
WHITE PAPER

Role Mining in RBAC via a Graph-based Implementation

Nulli - Identity Management: Seyed Hossein Ahmadinejad, Hadi Ahmadi, Derek Small

Abstract

Role Based Access Control (RBAC) is one of the most pop-
ular access control models widely adopted by large organi-
zations. However, engineering high quality roles has proven
to be a challenge when implementing RBAC. There are two
approaches to engineering roles in RBAC: top-down and
bottom-up (aka role mining). This paper, which addresses
the latter, a) reviews the alternative approaches to role min-
ing, and b) proposes a graph-based implementation for role
mining.

1 Introduction

Protecting resources and assets against unauthorized access
has always been a concern for organizations of any size. A
typical solution to this is to assign a fine-grained entitlement
(i.e., permission) to every resource and then require users who
need to access a resource to possess the resource’s correspond-
ing entitlement. Building and maintaining such an entitle-
ment system is significantly onerous in large organizations
with many protected resources and many users requesting ac-
cess to them. RBAC [4] was proposed to address this issue by
grouping fine-grained entitlements to coarse-grained and thus
easier to manage roles. However, how to group or aggregate
entitlements to define roles remained to be an open problem.
Top-down and bottom-up role engineering are two approaches
that can be applied to building an RBAC system.

Top-down role engineering involves analyzing all organiza-
tion policies and job descriptions, and interviewing employees
to define a set of roles that accurately and semantically match
job titles and positions. This has been proven to be a very
expensive and sometimes never-ending process. Role engi-
neering often needs to be performed at companies who have,
for a while, been using RBAC. In such situations, the top-
down approach might not be feasible due to the disruptive
impact it may have on existing user-entitlement assignments.

The bottom-up approach, on the other hand, requires ana-
lyzing the existing set of user-entitlement assignments to find
patterns that eventually lead to collecting entitlements into
roles. This is a less expensive, less disruptive process that

comes at the cost of defining roles that may not necessarily
match with real-world job titles and positions. Bottom-up
role engineering is often referred to as “role mining” in liter-
ature.

Studying existing role mining techniques shows there are
challenges that need to be addressed before they can be ap-
plied in the real world. The two main problems are: a) large
complexity, and b) semantic-free low-quality roles. In prac-
tice, some role mining techniques are so computationally com-
plex that they could not be actually used. There are also effi-
cient role mining techniques that usually result in low quality
roles that cannot be mapped to real job titles. That is mainly
because organizations have not been rigorous enough to as-
sign entitlements only to employees who are required to have
those entitlements to complete tasks required of their job ti-
tles. This implies that there is so much noise in the existing
user-entitlement assignments that the mined roles will always
be of low-quality and with no semantic.

This work is based on a real-world implementation of role
mining for an organization, with 5500 employees who are
assigned 12000 entitlements through 330000 assignments.
A top-down approach is out of the question due its cost and
disruptive nature of the approach.

Role mining, in essence, is about finding patterns in user-
entitlement assignments, where an assignment refers to a re-
lationship between a user and an entitlement. These user-
entitlement relationships can best be defined in a graph.
A graph is simply a collection of nodes that are connected
through edges or relationships. Given the recent technology
advances in graph-databases, this work is an attempt to solve
the role mining problem through a graph-based implemen-
tation of a few existing relationship-based role mining ideas.
This work is not claiming to propose a new role-mining ap-
proach, but rather, it puts forward the idea of using graph
databases, in particular Neo4j™, to address the complexity of
role mining.

In Section 2, we first define a simple graph-based data
model used throughout this paper to describe users, entitle-
ments, roles, and their relationships in our RBAC state. Sec-
tion 3 will then present a measure for evaluating an RBAC
state. This will help with determining the performance of a
role mining technique. Section 4 will examine three popular

contactus@nulli.com | nulli.com | +1 403 648 0900 1

WHITE PAPER: Role Mining in RBAC via a Graph-based Implementation

role mining techniques when implemented in Neo4j. Section
5 will explain how we implement a hybrid role mining method
that utilizes well-established graph algorithms to mine roles in
an RBAC state graph. Mapping roles to employee attributes
will be discussed in Section 6, and finally Section 7 will con-
clude the paper.

2 RBAC State Graph Model

An RBAC state consists of users, entitlements, and roles. En-
titlements and roles are assigned to users. A role defines one
or more entitlements. This data can be modelled in a graph
where nodes are users U , entitlements E, and roles R. There
are three types of edges in this graph:

• user-entitlement assignments UE, defining what entitle-
ments are “directly” assigned to what users,

• user-role assignments UR, defining what roles are as-
signed to what users, and

• role-entitlement assignments RE, defining what entitle-
ments are included in what roles.

Figure 1 depicts a graph modelling of a simple RBAC state
where keys are entitlements and hats are roles. Note that an
RBAC state could still allow direct user-entitlement assign-
ments.

3 Role Mining Objectives

As discussed earlier, the main motivation behind RBAC is to
simplify the maintenance of the access control system. This
implies we need to pursue the same objective when we are
defining roles. In other words, the number of roles should
be minimized. This is the first measure that can be used to
evaluate a role mining technique.

Another factor contributing to the complexity of an RBAC
state is the number of user-role and role-entitlement assign-
ments because they represent the amount of work system ad-
ministrators need to apply to maintain roles and assign them
to users. Lastly, the number of direct user-entitlements as-
signments should be minimized because that would increase
the complexity of maintaining the RBAC system.

Li et al. [6] introduced a measure called Weighted Struc-
tural Complexity that captures these factors. Given an RBAC
state λ and a set W of weights wr,wu, wp, and wd, the
Weighted Structural Complexity is defined by

wsc(λ,W) = wr×|R|+wu×|UR|+wp×|RE|+wd×|UE| (1)

Note that one might set wd to be larger than other weights
because the goal in RBAC is to ideally not have any direct
user-entitlement assignment. For example, if we assume all

Figure 1: Sample RBAC state graph.

weights are 1, the complexity of the RBAC state illustrated
in Figure 1 will be equal to 11 = (2 + 4 + 4 + 1).

Throughout this work, we use Weighted Structural Com-
plexity to evaluate our role mining algorithms and tune their
parameters.

4 Role Mining

Generally, there are three different role mining approaches we
can take to define roles. We will describe them in the next
three sections. Note that since we model the RBAC state as a
graph, the role mining techniques will be also defined against
graphs.

4.1 Group Entitlements to Roles

This approach groups entitlements that are assigned to the
same users into a role. For example, in Figure 2, entitlements
2 and 3 can form a role because they are assigned to both
users 1 and 2. The justification is that if some entitlements
are exercised by the same users, it is as if a larger entitlement
(that is, a role) has been given to those users, and there is
no point in giving individual entitlements to the users. We
will call this technique the entitlement-based role mining ap-
proach.

Now assume Figure 3 illustrates the RBAC state. The
entitlement-based approach cannot create any role because
users of entitlements 1 and 2 are not exactly the same. This

contactus@nulli.com | nulli.com | +1 403 648 0900 2

WHITE PAPER: Role Mining in RBAC via a Graph-based Implementation

Figure 2: Sample RBAC state graph.

Figure 3: Sample RBAC state graph.

is a weakness of this approach because it only focuses on en-
titlements. The next section provides another role mining
technique that can address this issue.

4.2 Group Users to Roles

This approach is very similar to entitlement-based role min-
ing except that instead of grouping entitlements into roles,
it creates roles out of users. In this approach, if some users
have the same set of entitlements, they can define a single role
which will be assigned to all of them and grant them those

Figure 4: Sample RBAC state graph.

shared entitlements. As an example, users 2 and 3 in Figure
3 have exact same entitlements. As a result, we can use this
new role mining approach to create a role that gives them
entitlements 1 and 2. For the sake of simplicity, we call this
method user-based role mining.

However, this approach has the same weakness as of
entitlement-based role mining because it only focuses on en-
tity type. For instance, it cannot create any role for the RBAC
state illustrated in Figure 2.

4.3 Group User-Entitlement Assignments to
Roles

There are two issues with the two approaches defined above:

(a) In practice, it is very unlikely to find entitlements that
are assigned to exact same users or users with exact same
entitlements. Figure 4 is an example of an RBAC state
where both these approaches fail.

(b) They focus on either users or entitlements and that is
why they do not work for the use cases where the other
approach works.

To address these problems, this section provides the third
role mining approach, called user-entitlement-based role min-
ing which was first introduced by [1]. Instead of considering
either entitlements or users, this approach takes both into con-
sideration and group user-entitlement assignments to role. To
do so, it reduces the role mining problem to the classic graph
problem of finding maximal cliques. A clique is a subgraph
where there is an edge between every pair of nodes. In the
following we explain how this is done.

contactus@nulli.com | nulli.com | +1 403 648 0900 3

WHITE PAPER: Role Mining in RBAC via a Graph-based Implementation

Figure 5: Dual graph for RBAC state of Figure 4

We first need to create a dual graph of the RBAC state
graph. For every edge between user ui and entitlement ej , a
node uiej is added to the dual graph to represent that user-
entitlement assignment. Next, an edge will be added between
every pair of nodes uiej and umen if any of the following
conditions are met:

(a) ui and um are the same user,

(b) ej and en are the same entitlement, or

(c) in the RBAC state graph, there is an edge between ui
and en and between um and ej (i.e., both users ui and
um are assigned both entitlements ej and en).

Once the dual graph is created, roles can be identified by
finding maximal cliques in the dual graph.

Figure 5 shows the dual graph created for the RBAC state
of Figure 4. Now every clique in this graph is a potential
role but maximal cliques are preferred because they result
in larger roles and consequently, a smaller number of roles,
which means less complexity of the RBAC state. The largest
clique in Figure 5 consists of u2e2, u2e3, u3e2, and u3e3. Fig-
ure 6 shows the RBAC state of graph 4 when we run user-
entitlement-based role mining against it.

Figure 6: RBAC state of Figure 4 after user-entitlement-based
role mining.

5 Implementation

Section 4 described three approaches to discover roles in
an RBAC state modelled in a graph. Clearly, the user-
entitlement-based approach is the most complete one because
not only it can support all use cases where the other two
approaches are applicable, but also it works when the other
two fail. This section explains how we implement this role
mining technique against Neo4j, why we end up with a hy-
brid approach which is a combination of the first and the
third approaches, and how we eventually implement this hy-
brid approach. Neo4j is a native graph database that grew
its popularity in recent years by supporting a rich query lan-
guage called Cypher and a data science library that provides
several graph algorithms applicable to data mining problems
in graphs, including role mining.

5.1 Implementation of the User-
Entitlement-Based Role Mining

To be able to model an RBAC state graph, we need a data
storage solution that lets us store graphs. We choose Neo4j
for this purpose for the reasons described above.

The next step is devising an algorithm to find maximal
cliques in the state graph. Finding maximal cliques is an NP-
Hard problem. We would need to benefit from soft computing
or approximation methods to find maximal cliques. Neo4j in
particular provides some performance-improved graph algo-
rithms that can be used to tackle the problem of clique find-

contactus@nulli.com | nulli.com | +1 403 648 0900 4

WHITE PAPER: Role Mining in RBAC via a Graph-based Implementation

ing. Neo4j does not provide an algorithm for finding maximal
cliques but there is an algorithm for calculating cluster coef-
ficient [3] of nodes, that is the probability that all neighbours
of a node form a clique, which equally means the probability
that the node itself belongs to a clique. Algorithm 1 shows
the pseudo code of our algorithm for finding maximal cliques
in a Neo4j graph.

Algorithm 1 Finding maximal cliques in Neo4j

1: Find cluster coefficient of all nodes.
2: Identify nodes with a cluster coefficient of 1.
3: Sort the identified nodes descendingly based on the degree

of the node.
4: while there are nodes left in the list do
5: Pick the node from the top of the list, and define a

new role for the selected node and all its neighbours.
6: Prune the list by removing nodes that were already

covered by the newly defined role.

Note that the reason for step 3 is to define the largest roles
first. Note also that we designed this algorithm in such a way
that we use as many out-of-the-box (OOTB) functionalities
in Neo4j as possible.

Running this algorithm against real-world RBAC state
graphs turns out to be somewhat inefficient and slow. It is
so resource consuming that our Neo4j instance with 8GB of
memory eventually crashes due to lack of enough memory.
By further studying the clique finding problem, we under-
stood that this problem can be reduced to the graph coloring
problem [5], that is coloring nodes of a graph using as few
colors as possible where adjacent nodes cannot be assigned
the same color. According to [2], finding maximal cliques in a
graph is equivalent to coloring of its complement. This equiv-
alence may not be completely perfect but it suits our needs
because Neo4j provides a graph coloring algorithm that might
perform better than our own implementation of the maximal
clique finding algorithm.

To find a role by coloring the RBAC state graph, we still
need to build the dual graph, then find its complement graph,
color it, and then every group of nodes with the same color
will form a role. Our experiments show that this implementa-
tion is significantly more efficient than the other one but still
could not work against graphs with more than around 5500
edges, given our Neo4j server specification. For that reason,
we decide to implement a hybrid approach where the user-
entitlement-based approach is used only for defining hard-
to-detect roles. For other roles, we use a variation of the
entitlement-based approach which will be described in the
next section.

5.2 Hybrid Role Mining

Section 4.3 pointed out the two main problems with the
entitlement-based approach, that are mainly due to requir-

ing entitlements that are shared by exact same users. It is
very unlikely to find such entitlements. However, if we re-
lax this constraint and instead require entitlements to have a
large-enough overlap of users, we will be able to define roles
for many entitlements. The main advantage of this approach
is that it is a lot more efficient than the user-entitlement-
based approach. As a result, it can be used as the first step
of role mining in an efficient and accurate-enough manner,
and then we can feed the remaining entitlements to the user-
entitlement-based approach which is more powerful, though
less efficient.

To implement this variation of the entitlement-based ap-
proach, we can use a similarity measure called Jaccard Sim-
ilarity [7]. Jaccard Similarity between two sets A and B is
defined by

|A ∩B|
|A ∪B|

(2)

Jaccard Similarity between two entitlements can be defined
over their corresponding sets of users. Jaccard Similarity of 1
between two entitlements means they are assigned to exactly
the same users. But because this rarely happens, a lower
threshold can be defined on Jaccard Similarity between enti-
tlements to determine if they are similar enough to be merged
together and form a role.

To define Jaccard Similarity in the RBAC state graph, we
add new edges between entitlements that are weighted with
the Jaccard Similarity of the entitlements at the two ends of
the edge. Given that, now the goal is to find groups of entitle-
ments with large enough Jaccard Similarity. In our enhanced
RBAC state graph, this translates to detecting communities
of entitlements connected through Jaccard Similarity edges.
Since community detection is a well-explored graph problem,
we can use existing community detection algorithms to find
potential roles in the RBAC state graph.

Neo4j has OOTB tools for evaluating Jaccard Similarity
between nodes as well as detecting communities.

Algorithm 2 shows a pseudo code for an iterative
entitlement-based role mining based on Jaccard Similarity
and community detection against the RBAC state graph.

Algorithm 2 Iterative entitlement-based role mining

1: Set jl to be a lower threshold on Jaccard Similarity.
2: Set j = 1 as the current threshold on Jaccard Similarity.
3: while j > jl do
4: Add a new edge between every pair of entitlements if

Jaccard Similarity between them is at least equal to j.
5: Run community detection algorithms to find commu-

nities of similar entitlements.
6: Create a role per community and connect it to corre-

sponding users and entitlements.
7: If no community is found, slightly reduce the value of
j.

contactus@nulli.com | nulli.com | +1 403 648 0900 5

WHITE PAPER: Role Mining in RBAC via a Graph-based Implementation

This algorithm proves to be quite efficient and thorough in
covering lots of user-entitlement assignments by defining roles.
Because we now allow entitlements with Jaccard Similarities
even less than one to form roles, the entitlement-based role
mining can even discover harder-to-find roles as well.

Nonetheless, there will be user-entitlement assignments left
at the end that could not be covered by the roles defined so
far. To tackle these assignments, we feed them to a user-
entitlement-based role mining algorithm implemented using
the graph coloring technique. Note that the remaining sub-
graph might still be too large to be directly consumed by the
user-entitlement-based role mining. For that reason, we need
to break the remaining subgraph of the RBAC state graph
to smaller subgraphs, and then feed them separately to the
user-entitlement-based role mining method. This can be done
again through running community detection algorithms that
find communities of entitlements with large-enough Jaccard
Similarities.

6 Associating Roles with Employee
Attributes

Once roles are identified for an RBAC system through role
mining, a typical next phase is to map the engineered roles to
employee attributes that are usually defined by the Human
Resources (HR) department. This enables automatic pro-
visioning of roles to new hires and even current employees.
However, how accurate this can be done depends on the qual-
ity of the existing user-entitlement assignments. If an orga-
nization has not been rigorous in a) assigning entitlements to
employees, and b) attaching well-defined position-dependent
HR attributes to employee identities, it would be very un-
likely that engineered roles can be associated with any HR
attributes. This was our observation in this project too.

Nevertheless, we designed an algorithm that maps roles to
HR attributes to assign probabilities to such mappings. Using
these probabilities our platform can work as a recommenda-
tion engine, rather than an automated role provisioning tool,
that can suggest what roles should be assigned to an employee
with what probability, given his/her HR attributes. Note that
this algorithm was not written to run against a graph struc-
ture.

7 Conclusion

Role mining can simplify the goal of transitioning to a well-
structured RBAC system. It can achieve this goal through
multiple iterations since it relies heavily on the quality of the
already-defined entitlements. Organizations can use the result

of every iteration of role mining to further improve the qual-
ity of their data. This may require administrators to apply
manual steps to the process. Over time these manual process
steps should be minimal as the quality of the data should im-
prove. Having the RBAC state graph modeled as graph in
Neo4j allows those administrators to use the Neo4j analytical
tools and its rich query language, Cypher, to explore the data,
and identify inaccurate user-entitlement assignments.

This work presented several approaches to role mining.
It showed how one can run well-defined graph algorithms,
like the community detection algorithm against an RBAC
state graph. This proposed hybrid approach combines a
more advanced version of the entitlement-based approach
with the user-entitlement-based approach to cover as many
user-entitlement assignments as possible in defining new roles.
The result of this project shows that these techniques are ef-
fective if the quality and accuracy of existing user-entitlement
assignment data is high enough. Otherwise, the RBAC state
needs to be cleaned up from incorrect or inappropriate assign-
ments before role mining can produce meaningful results.

References

[1] Dong, L., Wu, J., Gong, C., and Pi, B. A network-
cliques based role mining model. Journal of Networks 9,
8 (2014), 2079.

[2] Ene, A., Horne, W., Milosavljevic, N., Rao, P.,
Schreiber, R., and Tarjan, R. E. Fast exact and
heuristic methods for role minimization problems. In Pro-
ceedings of the 13th ACM symposium on Access control
models and technologies (2008), pp. 1–10.

[3] Holland, P. W., and Leinhardt, S. Transitivity in
structural models of small groups. Comparative group
studies 2, 2 (1971), 107–124.

[4] INCITS, A. Incits 359-2004. american national stan-
dard for information technology-role based access control,
american national standards institute. Inc., NY, USA
(2004).

[5] Jensen, T. R., and Toft, B. Graph coloring problems,
vol. 39. John Wiley & Sons, 2011.

[6] Li, N., Li, T., Molloy, I., Wang, Q., Bertino, E.,
Calo, S., and Lobo, J. Role mining for engineering
and optimizing role based access control systems. Purdue
University, IBM TJ Watson Research Center (2007).

[7] Tan, P.-N., Steinbach, M., and Kumar, V. Intro-
duction to data mining. Pearson Education India, 2016.

contactus@nulli.com | nulli.com | +1 403 648 0900 6

