
Security Audit
Serum
September 2022

Prepared for:
Serum

Prepared by:
SecureBlock
www.secureblock.io

664f7d40-cd41-4b7a-a4bb-769888940898 Security Audit - Serum

Table of Contents

Security Audit

Table of Contents

Introduction

Executive Summary

Identified Vulnerabilities

Additional Notes

Attack Narrative - Smart Contract

Vulnerability Remediation

Page 2 of 9

664f7d40-cd41-4b7a-a4bb-769888940898 Security Audit - Serum

1 Introduction

This document includes observations and �ndings during the audit of the smart
contract.

 a. About SecureBlock
Founded in 2021 by an association of experts in the �eld of computer security with
many years of experience.

Our goal is to simplify and provide a quality security testing service for blockchain
projects and technologies. Taking an individual approach and manual review of each
project allows us to better understand use case of the applications and �nd
vulnerabilities and problems that standard automated tools will not �nd.

We believe that openness and trust are one of the key aspects of blockchain
technology, which is increasingly �nding its purpose in more and more industries. For
this reason, our clients have an insight into the state of security testing, a preliminary
description of vulnerabilities and the public management of the �nal report through
an application we have developed internally.

 b. Purpose of the audit
The purpose of the testing was primarily to �nd security issues, as well as compliance
of the code with best practice and improve code quality.

 c. Revision History

Date Author Version Note

16th of Sep 2022 Dalibor T. v1.0 Initial report

17th of Sep 2022 Luka S. v1.1 Re-test

Page 3 of 9

664f7d40-cd41-4b7a-a4bb-769888940898 Security Audit - Serum

2 Executive Summary

 a. Results

During the conducted security testing, 0 high-risk, 1 medium and 2 low-risk issues were found.
All issues found during the initial test have been �xed, which is con�rmed by this report.

 b. Scope

Name Serum

Language Solidity

Network N/A

Source SerumCoin.sol (SHA1: 22a8b54263f85cb9ac2c82bc0fa41f95917273f3)

Re-test Source SerumCoin.sol (SHA1: e17f74132381cbbf533cb679d02c0544f99af9e4)

 c. Exclusions

Exclusion from testing refers to components and functionalities that we did not have access to during
testing, therefore we did not perform test on following:

• No exclusions

Page 4 of 9

664f7d40-cd41-4b7a-a4bb-769888940898 Security Audit - Serum

3 Identi�ed Vulnerabilities

Issue
ID

Severity Title Status

APP-01 Low Floating Pragma Acknowledged

APP-02 Low Missing Zero Address Check Fixed

APP-03 Medium Immutable Variables Cannot be Read From Constructor Fixed

 APP-01 - Floating Pragma
Contract is using floating pragma. Locked pragma ensures that contract does not get accidentally deployed
using an unstable compiler version that might introduce bugs.
Status: Acknowledged

 APP-02 - Missing Zero Address Check
It has been found that zero address check is missing at multiple locations. Functions
excludeFromMaxTransaction, excludeFromFees, setAutomatedMarketMakerPair, updateSerumWallet and
other functions accepting address type parameter doesn't implement zero address checks.
Status: Fixed

 APP-03 - Immutable Variables Cannot be Read From Constructor
It has been found that contract is trying to read immutable variable uniswapV2Pair from constructor which
causes TypeError during compilation.
Status: Fixed

Page 5 of 9

664f7d40-cd41-4b7a-a4bb-769888940898 Security Audit - Serum

4 Additional Notes

The following notes refer to potential vulnerabilities that are not exploitable in the
current environment, but we would like to draw attention as they could cause
unexpected behavior in the future if contract gets updated or deployed in different
environment.

• No additional notes

Page 6 of 9

664f7d40-cd41-4b7a-a4bb-769888940898 Security Audit - Serum

5
Attack Narrative - Smart Contract

 a. Smart Contract Checklist

In order to �nd vulnerabilities during the test, we go through a checklist that helps us
to cover more tests as well as demonstrate to the client which checks were included
during testing. In addition to the list below, we check for business logic vulnerabilities
that we �nd on the deployed contract on our local private network so that there are
no unexpected consequences for users.

Name Description

ERC standards The contract is using ERC standards.

Compiler Version The compiler version should be speci�ed.

Constructor Mismatch The constructor syntax is changed with Solidity versions. Need
extra attention to make the constructor function right.

Return standard Following the ERC20 speci�cation, the transfer and approve
functions should return a bool value, and a return value code needs to
be added.

Address(0)
validation

It is recommended to add the veri�cation of
require(_to!=address(0)) to effectively avoid unnecessary loss
caused by user misuse or unknown errors

Unused Variable Unused variables should be removed.

Untrusted Libraries The contract should avoid using untrusted libraries, or the
libraries need to be thoroughly audited too.

Event Standard De�ne and use Event appropriately

Safe Transfer Using transfer to send funds instead of send.

Gas consumption Optimize the code for better gas consumption.

Deprecated uses Avoid using deprecated functions.

Sanity Checks Sanity checks when setting key parameters in the system

Page 7 of 9

664f7d40-cd41-4b7a-a4bb-769888940898 Security Audit - Serum

Name Description

Integer over�ows Integer over�ow or under�ow issues.

Reentrancy Avoid using calls to trade in smart contracts to avoid reentrancy
vulnerability.

Transaction
Ordering
Dependence

Avoid transaction ordering dependence vulnerability.

Tx.origin usage Avoid using tx.origin for authentication.

Fake recharge The judgment of the balance and the transfer amount needs to
use the “require function”.

Replay If the contract involves the demands for entrusted management,
attention should be paid to the non-reusability of veri�cation to avoid
replay attacks.

External call
checks

For external contracts, pull instead of push is preferred.

Weak random The method of generating random numbers on smart contracts
requires more considerations.

Access Control Well de�ned access control for functions.

Authentication
management

The authentication management is well de�ned.

Semantic
Consistency

Semantics are consistent

Functionality
checks

The functionality is well implemented.

Page 8 of 9

664f7d40-cd41-4b7a-a4bb-769888940898 Security Audit - Serum

6
Vulnerability Remediation

Detailed remediation steps for found issues are available for client over web portal at
https://secureblock.io/dashboard

Page 9 of 9

