
Asterinas
A safe and efficient Rust-based OS kernel for TEE and beyond

Hongliang Tian

Ant Group
Edmund Song

Intel Corporation

March 13, 2024

http://www.alipay.com

• Part 2: Why Asterinas is memory safe despite of Iago attacks

• Part 3: How Asterinas is ported to Intel TDX

• Part 1: How Iago attacks threaten Linux’s memory safety

• Part 2: Why Asterinas is memory safe despite of Iago attacks

• Part 3: How Asterinas is ported to Intel TDX

• Part 1: How Iago attacks threaten Linux’s memory safety

• The following code snippet* from Linux kernel suffers a memory safety issue caused by Iago attacks

Game: can you spot the memory safety bug (1)

// file: linux/drivers/virtio/virtio_ring.c

static inline int virtqueue_add_split(struct virtqueue *_vq, /* more args */) {
 // ...

 for (n = 0; n < out_sgs; n++) {
 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);

 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
 prev = i;
 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
 }
 }

 // ...
}

Untrusted input
from device

* Hetzelt, Felicitas, et al. "Via: Analyzing device interfaces of protected virtual machines." Annual Computer Security Applications Conference. 2021.

Game: can you spot the memory safety bug (1)

// file: linux/drivers/virtio/virtio_ring.c

static inline int virtqueue_add_split(struct virtqueue *_vq, /* more args */) {
 // ...

 for (n = 0; n < out_sgs; n++) {
 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);

 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
 prev = i;
 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
 }
 }

 // ...
}

Out-of-bound
indexing

Untrusted input
from device

* Hetzelt, Felicitas, et al. "Via: Analyzing device interfaces of protected virtual machines." Annual Computer Security Applications Conference. 2021.

• The following code snippet* from Linux kernel suffers a memory safety issue caused by Iago attacks

// file: drivers/char/virtio_console.c

static int init_vqs(struct ports_device *portdev) {
 // ...

 nr_ports = portdev->max_nr_ports;
 nr_queues = use_multiport(portdev) ? (nr_ports + 1) * 2 : 2;
 vqs = kmalloc_array(nr_queues, sizeof(struct virtqueue *), GFP_KERNEL);
 if (!vqs) {
 err = -ENOMEM;
 goto free;
 }

 // ...
}

Game: can you spot the memory safety bug (2)

Untrusted input
from device

* Hetzelt, Felicitas, et al. "Via: Analyzing device interfaces of protected virtual machines." Annual Computer Security Applications Conference. 2021.

• The following code snippet* from Linux kernel suffers a memory safety issue caused by Iago attacks

// file: drivers/char/virtio_console.c

static int init_vqs(struct ports_device *portdev) {
 // ...

 nr_ports = portdev->max_nr_ports;
 nr_queues = use_multiport(portdev) ? (nr_ports + 1) * 2 : 2;
 vqs = kmalloc_array(nr_queues, sizeof(struct virtqueue *), GFP_KERNEL);
 if (!vqs) {
 err = -ENOMEM;
 goto free;
 }

 // ...
}

Game: can you spot the memory safety bug (2)

Untrusted input
from device

Integer overflow

Allocation of zero-
sized objects

* Hetzelt, Felicitas, et al. "Via: Analyzing device interfaces of protected virtual machines." Annual Computer Security Applications Conference. 2021.

• The following code snippet* from Linux kernel suffers a memory safety issue caused by Iago attacks

// file: linux/drivers/net/virtio_net.c

static int virtnet_probe(struct virtio_device *vdev) {
 // ...

 if (mtu < dev->min_mtu) {
 /* Should never trigger: MTU was previously validated
 * in virtnet_validate.
 */
 goto free;
 }

 // ...

 return 0;

 // ...
free:
 free_netdev(dev);
 return err;
}

Game: can you spot the memory safety bug (3)

Untrusted input
from device

* Hetzelt, Felicitas, et al. "Via: Analyzing device interfaces of protected virtual machines." Annual Computer Security Applications Conference. 2021.

• The following code snippet* from Linux kernel suffers a memory safety issue caused by Iago attacks

// file: linux/drivers/net/virtio_net.c

static int virtnet_probe(struct virtio_device *vdev) {
 // ...

 if (mtu < dev->min_mtu) {
 /* Should never trigger: MTU was previously validated
 * in virtnet_validate.
 */
 goto free;
 }

 // ...

 return 0;

 // ...
free:
 free_netdev(dev);
 return err;
}

Game: can you spot the memory safety bug (3)

Untrusted input
from device

Unset error
number

Use-after-free

* Hetzelt, Felicitas, et al. "Via: Analyzing device interfaces of protected virtual machines." Annual Computer Security Applications Conference. 2021.

• The following code snippet* from Linux kernel suffers a memory safety issue caused by Iago attacks

Iago attacks make Linux even more unsafe…

Memory safety bugs

Security vulnerabilities
Code corruption, control-flow hijack, information leakage, …

Integer overflow, invalid indexing, incorrect type casting, … , Iago attack vulnerabilities

Invalid pointers

Invalid memory access

generate

read / write

leads to

60%-70%
security vulnerabilities are caused
by memory safety bugs2

>1500
instances of untrusted inputs in
Linux kernel, per Intel1

1. Intel® Trust Domain Extension Guest Linux Kernel Hardening Strategy: https://intel.github.io/ccc-linux-guest-hardening-docs/tdx-guest-hardening.html
2. What science can tell us about C and C++'s security: https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

• Part 2: Why Asterinas is memory safe despite of Iago attacks

• Part 3: How Asterinas is ported to Intel TDX

• Part 1: How Iago attacks threaten Linux’s memory safety

A secure, fast, and general-purpose OS kernel

written in Rust and compatible with Linux

http://github.com/asterinas/asterinas

http://github.com/asterinas/asterinas

With great power,
comes with

great responsibility

The unsafe keyword in Rust
has superpowers

Rust kernels must use the
unsafe superpowers

• Examples of the superpowers:

• Dereferencing a raw pointer

• Inserting assembly code

• Calling unsafe functions

• Implementing unsafe traits

Why Rust kernel != safe kernel

• Low-level operations require unsafe

• Manipulating CPU registers

• Accessing physical memory

• Doing user-kernel switches

• Handling interrupts

Introducing the framekernel OS architecture

App

Framekernel = single address space + safe language + safe/unsafe partition

Framekernel

Allow
unsafe? Responsibilities Code

Sizes
Memory
Safety

Yes
Encapsulate low-
level unsafe code

into safe
abstractions

Small Examined by
programmers

No
Implement OS
functionalities,

including device
drivers

Large Guaranteed by

Rust compiler

OS
Framework

OS
Services

Framekernel promises both security & performance

App

(a) Monolithic kernel

App App

TCB

Non-TCB

Slow path (e.g., RPC)

Fast path (e.g., func call)

(b) Microkernel (c) Framekernel

Figure. A comparison between different OS architectures

👉 The speed of a monolithic kernel, the security of a microkernel

The four requirements for the OS framework

Expressiveness

Minimalism Efficiency

Soundness

Requirement Tension between two requirements

The four requirements for the OS framework

Expressiveness

Minimalism Efficiency

Soundness

Requirement Tension between two requirements

A Rust crate is sound

if any safe Rust system based upon it

does not exhibit undefined behaviors.

A safe Rust system may

contain arbitrary safe Rust code,

may be executed in arbitrary timings,

and may take arbitrary inputs.

This implies the resistance against

malicious inputs from Iago attacks

• Physical memory pages are classified into two categories.

• Typed memory are the one that may affect Rust’s type safety, e.g., the code, stack, heap, page

tables of the kernel and BIOS.

• Untyped memory are the one that does not affect Rust’s type safety, including any usable

physical pages that are not marked as typed yet.

• The Framework API only allows access to the untyped memory and it must be
done through carefully-designed Rust capability objects:

• Use the safe methods provided by these memory capability objects, instead of
dereferencing raw pointers!

Asterinas Framework: Typed vs untyped memory

• VmFrame: a physical memory page

• VmSpace: a user memory space

• DmaCoherent: a coherent DMA mapping

• DmaStream: a streaming DMA mapping

Defense against Iago attacks: Linux vs Asterinas

Memory safety bugs

Security vulnerabilities
Code corruption, control-flow hijack, information leakage, …

Integer overflow, invalid indexing, incorrect type casting, … , Iago attack vulnerabilities

Invalid pointers

Invalid memory access

generate

read / write

leads to

Asterinas’s approach is to

Eliminate
invalid memory access,

which is only possible through the
few methods provided by

the memory capability objects.

Linux’s approach is to

Harden
the large attack surface by
auditing and fuzzing every

allowed driver.

>

👉 Asterinas is more memory safe than Linux, or any other Rust kernels

• Current status

• Goal for 2024

• Get the project ready for production deployment in x86-64 VMs

• Find early adopters in TEE usage

Project status and plan
Asterinas has been made open source: https://github.com/asterinas/asterinas

50K
Lines of Rust

120
Linux syscalls

80%
Safe Rust

4
Sponsors

https://github.com/asterinas/asterinas

• Part 2: Why Asterinas is memory safe despite of Iago attacks

• Part 3: How Asterinas is ported to Intel TDX

• Part 1: How Iago attacks threaten Linux’s memory safety

• uArch extensions for confidential computing
based on Intel virtualization (VMX)

• “Lift-and-shift” model to migrate application
from legacy to confidential computing

• Multi-key memory encryption engine to
encrypt user data in-flight, and TDX
instruction module to isolate hypervisor
from trust boundary

• TCB (Trust Computing Base) limited to
silicon level, minimize the cost of trust chai

Intel Trust Domain Extensions (TDX)

TDX enablement in the guest environment

• TDX introduces u-Arch enforcement to
harden data protection for virtualization
instance

• TDX agnostic portion (Arch. Independent
portion) vs. TDX enlightened portion .

• Most of TDX modifications fall in boot-up,
trap, memory management, and device
MMIO etc.

The tdx-guest crate
• An open source project to

encapsulate TDX instruction
interface for guest environment

• TDX Guest ABI support

• TDCALL

• TDVMCALL

• Wrapping interface for TDX guest
flow

• TD Initialization

• Virtualization Exception (#VE)

• Memory mapping

• Measurement and Attestation

• Why need #VE?

• Confidential computing enforcement to

uArch for security

• Some cases valid in legacy instance for

direct access, but trigger uArch behavior for
injecting exception into TD Guest

• Some instructions access

• Some registers access, MMIO access

#VE: TD-specific virtualization exception

• How to implement?

• TDX Enlightened Guest setup #VE handler

• #VE handler analyze exception context and virtualize requested operations for non-Enlightened

portions

• Private Memory vs. Shared Memory

• Private: Secure EPT via TDX instruction

module

• Shared: Shared EPT owned by VMM

Memory management

• Private Memory Allocation

• Guest pages allocated by VMM in PENDING

state

• TD Guest need to accept private page explicitly

for using as private memory

• Private and Shared Conversion

• TD Guest notify VMM for page remapping.

• VMM call TDX instruction module remap page

between shared EPT and secure EPT

• TD Guest need additional page acceptance

flow for shared page to private page

Asterinas and TDX integration update
• Validated Asterinas & TDX

features

• TD Guest: Boot-up, Virtualization

Exception, Memory and MMIO

• Driver: virtio, console, storage,

network, attestation

• Future Plan

• Features: TDX 1.5 & 2.0, Debug,

Trust Service

• Test with more workloads and

devices

• Performance Benchmark

• Asterinas successfully support Intel
TDX hardware environment

Thank You

http://github.com/asterinas/asterinas

http://github.com/asterinas/asterinas

