Attestation for Hosted
Workloads

Agenda

—Context

—Trust Model

—Walkthrough: Using Attestation to Authorize Enclaves
—Q&A

Context

About Evervault

—We build infrastructure products to solve complex security and compliance challenges.
—All of our products use cryptography to solve these problems.
—Became design partners for AWS Nitro Enclaves in 2020

—Used it to protect user private keys with our Encryption Engine

Experience building on Enclaves

—Nitro Enclaves allowed us to build a secure, attestable service as a small team.
—Involved some heavy lifting to get to production:
OTooling
O Observability
OScaling

August 10, 2021 27 min read

How we built the Evervault
—Overall a success Encryption Engine (E3)

Packaging up what we learned

—Enclaves builds on our experience from running AWS Nitro Enclaves in production
—Aims to reduce the initial engineering effort:

OEasier build process

OFeatures to support lift & shift of existing containers

OClients with attestation built in

OManaged deployments

Easier Build Process

—Our CLI lets users build their Enclave as though it is a standard Docker Image

—Best effort reproducible builds
—Support for pinning signing certificates

—Support for selectively including features in the runtime

User's Machine [/ CI Pipeline

Dockerfile enclave.Dockerfile
. User's Image
User's Image | inject +

directives .
Enclave runtime

— build EIF—>

enclave.eif

Built EIF
+
Attestation Measures

Supporting existing containers

—Provide configuration in keeping with traditional, on-demand compute platforms
—In-Enclave runtime abstracts away the Enclave environment
OManages the Enclave<>Host bridge

OHandles TLS certificate provisioning & termination

OExposes attestation documents

O Selective support for network egress

Enclave User

VSock . .
runtime Service

I 1l

loopback

Clients with attestation built in

—Maintain a Rust library to validate Attestation documents

—Support attestation from 5 Client SDKs

—Adding support for syncing Attestation Measures from Client SDKs

OAvoids complex orchestration issues when Attestation is user facing

Client

Sync Active PCRs

v

Connect & Attest

PcrR
Provider

Enclave

Managed deployments of TEEs

—Users build their own image, and provide to us for deployment
—We manage the instance provisioning, configuration, and routing
—We handle scaling, and apply security patches

—We provide notifications for expiring Enclave signing certificates

.....................

| Evervault Managed i
Infrastructure

Customer
Ec2

1

]

1

1

1

H

) Enclave

H

)

]

\ Customer

H Ec2
Upload EIF—> [NN N—

]

! Enclave

H

H

' Customer

| Ec2

H

1

]

Client

.....................

Trust Model

The Trust Model for managed deployments

—Managed deployments introduce an interesting trust model...
—From our customers’ perspective, they want to only trust their Enclave

—From our CloudSec perspective, we only want to trust our Control Plane

The Trust Model: Customer Perspective

—Customers build & sign their Enclave image on their own machine
—Built Enclave image includes the Evervault Runtime

—OQur CLI [1] and Runtime [2] are open source

—The customer uploads their built & signed image to Evervault

—We handle Enclave orchestration, but not builds

[1] https://github.com/evervault/enclave-cli

[2] https://github.com/evervault/enclaves

https://github.com/evervault/enclave-cli
https://github.com/evervault/enclaves

The Trust Model: Evervault Perspective

—We wrap the customer image in a Control Plane before deploying
—Our Control Plane is launched with the Enclave’s ID, and internal credentials
—Cannot know if the Enclave is being deployed with a valid Runtime

—Need to treat the in Enclave processes as untrusted entities

Using Attestation to Authorize Enclaves

Control Plane

. vsock

request token
{ enclave_vvuid }

Enclave

begin handshake

Nitro Hypervisor

Provisioner

Control Plane

token

. vsock

token
sign({ enclave_vuid, enclave_ip })

Enclave

Nitro Hypervisor

Provisioner

Generate Attestation Doc
{ challenge: token }

Control Plane

Blind TLS passthrough

« vsock

Enclave

Attestation Doc
{ challenge: token }

Nitro Hypervisor

v

Provisioner

Validate Attestation Doc
Cross reference PCRs vs Known Values

Assertions from the Attestation Document

—Using the Attestation Document, the Provisioner can verify the integrity of the Enclave.

—The Attestation Document itself allows us to verify the connection is from an Enclave.

—The challenge allows us to reliably identify the Enclave.

—We can then cross reference the PCRs in the Attestation Document and the IP of the
request against the known Enclave information.

—Once all of these tests pass, we can trust the Enclave.

Control Plane

Blind TLS passthrough

secrets, environment variables

. vsock

Enclave

Nitro Hypervisor

Provisioner

Takeaways

—This model of authorization improves upon standard authorization, typically based on
instance identity.
—By centering our Enclave authorization around attestation, we only issue secrets to

instances based on the integrity of the deployed image.

Thank you

