
War is 15% conflic, 15% DragonMagazine

Giles Edkins, Lauren Greenspan, Dan Valentine

Interpretability Hackathon Write-Up

Apart Research

PIs: Esben Kran, Neel Nanda, Fazl Barez

Date: 13th November, 2022

Abstract

How does a transformer network represent concepts? Are they localized in activation space
or in the learned parameters of the network, or else totally unlocalized?

We determined that:
- average activations give information about the prompt topic
- casual tracing suggests concepts cannot be easily localized
- "concept diffing" may give information about which attention heads are dealing with
semantic, as opposed to grammatical, information
- we can create a basis for the activation vector space and in some cases express non-basis
vectors as linear combinations of semantically related basis vectors

War is 15% conflic, 15% DragonMagazine

Goals
We set out on a preliminary (for us) investigation into how concepts are encoded by
transformer networks. In order to ensure alignment with humans, future neural networks
must learn concepts and use them appropriately. Understanding how attention heads and
MLPs move and process conceptual information is therefore an important piece of the
interpretability puzzle, and one that would have a big impact on AI safety.  The original idea,
“Don’t mention the war” was to perform surgery on a GPT until it stopped talking about war,
directly or indirectly.

As well as watching information be copied between tokens, it is important to understand the
space that information is stored in. The safety angle is: if concepts aren't stored as linearly



independent vectors, the model might try to create a superposition of two things and end up
with something else entirely, which could lead to robustness failures or adversarial attacks.
And having a map of where in concept space things make sense and where they conflict
might help guard against these problems.

Among other things, we quickly learned that it is hard to understand what a concept is, let
alone create a prompt that would allow us to see where the network stores this information.
“War”, for example, is a concept, but details about specific wars are facts. By trying our
hands at interpretability tools like EasyTransformers, causal tracing, and those from
Interpretability in the Wild, we learned a lot about how this idea fits (or doesn’t) with the
state-of-the-art, and gained a better intuition for future research.

Many of our brief explorations are detailed below. Each was tested on no more than a
handful of examples.

Investigations

Splitting data based on war/not war and looking for relevant activations
(Giles)
Basic idea:

● Have a dataset, half of it is “about war”, half of it not
○ The “about war” half was Wikiquote: war
○ The rest was from various random wikiquote pages

● We want to find which parts of the transformer activate when it’s processing a war
quote

○ The best predictor for whether it’s processing war might be a linear
combination of neurons rather than a single neuron

● Split the data up into training/test
○ We’re not training the transformer; we’re training a simple linear model to

predict war/not-war from the transformer activations
● Gather activations across all the training quotes

○ Choose an arbitrary layer, somewhere in the middle
○ Take the average across all tokens

● Train a linear classifier based on this
● Idea: whichever direction the linear classifier ends up pointing in, that’s the predictor

of the war topic
● Test on the test set.

https://en.wikiquote.org/wiki/War


This plot shows the test set. The y axis is the ground truth with “not war” on the bottom and
“war” on the top. The x axis is the prediction from the linear classifier. You can see that it
accomplished something, but nothing spectacular.
https://github.com/fractal-pterodactyl/concept_detector/blob/main/scan/logreg.py

As a follow-up, I ran some prompts through the transformer, captured its activation, and then
plotted the war/not-war prediction based on the linear model. Again, nothing spectacular -
the red bits are maybe slightly more war-like but it’s nothing brilliant.

https://github.com/fractal-pterodactyl/concept_detector/blob/main/scan/logreg.py


Colouring layers based on concept drift
Here the idea was very simple: see what the hidden layers are emitting. The same
LayerNorm and unembedding was used as for the final output (that’s what the last three
lines are checking). The colour shows the probability of “war” in the unembedding: >1% is
red, >0.1% is yellow.

Backpropagation to identify weights relevant to topic
This was intended as a different technique to isolate parameters relevant to a particular
topic.

● Process prompts until it suggests “war” with >1% probability
● Perform backpropagation (but don’t update the weights, just see what the gradients

are)
● See if any gradients are especially big and make a note of them
● Continue processing prompts

https://github.com/fractal-pterodactyl/concept_detector/blob/main/scan/microlearn_any.py
You need to specify the topic token and threshold on the command line, e.g.
python3 microlearn_any.py war 0.01

Causal tracing
Colab (copied from ROME paper and tweaked with our prompts)

Technique used in the ROME paper to determine the location of a fact
We used it on war-related prompts with the goal of finding out where in the model the
concept of “war” is located (and if it is even localised at all). We found a few things:

- It’s hard to separate war as a concept from facts about wars. Ie “In 1914 the world
went to war” - Completing this prompt just relies on knowledge of a simple historical
fact. We need better prompts to more cleanly capture the concept. Related question -
Does the model even have a concept of “war” separable from various facts about
wars? Do humans? How could we test this? What exactly are concepts?

- War did not seem very localised
- Causal tracing takes a long time on the Colab free tier 🙁

https://github.com/fractal-pterodactyl/concept_detector/blob/main/scan/microlearn_any.py
https://colab.research.google.com/drive/1U3fiabuVzuzGxShMwPchRkix46ijVKIz?usp=sharing


Concept diffing

Colab

A much simpler approach that we came up with. We wanted to find the difference in attention
maps between war and non-war prompts. We use 2 prompts which are structurally and
grammatically the same, but with words changed so one prompt is talking about war and one
is not. We then generate attention maps and diff them.

We just did this with a few prompt pairs and got some results that seem interesting, but more
testing would be needed to see if we can do anything with this. The next step would be to
create a lot more of these prompts and compare the diffs. We’d expect some randomness,
but if there are a handful of places in the attention map that consistently show up on these
diffs then maybe there is something war related there.

One caveat is that attention heads probably don’t really store concepts. The ROME paper
claims that facts are stored in the MLP layers. However, since attention layers also read from
the residual stream, we think they may also pick up on information generated by the
previous MLP layer.

A lot of time was spent thinking about which prompts we should use. We mainly considered
“war-like” and “non-war-like” prompts, but it might be interesting to investigate prompts on a
single topic (like “war”) and distinguish them as either “fact like” or “concept like”. This may
help us understand how a concept is treated by a neural network, and compare it to recent
work like ROME.

Information flow tracing
The idea behind this was to show how information propagates between tokens at each layer.

https://colab.research.google.com/drive/1PLvkUnkNaWK6bi07k5xk8h098sOHcQbl?usp=sharing
https://rome.baulab.info


In these plots, the x axis corresponds to token position and the y axis corresponds to layer
(with the first layer at the top). The colour of the squares shows the activations,
unembedded, and then sampled at the position of key tokens. (red green and blue are “X”,
“Y” and “Z” in the first image and “war”, “peace” and “love” in the second).

The lines connecting the squares show the sum of attention across all the relevant attention
heads.

https://colab.research.google.com/drive/1zf7Uk3C4b774BGQKQXst32QLJbPCTilX?usp=sha
ring

Auspicious Basis
The idea here was to investigate the de-embedding matrix, and use it to infer structure of the
embedding space.

In gpt2-small, the output of the MLP layers is a 768-entry vector, which can be thought of as
a 768-dimensional vector space. This is passed to layernorm (which preserves
dimensionality) and then to the unembedding matrix, which expands the dimension of the
vector space to 50257, the number of tokens in the vocabulary.

https://colab.research.google.com/drive/1zf7Uk3C4b774BGQKQXst32QLJbPCTilX?usp=sharing
https://colab.research.google.com/drive/1zf7Uk3C4b774BGQKQXst32QLJbPCTilX?usp=sharing


So clearly each token doesn't get its own dedicated dimension. What then can we learn
about how the values are organized in this reduced space?

For these purposes a vector is considered "auspicious" if its unembedding promotes one
token significantly above all the rest. This can be tested by taking the softmax - one entry
should end up close to 1 and the rest close to 0.

A basis is considered "auspicious" if it is made up of nearly-orthogonal auspicious vectors.

The first task was to see if an auspicious basis exists, and it turns out it does. This was
discovered using one of Pytorch's optimizers (which might actually be overkill for this task,
since there's no "data" that we're processing here, we're just trying to optimize our parameter
matrix to satisfy two properties: near-orthogonality and the auspiciousness property of its
component vectors.)

When printing out the softmaxed unembedding of the auspicious matrix we see an
interesting property:

0.9993, ' bonded'
4.47e-05, ' bonding'
2.22e-05, ' bond'
5.48e-06, ' bonds'
1.72e-06, ' fused'

This is a fairly typical row, and we see the property that one entry is near 1 and the rest near
0, which is unsurprising as we were optimizing for that. We also see that the largest
near-zero entries correspond to tokens that are very semantically similar to the main one. I
don't know exactly why this is.

The next question then is: given an arbitrary auspicious vector (that's not in the basis), can
we express it approximately as a linear combination of a small number of auspicious basis
vectors, and if so are those vectors semantically related?

The answer is yes, and somewhat, respectively.

In an earlier version, the breakdown for " war" included a lot of garbage: 0.15 " conflic" but
also 0.15 "Dragon magazine". The numbers also didn't tail off to zero as quickly as I
expected. This was fixed by changing the vector norm in the optimizer from 1 to 0.8 (smaller
values seem to break the optimizer).

Here is the breakdown for the " war" vector:
0.163  propag
0.138  conflic
0.127 Wars
0.102 strikes
0.079  unrest
0.056  dehuman
0.049  financial



And " peace":
0.117  unrest
0.081  enjoyment
0.072 lihood
0.060  financial
0.024  mutual

And " banana":
0.194  cone
0.097  Ghana
0.090  pudding
0.083  Paragu
0.074  snowball
0.070 chnology
0.050  reaction
0.047  frogs

And " science":
0.088 �
0.076  gadgets
0.074  blending
0.052 athi
0.046  financial
0.036  promoting
0.003  mathemat

The words seem somewhat related in some cases, and not in others. (Remember that the
vocabulary of the basis vectors is quite limited, so there might simply not be enough
concepts available that are adjacent to e.g. a banana).

Note: these were found with another optimiser, not just by inverting the basis matrix.
Inverting the basis results in a more or less even spread across the basis elements, without
favouring the most meaningful ones.

https://colab.research.google.com/drive/1EYHJcfXbSbZH6GpS5DTE6mL6PPLASuNt?usp=s
haring

Resources
● Easy Transformer Demo
● SERI MATS IOI Demo
● ROME
● Unpacking Large Models with Conceptual Consistency

https://colab.research.google.com/drive/1EYHJcfXbSbZH6GpS5DTE6mL6PPLASuNt?usp=sharing
https://colab.research.google.com/drive/1EYHJcfXbSbZH6GpS5DTE6mL6PPLASuNt?usp=sharing
https://colab.research.google.com/github/neelnanda-io/Easy-Transformer/blob/demo_notebook/EasyTransformer_Demo.ipynb#scrollTo=3PHW5UWwBsWr
https://colab.research.google.com/drive/1mL4KlTG7Y8DmmyIlE26VjZ0mofdCYVW6
https://rome.baulab.info
https://arxiv.org/abs/2209.15093

