
generalsystem.com GSTechnicalOverview_V1

Unleash the power 
of machine data to 
understand the world 
in real time



generalsystem.com 2GSTechnicalOverview_V1

Contents

3	 The challenge of spatiotemporal data

4	 Introduction to the General System Platform
5	 Succinct High-Dimensionality Indexing  

6	 I/O Cache and Scheduler Designed for High-Dimensionality Indexes  

7	 Adaptive Re-sharding To Eliminate Hotspots  

7	 High-Density Storage Architecture For Extreme Scalability  

9	 General System Platform schema 

9	 Spatiotemporal queries

10	 Case study
11	 Use cases

11	 Data sources

12	 Integration and deployment models
12	 Deployment model



generalsystem.com 3GSTechnicalOverview_V1

The challenge of spatiotemporal data

Vehicles, GPS trackers, IoT, robotics and sensors generate a constant 
flow of spatiotemporal (location and time) data.  Even a moderate 
number of events per second soon accumulates into billions of 
records which becomes increasingly complex and costly to process 
and analyse. The chart below illustrates a system that generates 1k 
events per second. This will accumulate 31bn records over a year. This 
grows to 155bn per year if 5k events are generated per second.  

300k
60k

18mil

4mil

432mil
86mil

13bn

3bn

155bn

31bn

Minute Hour Day Month Year

5k events per second 1k events per second

10k

100k

100mil

10mil

10bn

100bn

Organizations working with spatiotemporal data (location and time) often find that:

Records created (log scale)  

•	It’s complex to organize and analyse streaming data in real time

•	Queries become costly and uneconomical at scale

•	More complex queries such as multi entity, data layering and comparisons between 
current state and history are unwieldy and very unproductive 

•	Queries are too slow so that when an insight is found, it may no longer be relevant

•	Limiting the scope of analysis to speed up processing often creates data bias and 
inaccurate assumptions

These restrictions translate to business inefficiencies such as manual processes and  
sub-optimal customer communications.



generalsystem.com 4GSTechnicalOverview_V1

Introduction to the General System Platform

The General System Platform (GSP) is a cloud-based technology 
designed for fast and effective processing and analysis of real-time 
and/or large scale spatiotemporal data.

The technology combines two technical capabilities in a single system: billions of records 
can be ingested at extremely high rates, with immediately queryable indexes across 
attributes in the ingest stream on a single commodity server. Within milliseconds of 
ingestion, ad hoc low-latency queries can be executed incorporating all data streamed  
into the system up to that point, limited only by available storage.

Spatiotemporal data is common across domains and industries. Examples include 
data generated by sensors on physical moving objects, such as personal devices (e.g. 
smartphones or watches), fleets of vehicles, robots or drones. It also covers data 
generated by sensors that track moving objects, for example, a series of street cameras 
with automated number plate recognition. 

The GSP is proving valuable in many data science and operational analysis workflows with 
similar requirements and characteristics: 

•	Up to trillions of records in a single index

•	Index insertion rates of millions of records per second

•	Indexed search across multiple record attributes

The GSP enables corporates and governments to unlock the potential of their data 
compared to any other solution available. It provides insights in a timely manner, as it 
does not suffer from ingestion delays typical in other systems. And it is cost effective as 
datasets in excess of 100bn records can be stored and queried on a single server, whereas 
distributed analytics solutions require a fleet of compute nodes. 

How does the GSP achieve this massive performance? The GSP does not suffer from the 
limitations of current solutions, namely:

Index Bloat 
Indices commonly require more storage than the data they index.  Succinct indexing 
algorithms are compact but do not support complex spatiotemporal data models.

Hotspotting 
Geospatial data models have a highly unpredictable distribution of both data and  
workload that defeat static sharding schemes. 

Storage Density 
Write performance degrades as storage density increases but density is required for 
economy. At high densities, storage caches fail for multi-dimensional data models.

Let’s find out what is unique about the GSP technology.



generalsystem.com 5GSTechnicalOverview_V1

Unique technology 
Underlying the General System Platform is a highly optimized 
database kernel written in C++ that incorporates all of the elements 
one would expect in a state-of-the-art design: thread-per-core 
software architecture, vectorized storage model, user space 
scheduling of I/O and execution, and other features that ensure 
maximum performance and hardware efficiency. This provides a 
strong foundation for scalable data processing but by itself, does  
not address any of the technical challenges of indexing  
high-velocity data flows. 

The GSP kernel contains multiple technologies and architectural features, described below, 
not found in any similar system. Collectively, these technologies work together to enable 
unparalleled indexing performance for high-velocity streaming and geospatial data models.

Succinct High-Dimensionality Indexing  

All data models in the implementation of the GSP are organized using novel high-
dimensionality succinct indexes. Importantly, diverse and unrelated data types can be 
concurrently represented within a single indexing structure. The properties of these 
indexing structures differ from conventional indexes, and some other succinct indexes, in 
fundamental ways.  

The storage location of a record is content addressable, similar to a hash table, based on 
multiple, independent attributes of the record while preserving the relationships between 
attributes across records in the index. Indexing is fully adaptive to the distribution of the 
underlying data across the indexed attributes. 

As with all succinct data structures, the in-memory representation is extremely compact 
relative to the data being indexed. The index for 100TB of data may be small enough to fit 
entirely within the CPU cache. When a record is inserted, a simple lookup operation against 
the index identifies the disk page to which it will be appended. This direct path through 
storage incurs almost no write amplification, with throughput being limited primarily by  
I/O bandwidth. 

The GSP index implementation uses a design of sufficient dimensionality to index 
spatiotemporal data models and additional key attributes. Most data types, such as entity 
IDs, consume a single dimension in the index. A few data types, notably geospatial, may 
consume two or three dimensions. The ability to mix and match data types in the index, 
up to the dimensionality budget, enables an unusual degree of flexibility for supporting 
different data models. Most succinct indexes are one-dimensional or require that all 
dimensions be the same type. GSP do not have this limitation. 



generalsystem.com 6GSTechnicalOverview_V1

Indexing of geospatial data types is not limited to points. The index is purpose-built to 
succinctly index polygon relationships as well, allowing query operations to directly look 
up geospatial polygon intersection relationships on the index with the same kind of 
performance and scalability one can expect with other scalar data types.  

The primary limitation of this type of indexing is that it is poorly suited to storage  
engines not purpose-built to support them.  

I/O Cache and Scheduler Designed for  
High-Dimensionality Indexes  

High-dimensionality indexing, which is critical for GSP performance and scalability, has 
long been known to present fundamental problems for caching algorithms, including 
the storage cache in the operating system and all popular storage engines. Caching 
algorithms work by trying to predict future data access requirements based on previous 
data accesses. The problem of optimal data caching is equivalent to universal sequence 
prediction. Universal sequence prediction is infamously intractable even in narrowly 
restricted cases. All practical algorithms for effectively predicting what to cache are  
limited to simple access patterns in a single dimension, such as traversing an array or 
ordered tree.  

Because the GSP relies on a high-dimensionality index as its primary data access method, 
the data access patterns are unable to be successfully predicted by a storage cache. 
Without an effective storage cache in front of the workload, almost every storage access 
becomes stalled by frequent page faults. Using high-dimensionality data access methods 
on a conventional storage engine architecture is a recipe for poor  
storage performance.  

The GSP’s storage architecture takes heed of Alan Kay’s aphorism, “the best way to 
predict the future is to invent it.” Concurrent high-throughput database kernels often have 
thousands of operations scheduled at any point in time, even for single queries, since they 
may be decomposed into myriad sub-operations internally. In thread-per-core software 
architectures like GSP, the I/O scheduler has perfect visibility into and control over storage 
access patterns for thousands of operations into the future as well as the contents of the 
storage cache.  

Instead of relying solely on prediction to ensure efficient eviction and pre-fetching patterns, 
the scheduler uses its ability to ‘see into the future’ to dynamically reorder and optimize 
the sequence of operations far beyond what a storage cache can predict on its own, to 
maximize locality of storage access and minimize the number of storage operations.  



generalsystem.com 7GSTechnicalOverview_V1

Adaptive Re-sharding To Eliminate Hotspots  

Data models with a geospatial component are prone to unpredictable ‘hotspotting’, the 
phenomenon where individual data shards become temporarily overloaded due to a 
sudden influx of data or queries focused on a specific geographic region. When a hotspot 
occurs, the throughput of the entire system becomes bottlenecked by the throughput of 
the most overloaded shard. Because there is no way to know when and where a hotspot 
will occur, minimizing their effects requires both proactive and reactive strategies. 

The GSP employs a continuous adaptive re-sharding strategy to mitigate hotspots. If a 
shard becomes overloaded or is at risk of becoming overloaded, then it is automatically 
re-sharded, distributing the records of that shard over many new shards that effectively 
subdivide the index. This has the effect of distributing data and load over a much wider set 
of shards while reducing the computational cost of operations over the individual shards. 
Individual shards are kept small to ensure that re-sharding operations have minimal impact 
on tail latencies.  

Re-sharding requires no user configuration or interaction and is fast, occurring 
automatically in the background.  

In high-velocity ingest environments, individual re-sharding operations need to be 
sufficiently fast to ensure that they don’t slow down or disrupt concurrent ingestion. A 
single server with fast, high-density storage may have extremely large numbers of active 
shards and, for the purposes of re-sharding, may need to create and destroy a significant 
subset of those shards each second.  

High-Density Storage Architecture For Extreme Scalability  

Today, servers often have upwards of a petabyte of attached storage, and for high-velocity 
data models, this type of storage density is often important for cost effectiveness. 
Storage engine architectures that map shards to files in the filesystem frequently run into 
significant practical performance and scalability limitations when operating at this scale. 
The GSP makes these limitations particularly acute due to its continuous adaptive re-
sharding behaviour. 

Typical Linux filesystems do not perform well when processes can have millions of 
open files that are continuously being created or destroyed. Like many sophisticated 
database kernels, GSP is able to create a specialized non-POSIX filesystem that coexists 
with standard Linux environments while bypassing most scalability and performance 
limitations of conventional filesystems. This allows the GSP to manage upwards of a 
petabyte of storage with consistent performance across vast numbers of logical files, 
while implementing additional features that conventional filesystems do not support.  

This filesystem can be installed as an overlay on an existing Linux filesystem, where it 
looks like a set of large files, or directly installed on sets of raw block devices with no  
other filesystem.



generalsystem.com 8GSTechnicalOverview_V1

Features
At the core of the General System Platform, there is a highly 
specialized engine. Around it, there is a set of tools that enables 
customers to easily extract valuable insights. For our customers, this 
is typically a four-step process:

Ingest 
The GSP can ingest and index high volumes of data. Customers can ingest data from 
existing data stores and data lakes (e.g. from S3), for instance to analyze historical 
datasets. They can also integrate with streaming data sources such as Kafka or AWS 
Kinesis to process real-time data.  

Integrate 
The GSP integrates easily with existing apps (mobile or website) via  a Web API.  
The GSP API augments processes with new insights and can generate customized events. 

Analyse
With the API, some or all of your historical data can be queried to uncover new correlations, 
insights and business opportunities. The GSP supports Data Science interactive workflow 
to address ad-hoc analyses or to build models. It also supports automation of queries.

Act 
Data is available for analysis immediately as it is ingested. It’s possible to decide how to 
respond to new events and act in real time.  

Real time engine

Event
detection

General System API

Batch data

Streaming data

Data processing

Data lakes / Warehouse

Real time apps

Real time events



generalsystem.com 9GSTechnicalOverview_V1

Spatiotemporal queries

While not a database per se, GSP supports many database-like operations on the 
underlying data stream. Queries like “find the unique set of entities within this geographic 
polygon between the hours of 2pm and 3pm on Tuesday” are executed via the API as a 
single operation. Spatiotemporal queries can have any of the following criteria:

•	A polygon, including complex shapes with hundreds of vertices, or a bounding box

•	A time range

•	A list of entities

With the GSP, queries can be run across the full dataset, including historical data.  
The following questions can be answered by querying the GSP:

•  What unique entities were  
in the area at a certain time?

•  What entities visited a 
location of interest, and  
for how long?

•  What is the historic 
movement of those entities?

•  Which entities are  
deviating from their 
historical behavior?

•  Alert me when certain 
entities enter, dwell or exit  
a location (geofences)

•  What other entities were  
co-located or in proximity  
at the same time?

•  What are their patterns  
of behavior?

Optional attributes, up to a maximum of eight, can also be stored for each record. 
Attributes can be of different types: integers, lists or IP addresses. When executing a 
spatiotemporal query, the results can be filtered based on the optional attributes. To do so, 
common query predicates are available, such as: equality, inequality, range, and greater or 
lesser than a value.

The platform can also ingest any unstructured data associated with a record for 
customers that require it. Unstructured data is indexed by its record identifier. The identifier 
is stored in the GSP and can be retrieved when querying data.

General System Platform schema 

The schema of the GSP consists of a set of mandatory spatiotemporal fields, and a set of 
optional attributes. The mandatory fields are: entity id, latitude, longitude and timestamp of 
the record. The table below shows an example of mandatory fields:

Id Latitude Longitude Timestamp Altitude

81696 41°24’12.2”N 2°10’26.5”E 1/1/23 13:01:44 55m

81452 41°24’12.7”N 2°10’26.4”E 2/1/23 14:12:01 2m

81696 41°24’12.3”N 2°10’26.2”E 2/1/23 08:07:58 230m



generalsystem.com 10GSTechnicalOverview_V1

Case study

A customer had an existing solution to analyze real-time mobility data, 
using PostGIS as their datastore. Unfortunately, the solution could not 
scale to 100bn records which is what they needed. They ran a project 
to replace PostGIS with General System Platform and we observed the 
following comparative metrics:

17

101

0.19

4.3
15x

Data size loaded on 
single server (bn recs) 1

PostGIS General System Platform

Cost to ingest 
(1bn recs) 3

Records per seconds
(inserted & indexed) 2

1 The existing solution could not work with more than 17bn records. Once migrated to the GSP, they could easily 
ingest over 100bn records. The PostGIS Server used was an AWS db.r6g.16x large instance. The GSP server is 
an AWS i3en.12x large instance.

2 GSP ingested on average 4.3m records per second vs. 190k records per second on PostGIS. In both cases the 
source data was uncompressed, pre-processed files stored on AWS S3.

3 The GSP ingestion, including ETL pipeline costs, was 15 times cheaper than PostGIS. 

The GSP queries and support common aggregation predicates: 

•	Returning records

•	Counting records

•	Selecting the earliest or oldest record in a set

•	Counting records by unique identifier

More predicates are in development and will be available in the future. 



generalsystem.com 11GSTechnicalOverview_V1

Data sources

Even with existing data pipelines, storage solutions and applications, 
the General System Platform sits alongside existing investment 
and delivers further value. The GSP is designed to ingest data from 
streaming data sources such as Kafka or Kinesis, and from data at rest, 
such as databases or data lakes. Some of our customers ingest both 
types of data, as historical data is often relevant to understand their 
real-time feeds.

The GSP API enables the creation and management of ingestion jobs, via a dedicated GSP 
Import API. You can flexibly specify the schema of your source data, map the relevant 
fields that the GSP will ingest and monitor the status of the ingestion. Out-of-the box, the 
GSP API supports AWS S3 data lakes; the API can be used to integrate with other data 
sources or legacy applications you may have. 

To achieve optimal query performance, the GSP requires data to be ingested in rough time 
order. Data is typically available in this form from streaming sources and, more generally, 
from sensor-generated data. Ingestion speed is unaffected by time-ordering.

Use cases

Logistics
•  Detecting unexpected events (e.g. stops other than pick ups or drop offs) 

•  Drivers’ wellbeing, e.g. checking they take a break every X hours

Home Delivery
•  Help balance supply of delivery vehicles and orders in real time by detecting hotspots

•  Real-time, localized alerts to drivers from multiple datasets (e.g. traffic, weather, events)

Retail
•  Recommending what consumers near you are buying right now

•  Footfall analysis on historical mobility datasets

Media / Advertising
•  Measuring exposure of Out of Home advertising

•  Computing optimal day / time to buy media

Healthcare
Co-locate persons exposed (co-located) to a positive patient to recommend isolation

Fraud detection
Correlate current translation location & delivery address and past transactions locations



generalsystem.com 12GSTechnicalOverview_V1

Deployment model

Many of our corporate customers prefer to consume the GSP API using the GS-hosted 
SaaS, as this is convenient and cost-effective. In this model, GS manages all the 
infrastructure on behalf of the customer, who retains full control of their data. Users can 
be added or removed for an organization as needed, and granular permissions can be 
granted, for instance, to implement a RBAC1 model. 

In the table below, we present the options available:

Latest features and GS support More control on your apps and data

SaaS solution 
hosted by GS

GS deploys the system in 
our GS AWS account.

GS managed on 
customer Infrastructure

GS deploys and monitors 
the system in customer’s 
AWS account and has full 
access to AWS resources.

Customer managed 
(on-demand GS 

management)

GS deploys the system in 
the AWS customer account.

GS remote management 
support available 

on-demand as required.

Customer managed 
(self serve)

Customer runs AWS 
infrastructure and deploys 
the system independently.

GS has no access.

At present, the GSP platform is available on the AWS Cloud.  
We are considering adding support for other cloud services based on customer  
demand. Please get in touch with any specific requirements, and we will be happy  
to discuss options.  

1 Role Based Access Control

Mobile or web apps
Add real-time updates / more precise  
ETAs / etc.

Data science and analytics
Integrate with BI tools: root-cause  
analysis, what-if scenarios

Integration and deployment models

The GSP has a standard web API that is used to query it. Using the API, 
our customers can build applications, such as:

Business events processing
Enhance logic with spatiotemporal  
context: e.g. Is this entity deviating from  
its historical behaviour?

ML workloads
Retrieve data faster during training  
or inference

The GSP web API can be integrated with a language of your choice. We also provide  
an easy-to-use client-side Python SDK.

The Python SDK is used in particular to support data science use cases. It integrates 
out-of-the-box with popular BI tools such as Jupyter Notebooks and it can be used for 
interactive data discovery, visualization, model fine-tuning and rapid prototyping. 



Contact us today to arrange a live 
demonstration, or visit us here. 

About General System

General System is an international company 
staffed by world-class data scientists, data 
engineers, software developers, technical 
innovators and sector-specific professionals.

generalsystem.com GSTechnicalOverview_V1

https://www.generalsystem.com/contact-us

	The challenge of spatiotemporal data
	Introduction to the General System Platform
	Succinct High-Dimensionality Indexing  
	I/O Cache and Scheduler Designed for 
High-Dimensionality Indexes  
	Adaptive Re-sharding To Eliminate Hotspots  
	High-Density Storage Architecture For Extreme Scalability  
	General System Platform schema 
	Spatiotemporal queries

	Case study
	Use cases

	Data sources
	Integration and deployment models
	Deployment model


