonstrate to the
data owner that their data will not be used for any other purpose. In other
situations, multiple firms would like to benefit from models that could be trained
on their joint datasets, but without any firm gaining sight of any other firm’s
information.

In all these cases, there is a natural non-technical solution: a centralised third
party can provide a service within which each participant shares their own data
so that the overall dataset can be pooled and processed. In the share trading
case, we call this third party a stock exchange. For the salary data case, we rely

8

Figure 3: Very often in business, different parties possess a piece of the informa-
tion ‘jigsaw’, yet there is nobody they trust to assemble the full picture

on ‘market benchmark’ firms. And insurers rely on industry-operated shared
databases, where regulation allows.

However, in some cases, regulation does not allow this information to be pooled
in a way that could render sensitive information open to attackers or other
third parties. And even when such solutions exist (eg stock exchanges and data
brokers), these entities tend to become natural monopolies, or oligopolies, with
strong pricing power over their customers and, in some cases, an incentive to
pursue business models counter to the interests of the participants who provided
the data in the first place.

But what if there was a way to collectively pool data to solve these sorts of
problems but in a way that prevented the central operator from exploiting their
position of power or from learning anything about the aggregated data set?

Discussion: Different Scenarios, Same Problem
It may not be obvious at first sight, but these problems all have a common cause:
you cannot trust somebody else’s computer.

• In the first case – outsourced computation – you can’t assume the cloud
provider won’t misuse your data

• In the second case – independent verification – you have to share the full
evidence for a fact because somebody else can’t simply trust your computer
if it says “I’ve verified the passport for you and it’s OK”. You could have

9

programmed your computer to lie!

• And in the third case – multiparty computation – the operator of the
pooled data service has full visibility of the entire market, everybody’s
salaries or all insurance claims in a market.

But what if you could sometimes trust somebody else’s computer? What if we
could write applications whose owners cannot tamper with them or observe their
execution? What if an application could process data you are not entitled to see
yet you could trust the results that are provided at the end?

If such a system existed and could be adopted at scale then each and every one
of the public policy issues listed above could be addressed. Data owners would
regain control of their information. They could verify what will happen to their
data – and, by extension, what therefore will not happen to it – before sending
it for processing. And if somebody else’s computer told them a fact had been
verified, they could believe it.

We might name systems that work this way as being ‘privacy-first.’ And it is
likely we will look back on the early decades of the 2000s with shock: “you
routinely shared sensitive data with third parties with no technological controls
over what they could do with it? What were you thinking?”

It should be noted that various cryptographic technologies that can meet the
requirements above already exist. Some techniques rely on advanced mathematics,
implemented in software. At the time of writing, they remain specialised
(as opposed to generally applicable) and require advanced mathematical and
cryptographic skills. As such, they are not yet ready for mainstream adoption.
Hardware-based ‘Trusted Execution Environments’, by contrast, are relatively
mature, but a usability and productivity gap remains. It is this gap that Conclave
fills.

In what follows, we briefly introduce the hardware-enabled approach to privacy-
enhancement, before introducing Conclave and its unique approach to putting
these technologies into the hands of regular developers.

Hardware-Based Privacy-Enhancing Techniques
Since the dawn of modern computing, computers have been designed on the
basis that they exist to serve their owners. And CPUs reflect this assumption.
They enable creation of systems consisting of multiple “unprivileged” coexisting
applications, overseen by a “privileged” supervisor (which we call an operating
system kernel and hypervisor, where present), which is responsible for mediating
their access to scarce real-world resources, and for protecting the integrity of the
system. This situation is depicted in Figure 4, where a client is interacting with
an application hosted on a traditional server. The application is fully under the
control of the supervisor, which is under the control of the owner of the server.

10

The client has no way of knowing what will actually happen to any data shared
with the server.

Figure 4: In a traditional computing environment, the supervisor (aka operating
system kernel and hypervisor if present) is trusted by and under the control
of the owner of the machine, and enjoys a privileged position. It has complete
control over the applications it hosts.

In this model, the operating system is ‘all-powerful’, acting benignly on behalf of
the owner of the system. Applications are presumed to be buggy and maybe even
malicious. The operating system is thus granted supremacy over the applications,
which are assumed to be the source of threats.

And this explains why you cannot trust a service running on somebody else’s
computer: the service isn’t in full control; it is merely an application running
on that computer. And it exists and operates at the pleasure of the operating
system kernel, which controls and sees everything the application does. And
since the operating system is under the control of the owner of the computer, the
service’s users must assume the owner of the computer can see their data and
arbitrarily tamper with the application’s business logic. If you trust the owner
of the computer on which the service runs, then all is good. But if you don’t –
or worry about what may happen if they are hacked – then we have a problem.

The idea behind “Trusted Execution Environments”, or TEEs [9] – the hardware
approach to privacy-first computing – is to turn this design on its head. A
modern TEE, such as Intel SGX, allows an application to escape from the
snooping eyes and capricious hands of the operating system. Such applications
still rely on the cooperation of the operating system to run and communicate
with the outside world, but the operating system is prevented – at the physical
hardware level – from looking at the memory being used by the application or
from changing the application’s business logic. And the hardware is able to
create a digital ‘certificate’ that proves the application is running in this mode.

This model is depicted in Figure 5, where we see application code called an
‘enclave’ running in a mode where the supervisor can not observe what it is

11

doing and can not tamper with its execution.

Figure 5: A Trusted Execution Environment such as Intel SGX allows the creation
of so-called ’enclaves’, which are application code that cannot be tampered with
- or observed executing - by the supervisor. As such, the owner of the server is
"locked out"

Applications running on a Trusted Execution Environment, which we call enclaves,
can ask the underlying hardware to produce a signed document for clients to
review, which we call an ‘attestation’, which can be thought of as making the
following statement:

“To whomever this may concern: this application is running on a fully patched
system in a mode whereby its memory is encrypted and its code is tamper-
resistant. This application possesses a private key, whose public portion is as
follows. I attest that no other application or system has access to this key and, as
such, any data you encrypt with this key can only be accessed and operated on by
the application matching the description above. Signed Intel/AMD/ARM/IBM”

The exact details of the ‘report’ vary between manufacturers and use-cases but
the principle of a hardware-rooted ‘remote attestation’ is at the heart of the
concept: the hardware, in effect, makes a ‘promise’ that a particular piece of
code is running and that the operating system and the rest of the hosting system
has been locked out.

This concept can be used to address all three of the privacy requirements outlined
above:

Outsourced Computation

If you have some business logic that you would like a third party to execute on
your behalf then the remote attestation process allows you to verify that the
third party cannot access your data, because the decryption key is not available
to them. Importantly, the TEE approach goes further than the equivalent
software-only technique: unlike Fully Homomorphic Encryption, a software-
based technique, a TEE can assure you that not only is your data out of the

12

reach of the operator, but it can also assure you precisely which code is running,
or that the code has been signed by an entity you specify. In short, TEEs allow
you to run workloads on somebody else’s computer in a way that lets you verify
they can neither observe the data nor lie about how it is processed1.

Independent Verification

Imagine you have a digital birth certificate and want to prove to somebody that
you are over eighteen years old. Can you use a trusted execution environment to
solve this problem? Yes. You could write a simple application that can verify
the signature on a digital birth certificate and extract the date of birth and name
fields. The application then checks the date of birth was at least eighteen years
before a given date and, if so, generates and signs a new data structure which
states:

“A birth certificate issued by a key known to be owned by <The UK Government>
for name <Richard Gendal Brown> confirmed that this person was at least
<Eighteen> years old as of <Thursday 25 November 2021>.”

A party relying on this information learns nothing other than the proving party’s
age, exactly as we require. Importantly, this also demonstrates that it is thus
possible for a Trusted Execution Environment to achieve the same outcomes as
a zero knowledge proof, a sophisticated but complex software-based technique.

Multi-Party Computation

Finally, it should hopefully be clear that if you possess a TEE, then the ‘out-
sourced computation’ scenario can be easily generalised to the case where multiple
parties are sharing data with the privacy-protected application.

Overview of Conclave
Conclave is a software development kit and suite of complementary cloud services
for the rapid development of privacy-first applications through the use of hardware
Trusted Execution Environments.

Users of Conclave can use high-level languages such as Java, Kotlin and JavaScript
to develop hardware-secured services which can prove how the service will process
their inputs, can prove that the service’s outputs are the result of a specific
program, whose execution cannot be observed or tampered with, and which can

1One special case of ‘outsourced computation’ arises when a firm such as a bank wishes to
run an existing workload in the cloud, where the only assurance they seek is that the cloud
operator cannot tamper with it. This model is sometimes called ‘lift and shift.’ Unlike other
uses of TEEs, where the ultimate consumer of a service receives assurances about how their
data will be processed, ‘lift and shift’ focuses only on the relationship between the application
owner and their cloud provider; the promise does not extend to their users. This is a compelling
value proposition to any large firm with sensitive workloads that they wish to move to the
cloud, and all major cloud vendors will increasingly offer this as a core service. However,
Conclave does not target this category.

13

remotely attest to their users that this is the case. We say such services are
‘privacy-first’.

Conclave compares favourably to many other Software Development Kits (SDKs)
that developers could use to exploit TEEs, whose APIs are often low-level and
require deep knowledge of the underlying hardware. By contrast, Conclave
differentiates itself against most of these SDKs as follows:

• Conclave’s API, the Mail library in particular, is high-level, completely
abstracts the underlying hardware, and makes a large number of decisions
on behalf of developers so as to reduce their cognitive burden, including
to entirely eliminate certain classes of security issues common to naïve
implementations.

• As a result, it can be extremely quick to develop applications on Conclave.
Anecdotes from developers who have used both Conclave Core and com-
peting SDKs suggest that it may be as much as an order of magnitude
more productive.

• Conclave also supports a wide range of programming languages, including
Java, JavaScript, Kotlin and Python, and more, including R, Ruby and
others can be added easily.

• Conclave Core is also one of the few SDKs that tightly integrates with a
complementary cloud offering, providing a seamless path from development
to deployment, and including features that enable workloads to migrate
between cloud servers transparently, something that is not available ‘out
of the box’ from the underlying hardware.

• And Conclave Cloud, in turn, distinguishes itself against its competitors
through the ease with which services can be deployed, its integration with
Conclave Core (providing a bridge between the two models of application
development) and the speed at which it can deliver new services, as a result
of it being built itself using Conclave Core.

As a result, Conclave is dramatically easier and more productive than any
existing enclave authoring solution, allowing users to focus on solving their
business problem, not the technical details associated with securely deploying
Trusted Execution Environments.

Conclave can be used directly to develop and deploy valuable customer-facing
applications. And it can be used as the foundation of higher-level cloud-deployed
developer services, such as confidential databases, lambda-style functions, or
search, from which other applications can be constructed.

In what follows, we first introduce the high level components of the Conclave
Core platform, how they combine to create a simple programming model, and
how some of the product features are implemented at a technical level. We then
summarise the services that comprise Conclave Cloud, the set of cloud-based

14

services R3, the creators of Conclave, have developed, or may deliver in the
future.

Conclave Core
Conclave Core is a platform for developing and deploying privacy-first services.
A typical Conclave deployment looks very much like any application: a server,
in the form of a Java Virtual Machine, hosts the application code, and clients
running on other computers connect to the server. Importantly, and as we
describe in more detail below, the business logic can be written in a surprisingly
wide range of languages, not just Java.

However, unlike other server applications, Conclave applications, which we call
enclaves, are protected from owner of the server on which they run, and Conclave
clients have the ability to verify that everything is working as intended.

Figure 6: Conclave Core makes it easy to develop secure enclaves that can run
on Trusted Execution Environments such as Intel SGX. Conclave enclaves are
hosted in JVMs but can themselves be written in a range of languages

In Figure 6, we see a high-level architecture overview of a Conclave deployment.
Conclave Core takes code written in, for example, Java, JavaScript, Kotlin,
Python and transforms it into an enclave that can run in a Trusted Execution
Environment. This enclave is hosted in a JVM, which runs as an application on
an otherwise untrusted machine. In this section, we dig into these concepts.

Enclave

The heart of a Conclave application, where sensitive business logic and data is
contained, is called an enclave. Enclaves can be written in – or dynamically
execute – a variety of high-level languages. Enclaves have the unique property
that they are protected from the computer on which they run. This means that

15

nothing, including the operating system, hypervisor or BIOS, can tamper with
the enclave’s business logic or observe the data on which it is operating.

This stands in contrast to regular application code running on a server, where
the operating system and other privileged components have full control over the
application, including the ability to alter its business logic without detection,
and to inspect all data that the application has access to.

Importantly, enclaves also have the ability to obtain an unforgeable cryptographic
proof from the underlying hardware that they are indeed running in this protected
mode, and that a particular piece of code is being executed. This means that
enclaves can be used to provide services that not only process data confidentially
and without the risk of tampering, but which can prove that this is the case to
their users.

However, this ability also brings some constraints. In particular, enclaves must
assume that the hardware upon which they are running is under the control of
an attacker, perhaps who also has control of the operating system. Therefore,
enclaves operate in an environment where any interaction with storage or network
could be observed or manipulated by an adversary. To model this and make it
easier for programmers to reason about the otherwise quite complex situation,
enclaves do not have unfettered access to the hardware on which they run.
Instead, enclaves, which are native Linux libraries, are themselves ‘hosted’ in a
regular and hence untrusted operating system process (the Java Virtual Machine
referred to above), with which the enclave cooperates to facilitate communication
with the outside world. One of the most important aspects of Conclave’s design
is how the interaction between the Enclave and its host is implemented in
order to ensure the security assurances of the platform are delivered in practice.
Furthermore, Conclave’s ‘Mail’ API and ‘Common Host’ significantly simplifies
development effort and reduces the required expertise.

At an implementation level, Conclave allows developers to write enclaves in
any JVM-supported language, and enclaves themselves can be configured to
dynamically load code written in a far broader range of languages at runtime,
including JavaScript and Python. Additional languages can be added in the
future.

At build-time, Conclave compiles the application to an Intel-SGX compatible
native library utilising the GraalVM [10] ‘Native Image’ system. This native
library is then linked with the Conclave trusted enclave runtime and packaged
into an SGX enclave binary. This enclave binary is then loaded into a regular
Java Virtual Machine, which itself is running in unprotected memory. This
unprotected, and hence unconstrained, JVM is responsible for managing the
enclave’s lifecycle and connecting it to the outside world.

Conclave’s ability to automatically convert ordinary-looking high-level applica-
tion code into Intel SGX native libraries and to host them seamlessly within a
regular JVM host process, is one of its key contributions to the field. Furthermore,
our testing suggests that the performance impact of running an application as a

16

Conclave enclave is small: the GraalVM ‘native image’ compilation is extremely
effective. This means that the primary performance cost associated with running
Conclave enclaves is associated with the non-trivial cost of entering or exiting
an enclave, which is common to all enclave SDKs and is a direct consequence
of the work the CPU is required to do to ensure that enclave data is protected
whenever execution crosses the security boundary between enclave and host.

This description should make it clear that enclave applications are fundamentally
different to traditional applications. The users of a traditional service must
assume the operator has full access to any information they send to it and
that they can run any algorithm on it that they choose. By contrast, services
delivered as enclaves can be assumed impervious to the depredations of the host
on which they run.

Client

We call the software that communicates with a Conclave service a client. Clients
are responsible for connecting to an enclave via its host, checking that it imple-
ments the service they expect, checking that the service is indeed running in
a sufficiently secure manner, and managing the exchange of information with
the enclave on behalf of one or more users. Conclave provides both Java and
JavaScript client libraries, and more can be easily added as required.

The process of establishing trust in an enclave and managing the secure exchange
of information with it contains many traps for the unwary and, to the greatest
extent possible, Conclave abstracts this complexity for developers through the
provision of a simple email-like messaging API, known as Mail (see below).

Host

The client and enclave are the key parts of a Conclave solution. Indeed, in many
cases, the only thing a developer will write is the business logic that runs in
the enclave, which Conclave will then automatically compile into an Intel-SGX
compatible native shared library.

However, as outlined above, enclaves by themselves lack the ability to com-
municate with the outside world. This is the purpose of the host process. A
host process instantiates an enclave, manages communication with clients, and
forwards messages to and from enclave and client; and provides operating-
system-like services (such as file persistence) to the enclave. Conclave provides
an out-of-the-box host program, as well as a set of Java APIs that advanced
users can use to build their own custom hosts.

One way to think about the role of the host is that it is responsible for doing the
things that the enclave cannot do alone. Recall that enclaves are deliberately
constrained in their access to hardware, for example. However, that also means
that, unlike enclaves, hosts do not run in the same protected mode. Hosts can
see whatever data is passed to them. The operating system can tamper with the

17

logic of the host. In short, whereas clients can assume the enclave will operate
as promised and that its data is protected, neither the enclave nor the clients
can assume the same thing about the host.

In fact, it is often most helpful to assume that the host is an adversary. After
all, if an attacker took control of the computer on which the enclave and host
were running, they could not tamper with the enclave but they could tamper
with the host at will.

It turns out there are some unexpectedly subtle, yet dastardly, things a malicious
host can do. For example, a host could fail to deliver a Mail message from a client
to an enclave, or vice-versa. Or it could deliberately reorder streams of messages.
Or it could agree to persist some data on behalf of an enclave but fail actually
to do so. Worse, it could persist the data but, when asked to return it, provide
stale data from several days earlier. A host can also see the flow of information
in and out of an enclave. This information will of course be encrypted. But
what if the size of a message tells you something about its contents or if a host
could see which portion of an encrypted file was being accessed? If a host knew
this then they could learn something that was supposed to be secret.

These possibilities might seem unlikely. But recall the problem that Conclave is
designed to solve. Our objective is to give owners of data (clients) the confidence
to share sensitive information with a third-party service in order to achieve some
beneficial outcome. And Conclave achieves this by providing assurance that the
third party cannot interfere with the execution or see the data.

The list of some potential attacks above shows that it’s not enough to know that
the enclave application is running in a correct and secure mode. One also needs
to be sure that the application design, as well as how the enclave/host interaction
has been designed at a platform level, has taken into account the range of attacks
that could otherwise weaken the ‘confidential computing’ promise.

It is an open question as to whether application developers can ever be entirely
absolved of the responsibility to reason about the adversarial threat model
inherent in distributed systems programming between multiple different parties.
But Conclave attempts, to the largest reasonable extent possible, to limit the
developers’ cognitive loads.

Attestation

As discussed above, the privacy-first promise of Conclave is achieved by enabling
a client to verify the state of a remote server, and to confirm what code it
is running. This process is known as ‘remote attestation’. This process can
be surprisingly complex, and a key benefit of Conclave is the extent to which
remote attestation is abstracted. In particular, Conclave introduces an Enclave
Instance Information data structure, which encapsulates the information about
the enclave, and an Enclave Constraint, which the author of a client can use to
specify which enclaves it is willing to communicate with. Conclave automates

18

the process of ensuring that only enclaves matching a client’s constraint is able
to access that client’s information.

Mail

Once a client has verified that it is indeed talking to an enclave that meets
its requirements and is in possession of a key through which they can securely
communicate, Conclave’s Mail API provides a simple mechanism to facilitate this
communication. Mail looks superficially simple, providing ‘send’ and ‘receive’
APIs. However, behind the scenes it is ensuring messages are delivered in order,
and orchestrating a collaboration between clients and the enclave to detect any
malicious behaviour on the part of the host. In addition, Mail implements a
range of techniques to protect applications from ‘side-channel attacks’ that would
otherwise be possible, and to detect some attempts by the host to ‘rewind’ the
state of an enclave across restarts2.

Persistence

Trusted Execution Environments depend on their – untrusted – host for access
to the outside world, and this includes storage. Conclave provides an encrypted
filesystem that enclaves can use to securely store data. The key under which
this data is encrypted is derived through a mechanism that is integrated with
Conclave’s attestation process, and under the control of the enclave’s clients.
This enables the clients of an enclave to have sovereignty over which other
enclaves can read the same data. This is of particular importance because TEEs
such as Intel SGX do not provide this support out of the box. Instead, data is
persisted under a key to which only the CPU performing the encryption has
access. This characteristic of TEEs introduces a point of failure: if the CPU is
destroyed then its persisted data is lost forever. And it is incompatible with cloud
deployment models, where it cannot be assumed that workloads will always be
deployed to the same physical machine. Conclave has a solution to this problem,
in the form of the Key Derivation Service (below).

In addition, Conclave provides a ‘persistent key-value store’. This is a data
structure whose contents are cryptographically ‘committed’ to one or more
clients each time it is updated, making it highly likely that any attempt by the
host to roll it back between one instantiation of an enclave and the next could
be detected. In this way, Conclave enlists its own clients into a process through
which any attempts by the host to rewind this data structure could be detected.
This anti-rollback protection incurs some overhead and so a commonly-used
pattern is likely to be one where bulk data is stored in the persistent file-system

2An attentive reader might be wondering about how much they have to trust R3. The
answer is that the full source code to Conclave is available to customers of the platform so
that they, or a party they trust, can independently review the code to verify that no back
doors have been inserted and that the platform does what it says. The Conclave code running
inside an enclave is included in the ‘measurement’ that is provided to clients during the remote
attestation process.

19

and then a commitment to that data is stored in the persistent key-value store.
In this way, a small amount of data that is protected against rollback by the
persistent store can be used to protect a far larger amount of filesystem data.
This provides a close approximation to the capability provided by a hardware
‘monotonic counter’, something that is not presently available on mainstream
hardware platforms.

Upgrades and Recovery from Security Vulnerabilities

Conclave’s integration of remote attestation into the client API has been designed
to make it simple to upgrade applications in a way that allows newer versions to
read data created by older versions, but not vice-versa. And to do this under
full control of the client. In particular, Conclave integrates with the underlying
hardware’s revocation and “Trusted Computing Base (TCB) Recovery” processes,
which can be thought of as a special case of an upgrade.

Conclave Cloud
Conclave Cloud is an integrated set of managed services intended to simplify and
accelerate the development and deployment of privacy-first services. Services such
as the Key Derivation Service and Conclave Compute are tightly integrated with
Conclave Core to facilitate the rapid deployment of user-developed applications.
Services such as Conclave Functions and Conclave Store go further by providing a
set of composable building blocks that developers can combine with other service
(privacy-first and traditional) to compose cloud-native privacy-first solutions. A
depiction of one end-state vision for Conclave Cloud is provided in Figure 7. In
what follows, we summarise some of the key Conclave Cloud services that we
anticipate delivering in the short-term.

Key Derivation and Distribution

TEEs such as Intel SGX provide support for the secure persistence of data
created by enclaves. But this data can typically only subsequently be decrypted
by the same CPU that encrypted it. This maximises security but creates a point
of failure and is incompatible with deployment in cloud environments, which
typically provide no guarantee that a particular application will be scheduled to
the same CPU from one invocation to the next.

To solve this problem, Conclave Cloud provides a Key Derivation Service (KDS).
The KDS gives enclave authors complete control over how the data their enclaves
persist is encrypted. This includes the ability to create encrypted data that
can be accessed by other enclaves that are part of the same enclave ‘family’,
facilitating sophisticated architectural options. In addition, the KDS is fully
integrated with Conclave’s support for upgrades to enclaves and the underlying
confidential computing platform. The KDS is agnostic as to the source of the
underlying ‘master’ key used by any given instance of the KDS. Mainstream
deployments of the KDS will likely use keys obtained from a physical HSM,

20

Figure 7: Conclave Cloud is a set of integrated and complementary cloud services
for the development and execution of privacy-first applications, based on Conclave
Core

21

cloud HSM or a TEE-aware cloud ‘sealing service’ where available. However, the
KDS could also be deployed in a decentralised mode, where the master key is
constructed inside the KDS enclave from a collection of fragments provided by
different parties.

Compute

Conclave Compute is a managed service for the hosting of enclaves developed
using the Conclave Core Software Development Kit. The Conclave Core SDK
is designed so that all a developer needs to do is write their enclave business
logic, and Conclave Core takes care of instantiating the enclave and connecting
it to clients, with a component known as the ‘Common Host’. Conclave Cloud
Compute builds on this architecture by providing a cloud-based Common Host,
with additional monitoring and management logic, providing a seamless path
from local test/development to production-scale operation.

Functions

The traditional development model for enclave-enabled applications is to develop
an enclave, compile it, and deploy it to a suitable server, at which point clients
can connect, verify its attestation, and begin to use it. This works well for many
classes of application, especially those where the bulk of the application’s logic
is custom and/or needs to run inside a single enclave.

However, there are also many classes of application where the privacy-first
computation is a relatively small (or simple) part of the overall application,
or where the application’s design pattern could be implemented by combining
reusable architectural components. We see this phenomenon in non-private
clouds, with the emergence of ‘micro-service’, ‘serverless’ and ‘lambda’ patterns.
What characterises such platforms is that developers can rapidly compose an
application from a palette of high quality underlying services, such as managed
databases, stateless functions that scale on demand, and so forth.

To meet this demand, Conclave Cloud offers Functions, which can be thought of
as a privacy-first analogue of AWS Lambda [10]. Specifically: developers can
upload one or more functions, written in a range of languages including Java,
JavaScript, Python and more, and Conclave Cloud will take care of ensuring
that the associated functions can be invoked on demand, automatically scaling
the service up and down as needed. Significantly, Conclave Cloud provides full
attestation capabilities, enabling clients of Conclave Functions to verify that the
function they are invoking exactly matches the function whose source they have
inspected.

Store and Watch

Most non-trivial enclaves require persistence. Conclave Cloud provides both a
persistence layer to underpin Conclave Compute, as well as a fully managed
confidential database.

22

Furthermore, like all managed services, Conclave Cloud is underpinned by a
monitoring and management layer. However, Confidential services present a
unique challenge: the data being processed must remain private, and a common
cause of privacy breaches is the information – or usage patterns – that can be
revealed from logs. As a result, Conclave Cloud’s monitoring infrastructure –
Watch – has been carefully designed to ensure that the system can be satisfactorily
managed within these constraints.

Comparison to Software-Based ‘privacy-enhancing’
technologies
Conclave aspires to be the simplest and most productive platform for developing
privacy-first applications. To achieve this, Conclave builds on a foundation of
industry-standard hardware Trusted Execution Environments. However, purely
software-based techniques also exist. In this section, we briefly survey the
software techniques before outlining why we believe the Conclave approach is
superior.

Conclave’s primary differentiators with respect to those techniques are as follows:

• Unlike the software-based techniques, Conclave applications can be cre-
ated by developers with ‘off-the shelf’ skills. No advanced training in
cryptography or mathematics is required.

• In addition, Conclave provides ‘remote attestation’ as an integral and out-
of-the-box feature, meaning that, unlike Fully Homomorphic Encryption
solutions, Conclave can provide assurances that not only is data protected
when in the hands of a third party but it is possible to verify what algorithm
they actually ran on it

• And Conclave’s high-level APIs, which are tightly integrated with each
other and seamlessly available across Conclave Cloud’s services, fully
abstract the details of the underlying hardware Trusted Execution Envi-
ronments. This means that Conclave developers do not need to invest
resources in understanding – and keeping pace with – advances in the
underlying technology. This contrasts strongly with users of software-
based cryptographic techniques, who must keep up with extremely rapid
advances.

In what follows, we introduce the main software-based techniques and develop
the argument for why we believe Conclave’s approach is superior.

Background

As discussed above, hardware-based techniques, such as Conclave, attack the
‘trust’ problem at source: they make it possible to build trust in what will happen
to your information when processed on a third party’s computer.

23

The software-based mathematical techniques outlined in this section take a
different approach. Their starting point is that if you can’t trust somebody else’s
computer yet nevertheless need to cooperate with them for some purpose, then
we need to radically limit what information is shared. And the techniques we
will discuss are the result of exploring this thought process, focusing here on
solutions that are enabled through advanced cryptography3.

However, and as we will also go on to demonstrate, it turns out that the
specialised problems that pure software-based techniques can solve can also
be solved by Conclave This underpins our claim that any firm for whom a
software-based privacy-enhancing technique meets their needs could immediately
switch to Conclave to achieve the same security benefit but with radically quicker
deployment times and radically lower implementation costs.

It should also be noted that all of these techniques significantly reduce the amount
of trust one party need have on any other party, but none can totally eliminate
the need for some elements of trust. For example, and as we will outline below,
users of Trusted Execution Environments must trust that the vendor of the
CPU has implemented it correctly and honestly. Similarly, non-specialist users
of cryptographic techniques need to trust both that the underlying algorithms
are indeed secure and that they have been implemented correctly.

The software-based techniques turn out to be more specialised and narrowly
applicable than the more general-purpose hardware approach. However, it turns
out that the different approaches map well to the use-cases outlined earlier and
so we structure what follows in a similar manner.

Outsourced Computation

Imagine you have a list of numbers and you wanted to know the sum, for
example, and wanted somebody else to calculate it for you. But you didn’t want
them to be able to see the numbers themselves. A technique known as Fully
Homomorphic Encryption, or FHE [6] allows you to encrypt the list, send it
to a third party, and for the third party to perform the calculations you asked for
on the encrypted data, yielding some encrypted result which, when you decrypt
it, is the answer to your question.

However, there is no way to know that the result you get back really was the
result of the computation you requested. Perhaps the service provider only
summed every other integer. You have no way of knowing, aside from re-running
the computation yourself, so it turns out that the applicability of FHE may be
fairly limited, even when it is applicable, which is only in specific circumstances
and when the performance overhead is not an issue.

3Software techniques that do not depend on cryptography also exist and are widely deployed.
They employ techniques such as obfuscating records, injecting ‘decoy’ data or simply eliminating
entire columns of data. However, this means they are inherently ’lossy’, and so we do not
discuss them further/

24

Independent Verification

The second major software-based technique concerns itself with answering the
question: “if I possess something that you would believe if you could see it, can
I convince you of something derived from it without you learning anything else
at all”?

Zero Knowledge Proofs, or ZKPs [7], make it possible to mathematically
prove a fact about a secret piece of information without revealing anything aside
from that fact. And it is perhaps no surprise that zero knowledge proofs have
become such an active research field at the same time as the rise of blockchains:
if I can prove to you that I own a coin without having to reveal to you how I
came to own it, you might be willing to accept it as payment without needing to
know anything about my transaction history or how I came to own it. It would
turn the very traceable world of public cryptocurrencies into something far more
‘cash-like’.

However, ZKPs do not, at present, appear to be ready for mainstream adoption
in business. There is no general-purpose, easy to use, technique for generating
zero knowledge proofs about arbitrary facts, the technology changes rapidly, and
‘generation’ of proofs can be extremely slow.

Multi-Party Collaboration

The field of “Secure Multi-Party Computation”, or sMPC [8], is based on
the idea that sometimes there are ways to distribute the processing that needs
to be done on behalf of a group of parties so that each party runs their own part
of the computation and then the results, which don’t contain the input data in
an easy to recover form, can then be combined to yield the result. However, like
ZKPs, the technology is not yet generally applicable or easily usable by ordinary
developers and, like FHE, there’s no way to know whether your counterparts
played fair: did they really follow their parts of the process correctly?

Discussion

One advantage of the software-based techniques is that by being rooted in
deep mathematical theory and by working on existing hardware, they do not
require the introduction of a new trusted party into the equation, at least not
obviously. Further weighing to their advantage is that these techniques are
rapidly advancing.

However, their downside is their complexity, lack of general applicability, perfor-
mance, and the problem that each of them only solves one part of the puzzle
when, quite often, what you need is a simple solution that can be deployed
rapidly and which addresses two or even three of the requirements above at the
same time. For example, if I outsource computation to the cloud, I want to know
both that my data is secure and that the results I receive really were the output
of the query I ran. To achieve that with a software technique would require me,

25

somehow, to combine a general—purpose fully homomorphic encryption solution
with a zero knowledge proof. Mathematics will get there, but it’s not there yet.

In Figure 4, we summarise the high-level breakdown outlined above, distin-
guishing between hardware- and software-based techniques and, within the
software techniques, further breaking out the three most prevalent cryptographic
approaches.

Figure 8: It can be convenient to distinguish between software-based and
hardware-based technologies for enhancing the privacy of IT solutions

At first glance, hardware based techniques may appear to be superior in every
way to the software techniques: a unified approach rather than three distinct
research fields; minimal performance overheads; far fewer limitations and special
cases.

And on a practical day-to-day basis, this is true. However, in the interest of
balance, it is worth highlighting two significant objections to the use of TEEs.
First, without a solution such as Conclave they can be surprisingly tricky to
program, especially to program securely. This is because they turn programmers’
assumptions about the role of different system components on their heads. For
example, and as discussed above, TEE programmers cannot assume an operating
system kernel is trusted. Conclave is intended to address this cognitive and
productivity problem, and this is what we believe tilts the balance decisively
against the software-based techniques.

And it can also be argued that TEEs introduce a new actor into the threat
model: the vendor of the underlying hardware technology. For example, if you
use the Intel SGX TEE then you are directly dependent on the integrity of Intel’s

26

development processes and its ability to withstand pressure from one or more
state actors to incorporate ‘back doors’ into its chips. However, it is also worth
observing that the software techniques also run on hardware and so if a malicious
CPU manufacturer is in your threat model then you need to carefully consider
which attacks you may be exposed to even when using software techniques, even
if the risk may be lower.

Threat Model
Conclave adopts the Confidential Computing Consortium’s threat model [12].
We start by assuming one or more clients, each trusted by their users, are seeking
to communicate with a program whose source they have verified or whose author
they trust, which we call an enclave. However, we assume that the computer
on which this enclave is running may be operated by an adversary who seeks to
subvert the operation of the program and/or observe the plaintext on which it
operates.

This malicious operator is assumed to have control of all hardware outside the
CPU package, all software outside the enclave, and of any devices to which
the computer is connected, including any storage or network devices. This
means the adversary has the ability to block, reorder or replay messages; to
observe any data which enters or leaves the enclave; to delete or replace any data
sent to/from storage; to observe the behaviour of the system as it performs its
work, including its CPU utilisation and temperature; and to restart or otherwise
interrupt the execution of the enclave, including by disrupting or altering its
power or otherwise injecting faults.

However, whilst we assume the adversary has physical access to the computer,
we do not assume that the adversary has the ability to observe the CPU at the
atomic or sub-atomic level. As such, we assume that any secret keys ‘burned’
into CPUs at the time of manufacture upon which they depend for their secure
operation cannot be recovered.

Furthermore, we do not include the host’s trivial ability to deny service by failing
to schedule an enclave for execution in our threat model.

It should be noted, however, that any given Conclave application may not face a
threat model as stringent as this and, as such, may not require all the protections
that Conclave provides, or contemplates providing in the future. To that end,
Conclave provides some features that developers can elect to use that do not
mitigate all these threats, but whose utility is high enough to make the tradeoff
acceptable. A notable example is Conclave’s encrypted file-system which, by
itself, is not secure against ‘rewind attacks’, but which can be made so by using
it in combination with the ‘persistent map.’

27

Conclusion
We have presented Conclave, a platform for the rapid development and execu-
tion of ‘privacy-first’ services and a set of privacy-first cloud services that are
themselves built using the Conclave platform.

Conclave puts the power of Trusted Execution Environments into the hands of
developers, enabling them to write privacy-first applications with ease, using the
productive high-level languages they’re already using to develop their existing
solutions.

Conclave’s productivity and ease of use stands in contrast to the learning
curve associated with competing software-based cryptographic approaches. And
Conclave distinguishes itself from competing hardware-focused platforms through
the speed with which developers familiar with languages such as Java, JavaScript,
Kotlin and Python can develop compelling, privacy-first applications.

Conclave enables users to build, deploy and integrate privacy-first services at
scale and, in so doing, heralds the mainstream era of ‘privacy-first’ computation.

28

Bibliography

[1]

Intel, “Intel Software Guard Extensions,” 2021. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/tools/software-
guard-extensions/overview.html.

[2] BBC, 2020. [Online]. Available:
https://www.bbc.co.uk/news/technology-54722362.

[3] Apple, 2021. [Online]. Available:
https://www.apple.com/privacy/docs/A_Day_in_the_Life_of_Your_Data.pdf.

[4] ICO, 2021. [Online]. Available: https://ico.org.uk/for-
organisations/guide-to-data-protection/guide-to-the-general-data-
protection-regulation-gdpr/lawful-basis-for-processing/consent/.

[5] Bloomberg, 2021. [Online]. Available:
https://www.bloomberg.com/news/articles/2021-11-08/robinhood-data-
breach-exposes-data-on-millions-of-customers.

[6] Red Hat, 2019. [Online]. Available:
https://next.redhat.com/2019/12/02/current-trusted-execution-
environment-landscape/.

[7] Oracle, 2021. [Online]. Available: https://www.graalvm.org/.
[8] Amazon, 2021. [Online]. Available: https://aws.amazon.com/lambda/.
[9] IBM, 2021. [Online]. Available:

https://research.ibm.com/labs/uk/fhe.html.
[10] K. Chalkias, 2017. [Online]. Available:

https://www.linkedin.com/pulse/demonstrate-how-zero-knowledge-
proofs-work-without-using-chalkias/.

[11] Inpher, 2021. [Online]. Available:
https://inpher.io/technology/what-is-secure-multiparty-computation/.

[12] CCC, 2020. [Online]. Available: https://confidentialcomputing.io/wp-
content/uploads/sites/85/2020/10/Confidential-Computing-Deep-Dive-
white-paper.pdf.

Acknowledgements
The author is grateful to Ivar Wiersma, Rusheb Shah, Rui Almeida, Roy Hopkins,
Sneha Damle and Shams Asari for valuable feedback on earlier drafts of this
paper. The design of Conclave was a team effort, led by Mike Hearn, Shams
Asari and Roy Hopkins.

29

	Abstract
	Executive Summary
	Motivation and Background
	Real-World Privacy Problems Conclave Can Solve

	Background
	The Three Reasons We Share Data
	Outsourced Computation
	Independent Verification of Information
	Multi-Party Collaboration
	Discussion: Different Scenarios, Same Problem

	Hardware-Based Privacy-Enhancing Techniques
	Overview of Conclave
	Conclave Core
	Enclave
	Client
	Host
	Attestation
	Mail
	Persistence
	Upgrades and Recovery from Security Vulnerabilities

	Conclave Cloud
	Key Derivation and Distribution
	Compute
	Functions
	Store and Watch

	Comparison to Software-Based `privacy-enhancing' technologies
	Background
	Outsourced Computation
	Independent Verification
	Multi-Party Collaboration
	Discussion

	Threat Model
	Conclusion
	Bibliography
	Acknowledgements

