End-to-End Encryption with the Split-Trust Encryption Tool

Jessie Liu

Google Cloud

Overview

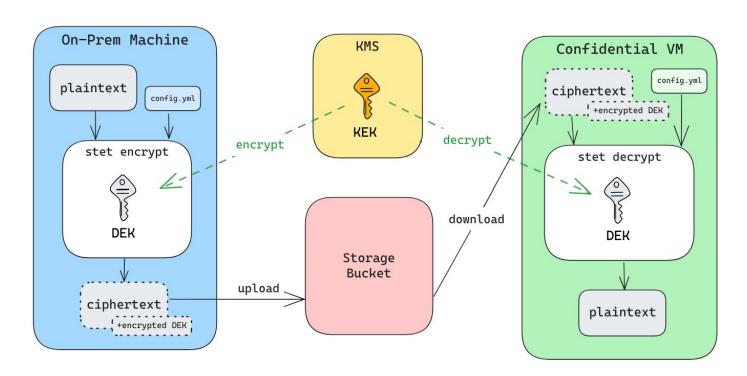
- Split Trust Encryption Tool (STET)
 - Open-source CLI tool for encrypting/decrypting data
 - Secure key ingress and egress in/out of GCP
- Objective: Ensure the only entities with access to data are the data originator and data consumer

Overview

On-Prem Machine

- Data originator
- Trusted due to being on-premises

KMS

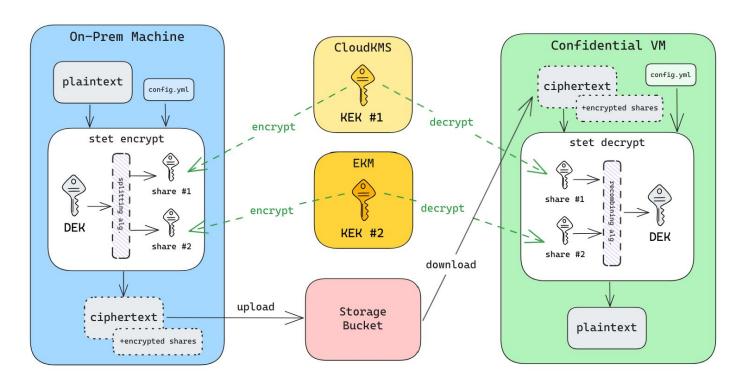

- Holds KEKs
- Required to trust, unless using split trust

Storage Bucket

- Intermediate storage for encrypted data
- Not required to trust due to data encryption

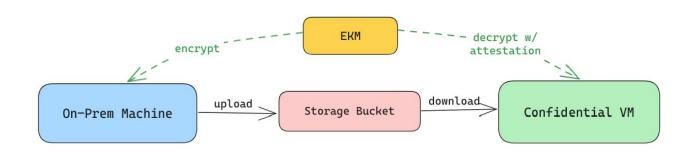
Confidential VM

- Data consumer
- Trusted due to Confidential Computing

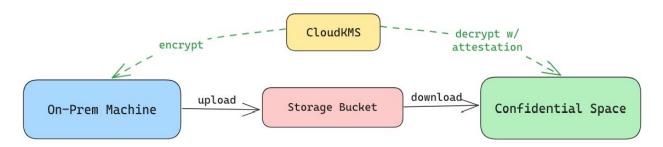


Goals

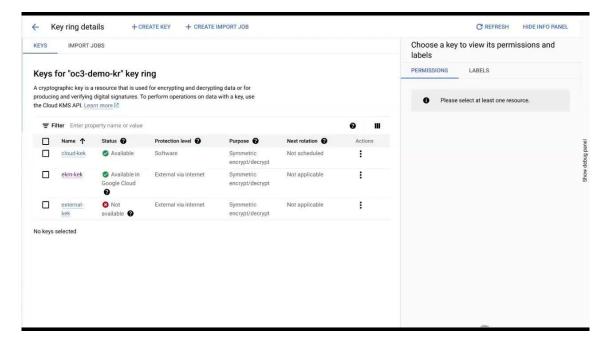
- Reduce amount of trust needed
 - Split Trust using multiple key management systems removes the need to trust a single KMS
- Fully establish trust when trust is needed
 - Support attestation in access policies for KEKs
 - Multiple varieties of attestation:
 - Platform-based (TPM attestation)
 - Workload-based (Confidential Space)


Split Trust

- Purpose: Remove the need to unilaterally trust a KMS
- During encryption: split DEK into n shares, with each share is encrypted by a different KMS
 - Specify k<=n shares needed to reconstruct the DEK
 - Having <k shares reveals no information about the secret
 - Maliciously accessing data requires collusion between the KMSes
- **During decryption:** each share is decrypted, then the DEK is recombined if at least *k* shares are available


Attestation - EKMs

- TPM attestation is natively supported
 - Configured in KEK settings
 - When STET communicates with EKM, EKM requests an attestation if the key policy requires it



Attestation - CloudKMS

- Supported with Confidential Space attestation token
 - Confidential Space allows confidential data to be shared with a workload while retaining confidentiality & ownership
 - STET sends attestation token to CloudKMS, Cloud IAM verifies access policy

Demo

To conclude...

- STET provides a secure way of sending data in/out of GCP that is protected from insiders
 - Usability manages KMS communication & key split

```
$ gsutil cp --stet secrets.txt "gs://my-bucket/my-secrets"
$ gsutil cp --stet "gs://my-bucket/my-secrets" plaintext.txt
```

- Confidential Space supports workload-based attestation
 - STET provides usability & convenience in CS

Next Steps

- More info & try our quickstart guide:
 - https://github.com/GoogleCloudPlatform/stet

- Details on Confidential Space
 - <u>'Securely collaborating across multiple cloud</u> <u>providers'</u> talk by Josh Krstic
 - https://cloud.google.com/docs/security/confidentialspace