Confidential Neural Computing: Generative AI workloads in a Trusted Execution Environment

Joe Woodworth - Google Research

Private Gen AI: Motivation & Risks

Core Technical Components

Ongoing explorations

Private Gen Al

Motivation & Risks

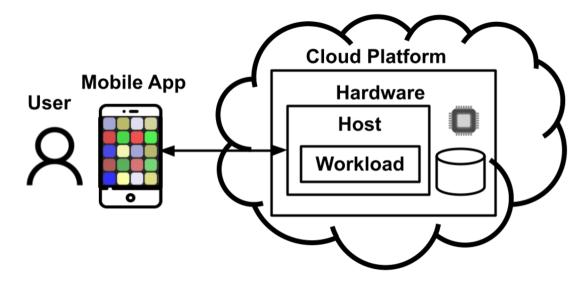
Generative Al

- Generative AI models are growing more & more capable
- Increased demand to integrate these models into products in *personalized* ways
- Personalized gen AI processes user data for inference & training
 - Potential dependency on sensitive & ambient data
 - Gen Al based applications could use e.g. screen content, camera, microphone, chat messages, etc.

Computational Scale

- Today's top Generative AI models are LARGE
- Inference workloads
 - often require low latency + high throughput
- Training workloads
 - long running, large datasets, resource intensive
- Running large scale workloads on device is not always feasible
 - Some workloads must be run on a remote server

Privacy risks



Core Technical Components

Terminology

Confidentiality
information is not made available or disclosed to unauthorized individuals, entities, or processes

Privacy

• an individual or group can control their information or data, and share it selectively

Transparency

the implementation & execution of a process is visible to & verifiable by individuals or groups

Data Protection

Data is exposed to risk in all states

Data at Rest

 encrypted storage, access controls

Data in Transit

- network protocols, secure communication channels
 Data in Use
 - confidential computing

Trusted Execution Environment

- Hardware-based, secure, isolated area within a device's processor
- Protects *data in use*
- TEEs help protect against vulnerabilities or malicious code in the Cloud Platform
 - Confidentiality data in the TEE cannot be accessed from outside the TEE, even by the OS
 - Integrity code in the TEE cannot be tampered with & runs only as intended

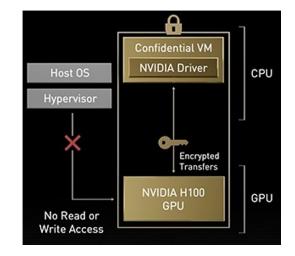
Confidential CPU computing

AMD SEV SNP

- Full encryption of a virtual machine's memory with a unique key
- Protects against snooping from the hypervisor or other VMs on the same host
- Intel TDX
 - Uses isolated virtual machines called Trust Domains (TDs)
 - Uses new CPU instructions & memory management to enforce isolation & attestation of TDs

Confidential Accelerators

- H100 GPU supports Confidential Compute Mode
- even during processing, data is inaccessible from the host CPU, operating system, hypervisor
 H100s are in high demand
 cost & hardware availability are
- - concerns
 - we're investigating alternatives, e.g. Intel AMX CPU-based acceleration



Remote Attestation

Users want to verify what the workload processing their data is actually doing

A **transparent release** process yields reproducible, externally verifiable builds of the TEE container workload

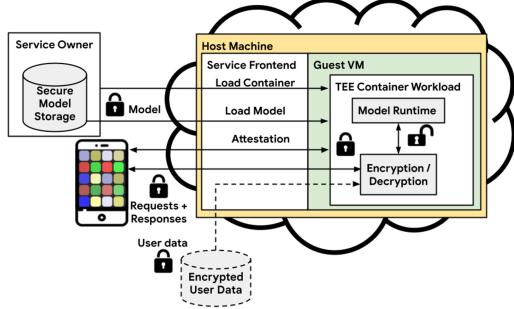
- Attester
 - Remote machine undergoing verification
 - When challenged, securely communicates evidence with Verifier
- Verifier
 - · Stores database of known good measurements (reference-values)
 - Compares Attester's evidence with reference & generates Attestation Report
- Relying Party
 - Client, that trusts the Verifier, and relies on Attestation Report to determine if the Attester's state matches expectations

Confidential Neural Computing

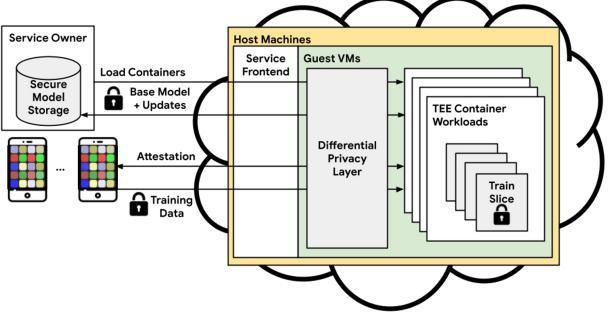
An ML framework that enables generative AI training and inference in secure enclaves

- targets Trusted Execution Environments
- leverages confidential CPU + accelerators
- is built for **Remote Attestation**
- supports Privacy via Confidentiality + Transparency

Inference



Training



Differential Privacy

- For training, we want the model to learn from realistic samples of user data, *without* learning individual private information
- Differential Privacy prevents this by introducing controlled noise into datasets
- Appropriate privacy guarantees can be made through adjusting noise based on ε & δ values
 - ε = the Privacy Loss Budget
 - δ = the failure probability
- Limitations
 - privacy accuracy tradeoff
 - computational cost

Ongoing explorations

High Performance AI in TEE

- Compute platform & hardware
 - Benchmark & optimize performance for confidential H100 GPU, Intel AMX
 - Target multi-GPU & multi-node environments
- Confidential frameworks
 - Google Cloud: Confidential VMs & Confidential Space
 - Different configurations with Project Oak, e.g. on-prem solutions

ML Infrastructure for Privacy

- Support Private Inference & Private Training
- Attestation and end-to-end encryption between model service & client
- Private model artifact protection
 - Public infrastructure dynamically loads the private model via encrypted channel
 - Infra can impose constraints to the dynamic model
- Training pipeline with private data protection
 - Integrates with Differential Privacy to efficiently run workloads in TEE with accelerators

Contact us!

project-cnc-team@google.com