
harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

BENCHMARK REPORT | December 19th, 2022

Lookup Speed Comparison of
Normalized and Denormalized
Data Models at Scale using
HarperDB

Outcome
This comparison demonstrates that HarperDB enables normalized data to be a practical
storage solution with minimal impact on read performance. In this test, denormalization
provides a negligible advantage of less than two milliseconds over normalized data for read
operations but causes total space on disk, write times, and insert times to be dramatically
reduced.



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Data Model Overview

Normalized Data
Normalized data is organized into tables, each representing a specific type of information. This
structure divides data into logical groups to minimize redundancy and ensure consistency.
Relationships between tables are established through keys, allowing for efficient data retrieval
and updating. Normalized data models help ensure data integrity and reduce the risk of errors
or inconsistencies in the data.

Denormalized Data
Denormalized data combines multiple types of data into a single table. This can result in data
duplication and a larger table size. Accordingly, it consumes more of a database's in-memory
cache. It can also increase the risk of inconsistencies in the data and make updates more
resource-intensive since data needs to be updated in multiple locations. Historically, the
upside to denormalization is lookup speed because the system just needs to perform one
look-up rather than multiple.

Summary of Results

● Normalized data’s performance scales significantly better.
● Denormalized data’s speed advantage drops off when the size on disk exceeds

system RAM.
● On average, normalized data has 12.12 times more throughput on write than

denormalized.
● On average, denormalized data is 13.1 times larger than normalized data on disk.

Performance was compared for normalized and denormalized data models. Multiple tests
were run against datasets of increasing size and with increasing user concurrency on a single
server.



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Datasets were intended to simulate various user counts, starting with 20,000 users and
increasing by an order of magnitude for each test, with a final simulation of 200,000,000 users.
Each user has 150 entitlements that represent purchases of various digital items. Entitlements
were stored as part of the user’s record when testing the denormalized data model and as a
separate table while testing normalized data.

Entitlements were randomly selected from a pool of entitlements that varied in size based on
the user base. The number of entitlements was 10% of the number of users. For example,
when testing 20 million users, a list of 2 million potential entitlements was created, then each
user was associated with 150 of those entitlements.

For a smaller dataset representing 2 million users, the read throughput for the denormalized
model was 30K/s with sub-millisecond response times. In contrast, the normalized model
delivered a throughput of 12K/s with response times under 2ms. However, once the database
size exceeds the server’s available RAM, the advantage of a normalized data structure
becomes self-evident.

For 20 million users, the size of the denormalized data exceeded the available RAM. This
resulted in a throughput drop to 9K/s and 3-4ms response times. The normalized data’s
throughput—being far smaller on disk—remained steady at 12K/s, with response times
increasing only slightly to just over 2ms.

For 200 million users, the size of the normalized data also exceeded the available RAM.
Throughput dropped only slightly to 9K/s, with median response times increasing only slightly
to 2.6ms.

We could not test 200 million denormalized records, as loading that much data on disk would
have taken far too long. Another advantage of the normalized data structure is writing
performance, with write throughput remaining consistently 12 times higher than for
denormalized (13,000 records/second vs 1,100 records/second).



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Methodology and Hardware Specs
Benchmark testing was performed against HarperDB 4.0.0 running on a Linode VM in the
Atlanta, GA region.

Hardware:
50 CPU Cores - AMD EPYC 7642
128GB RAM
2,500 GB Storage, ext4
Ubuntu 22.04

Tests were executed against User record sets of 20K, 200K, 2MM, 20MM, and 200MM, where
each User has 150 associated entitlements. For each increment of record sets, we ran tests to
show performance as we increased the number of concurrent connections (cc) which scaled as
follows: 1cc, 50cc, 500cc, 1000cc, and 5000cc. The goal of scaling concurrent connections was
to demonstrate not just optimistic performance with a single API call, but to show how
HarperDB performs as we scale concurrent requests against both the normalized and
denormalized data sets.

For each increment in the size of data sets, new data was loaded into HarperDB tables. Data
was loaded with sequential primary key values to optimize data ingest performance.

Every test iteration was executed to compare the performance of normalized data sets versus
denormalized data sets. The load was applied to HarperDB via another dedicated server, with
equal specs, in the Atlanta, GA region running k6, an open-source, high-scale load testing tool.
HarperDB was running with the HTTP protocol, and we were executing the requests with
Keep-Alive enabled. Tests were executed for 300 seconds, where we recorded summary
statistics for each test run and data for every request performed. All times reported in this
document are the time it took HarperDB to process requests, recorded via the HarperDB
server-timing header, and not the total response time of a request, which would include
variable Internet latency.

https://k6.io/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Keep-Alive
https://harperdb.io/docs/reference/harperdb-headers/


harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

HarperDB Storage Technology
HarperDB’s storage engine is based on advanced memory mapping technology that enables
extremely fast and efficient data access with minimal overhead from system calls, avoiding
redundant caching structures and fully leveraging operating system caching capabilities and
machine resources. HarperDB’s storage engine (LMDB) uses a highly optimized B-tree
structure for fast O(log n) data access. This is combined with an extremely tight in-process
path from storage to application code (Custom Functions), which enables a high level of
flexibility in aggregating data while achieving high-performance results.

By using memory maps, HarperDB directly uses the operating system disk cache as the
database cache. This allows HarperDB processes to maintain consistent in-memory processing
performance while dynamically leveraging the rest of available RAM for database caching to
maximize howmuch data can be effectively cached. This provides efficient memory usage and
fast responses for data that is accessed multiple times.

However, as a database size grows beyond the available RAM, there is an inherent need for
some database lookups to involve disk reads to fetch data. Precisely estimating the
percentage of operations that will require disk reads can be challenging and involves careful
analysis of database size and probability distributions of different requests, but generally
speaking, as the database grows beyond the size of RAM and to the degree that accessed
entitlement are widely distributed, more disk reads will be required.

Normalization Strategy

Traditional relational databases generally have highly normalized data structures and
relationships. This can yield very compact and efficient data structures from a storage
perspective, accordingly making updates very fast. But, the deep relations and necessary joins
are often onerous and preclude high-performance, low-latency access requirements. On the
other hand, caching servers often use highly denormalized data, which requires fewer lookups.
However, simplistic caching servers can require extreme levels of denormalization that yield
very inefficient storage, resulting in poor caching characteristics (since databases can grow
well beyond RAM), and extremely slow and cumbersome updates.



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

In this prototype, we are pursuing the strategy of a “balanced” normalization. There are often
natural relations in the data that can be flattened and denormalized. Selective
denormalization of data that is always user or entitlement-specific eliminates deeper levels of
relations and joins for fast access. However, we believe there is also a significant benefit in
maintaining the normalization of entitlement as a separate table from users since user
accounts often reference hundreds of entitlements. By maintaining this normalization, storing
users and records can be very efficient. Consequently, entitlements that correspond to
multiple users can quickly and easily be updated, storage requirements are dramatically
reduced, and with the large scale of data required, a much higher percentage of data can be
maintained in memory caches for faster access. With HarperDB’s flexible data schemas and
model, in combination with the ability to write customized aggregation queries to join data in
Custom Functions, HarperDB facilitates this “balanced” normalization approach.

To test this prototype, we have benchmarked normalization (of users and entitlement as
separate tables) versus a full denormalized data model with increasing database size. Before
benchmarking, our hypothesis was that a denormalized data model would be fastest with
smaller databases that fit in memory since each request essentially involves a single B-tree
lookup. But, as the database grows in size, we expect the normalized database to be much
more compact. As the database exceeds the size of available RAM, we expect to maintain a
higher percentage of cache hits and, therefore, a better scaling of performance with the
normalized data model. The more efficient data storage model of the normalized data will
result in much faster write/update performance and reduced storage requirements and cost.



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Results
For smaller databases (2 million users and fewer), benchmarks of denormalized and
normalized both yield extremely fast response times, but as expected, the denormalized
model is fastest with nearly instantaneous, sub-millisecond responses. The throughput of the
denormalized model (on a single server) is roughly 30K/s, whereas the normalized model is
about 12K/s.

However, as the database grows to larger sizes (20 million users), the benchmarks distinctly
shift, as hypothesized. At this size, the denormalized database is about twice the size of
available RAM, and a significant percentage of the requests require disk reads, dropping
throughput down to about 9K/s with 3-4 millisecond access time under load. On the other
hand, the normalized database is significantly smaller than the denormalized database and
continues to easily fit in RAM. This is demonstrated as the throughput is almost unchanged at
this scale, still maintaining 12K/s and 2-3 millisecond access times.

In the full production scenario, we would anticipate that even the normalized database may
exceed available RAM, but with realistic distributions of data accesses, the vast majority of
requests could be accessible through in-memory cached data. With full large-scale handling of
the entire user database, this normalized data model approach appears to strike a balanced
approach to fast data access with minimal data fetches while maintaining the necessary
normalization for efficient storage and updates.



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Performance Metrics

Write Performance and Size on Disk

● On average, normalized data has 12.12 times more throughput on write than
denormalized.

● On average, denormalized data is 13.1 times larger than normalized data on disk.

Denormalized Normalized

User
Records

Size on
Disk(MB)

Time to
Create Insert Rate

Size on
Disk(MB) Time to Create Insert Rate

20,000 237 18.5 1,189 14 1.5 13333

200,000 2400 191 1,152 138 17 11765

2,000,000 24000 1911 1,151 2600 151 13245

20,000,000 237000 19670 1,118 26000 1602 12484

200,000,000 N/A N/A N/A 219,000 21224 9423

We project that: 200MM rows would take 50 hours to insert denormalized and would take up
2.5TB on disk.

As can be seen from the above table, loading denormalized data takes significantly longer than
normalized. Another drawback to a denormalized data approach is the footprint on disk is
significantly higher. Maintaining a normalized data set will be significantly more performant as
only the referenced entitlement would need to be updated instead of a denormalized data set
where all users would need to be modified, requiring many more writes to the system.



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Read Performance

Denormalized Normalized

Users
Records Median Response (ms) Reads (s) Median Response (ms) Reads (s)

20,000 0.373 40K 1.206 26K

200,000 0.375 39K 1.537 22K

2,000,000 0.383 36K 2.131 12K

20,000,000 1.898 8K 2.111 12K

200,000,000 N/A N/A 2.664 9K



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Graphs



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Detailed Read Results

20 Thousand Rows

Normalized Denormalized

Concurrent
Connections 1 50 500 1,000 5,000 1 50 500 1,000 5,000

Total Reads 128,687 4,851,881 9,589,017 9,290,853 7,857,566 162,502 6,291,355 12,714,593 12,569,039 11,999,688

Data Received 5,002,577,355 611,614,860 762,606,402 171,787,921 454,435,108 644,848,936 827,815,030 425,239,894 264,963,542 990,950,719

Response
Time (ms)

min 0.596 0.637 0.63 0.622 0.612 0.159 0.161 0.156 0.155 0.156

med 0.678 1.177 1.196 1.196 1.206 0.235 0.4 0.372 0.374 0.373

max 7.443 28.737 104.442 131.388 196.165 4.145 150.833 164.645 226.246 169.669

avg 0.689 1.77 1.212 1.211 1.394 0.248 0.415 0.489 0.498 0.537

p90 0.734 1.449 1.303 1.304 1.381 0.274 0.552 0.472 0.474 0.498

p95 0.769 1.532 1.342 1.343 1.485 0.306 0.596 0.545 0.54 0.575

Total Time
(seconds) 300 300 300 300 300 300 300 300 300 300

Reads/Sec 429 16,173 31,963 30,970 26,192 542 20,971 42,382 41,897 39,999

200 Thousand Rows

Normalized Denormalized

Concurrent
Connections 1 50 500 1,000 5,000 1 50 500 1,000 5,000

Total Reads 116,041 4,447,146 7,948,291 7,846,991 6,642,713 161,599 6,202,211 12,348,147 12,146,702 11,579,651

Data Received 545,590,619 207,784,826 357,787,012 389,548,061 214,462,507 643,971,472 235,184,478 853,902,720 064,600,353 768,932,333



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Response Time
(ms)

min 0.719 0.774 0.84 0.738 0.844 0.163 0.166 0.156 0.159 0.16

med 0.887 1.454 1.507 1.506 1.537 0.235 0.407 0.374 0.374 0.375

max 12.48 133.103 96.795 117.962 168.881 2.515 130.203 209.792 159.492 170.252

avg 0.91 1.817 1.542 1.543 1.772 0.249 0.425 0.5 0.5 0.527

p90 0.956 1.736 1.607 1.61 1.713 0.27 0.56 0.478 0.474 0.503

p95 1.023 1.817 1.649 1.653 1.85 0.302 0.606 0.561 0.543 0.582

Total Time
(seconds) 300 300 300 300 300 300 300 300 300 300

Requests per
Second 387 14,824 26,494 26,157 22,142 539 20,674 38,599 40,489 38,599

2 Million Rows

Normalized Denormalized

Concurrent
Connections 1 50 500 1,000 5,000 1 50 500 1,000 5,000

Total Reads 98,547 3,193,986 4,274,124 4,239,849 3,828,260 159,508 6,221,383 10,331,057 10,744,152 10,788,058

Data Received 890,101,031 084,557,709 724,154,501 370,240,588 123,364,693 607,747,241 718,722,888 436,216,914 369,632,789 637,432,395

Response Time
(ms)

min 0.893 1.023 1.013 1.01 0.999 0.166 0.172 0.169 0.166 0.169

med 1.191 1.991 2.032 2.05 2.131 0.249 0.425 0.384 0.382 0.383

max 11.003 107.982 348.558 315.665 249.709 7.162 247.173 158.944 160.977 189.047

avg 1.247 2.072 2.729 2.755 3.067 0.263 0.445 0.501 0.499 0.525

p90 1.304 2.347 2.287 2.315 2.508 0.29 0.584 0.492 0.49 0.516

p95 1.456 2.784 4.102 4.073 7.157 0.33 0.632 0.576 0.565 0.596

Total Time
(seconds) 300 300 300 300 300 300 300 300 300 300



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Requests per
Second 328 10,647 14,247 14,133 12,761 532 20,738 34,437 35,814 35,960

20 Million Rows

Normalized Denormalized

Concurrent
Connections 1 50 500 1,000 5,000 1 50 500 1,000 5,000

Total Reads 96,315 3,111,867 4,032,780 3,993,674 3,674,415 117,392 2,989,394 3,340,637 3,055,762 2,250,953

Data Received 831,134,592780,147,963 411,512,616855,261,908156,092,353408,820,324806,054,719 ,769,573.008,733,594,570363,706,196

Response Time
(ms)

min 1.07 1.006 1.162 1.141 1.047 0.17 0.191 0.178 0.175 0.178

med 1.216 1.984 2.036 2.056 2.111 0.87 1.175 1.175 1.588 1.898

max 11.339 187.502 220.732 257.491 229.571 23.626 2646.727 1863.303 2948.391 2704.043

avg 1.282 2.084 2.772 2.833 3.083 0.884 2.692 3.503 3.836 4.886

p90 1.349 2.363 2.328 2.36 2.505 1.451 3.22 3.961 4.016 6.51

p95 1.546 3.013 4.105 4.405 7.081 1.586 4.865 5.889 6.474 10.783

Total Time
(seconds) 300 300 300 300 300 300 300 300 300 300

Requests per
Second 321 10,373 13,443 13,312 12,248 391 9,965 7,503 10,186 7,503

200 Million Rows

Normalized Denormalized

Concurrent
Connections 1 50 500 1,000 5,000 1 50 500 1,000 5,000

Total Reads 72,732 1,323,121 2,314,850 2,575,355 2,481,470



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Data Received 914,928,265 027,972,875 774,581,431 214,711,359 451,905,254

Response Time
(ms)

min 1.116 1.204 1.054 1.183 1.014

med 2.167 2.936 2.665 2.597 2.664

max 98.556 5928.125 1734.754 1007.564 770.276

avg 2.26 6.703 4.389 3.844 4.107

p90 3.103 11.768 6.883 5.556 6.341

p95 3.695 19.698 11.341 8.81 10.544

Total Time
(seconds) 300 300 300 300 300 300 300 300 300 300

Requests per
Second 242 4,410 7,716 8,585 8,272 0 0 0 0 0



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Data Models

Table Data Type

Entitlements

id int

activeDate Date

inactiveDate Date

useLimit int

useCount int

featureType string(4)

packageType string(4)

activeFlag int

Normalized Users

id int

entitlements.ids [int]

Denormalized Users

id int

entitlements.data [Entitlement]



harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Test Data

The raw load test data has been uploaded to Linode and is publically available at
http://k6-data.us-southeast-1.linodeobjects.com/harperdb-normalized-denormalized-rawtestd
ata.tgz

The file is 20GB compressed and 475GB uncompressed, containing CSV files with data for each
of the requests and JSON files with summaries.

The filenames are in the format of STRUCTURE-ROWS-CC.

http://k6-data.us-southeast-1.linodeobjects.com/harperdb-normalized-denormalized-rawtestdata.tgz
http://k6-data.us-southeast-1.linodeobjects.com/harperdb-normalized-denormalized-rawtestdata.tgz


harperdb.io

hello@harperdb.io
2420 17th St. Suite 270, Denver, CO. 80202

Custom Functions

Two Custom Function API endpoints were created:

/denorm/:userId

This API fetches the denormalized User based on the userId.

/norm/:userId

This API fetches the normalized User based on the userId. Further fetches are run against the
Entitlements table based on the User.entitlements.ids array. The Entitlements are added to
the User object and returned in the response.


