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Abstract

In the thriving world of physics and quantum computing, researchers have elaborated a multitude
of methods to simulate complex quantum systems since the 90s. Among these techniques, tensor
networks have an important role in the way they make sense of the compression of data to fit
complex quantum systems in the memory of classical computers. The rapid expansion of tensor
networks is due to the need to visualize and store physical structures.

In this paper, a tensor train decomposition of the linear layers of a simple Convolutional Neural
Network has been implemented and trained on the dataset Cifar10. The observations show that
the various attention images inferred on both a neural network and its tensor network equivalent
has radically different and the models focus on different parts. Secondly, I proposed some consid-
erations on miscellaneous gradient descent methods that can be used to specifically optimise tensor
networks. Tensor networks evolve in a smooth Riemannian manifold, using Riemannian optimisa-
tion (RO) techniques to perform gradient descent geometrically. Indeed, the projections implied by
the RO allow the traceability of the gradients and thus, easily reverse engineer a backpropagation.

The code implemented can be foud as well as the pdf version of all cited papers and images used
in my github : https://github.com/antoine311200/Hackaton-Interpretability. Its usage is quite
straight-forward, simply run all cells in both notebooks after having installed the requirements.
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Introduction

Over the past few years, neural networks have
reached top performance in a wide range of fields
dethroning every previous algorithm known so
far, especially in natural language processing and
computer vision to name but a few. This leads
to models with an ever-growing number of pa-
rameters getting as far as billions of trainable
parameters. On the other hand, exponentially
growing variables have been present for decades
in the simulation of complex quantum systems3.
Diverse algorithms were created to compensate
for this issue by approximating tensors of high
orders into the product of smaller ones: tensor
networks13 2 11 17. Exponential growth is then con-
strained to a polynomial number of values. A vast
variety of tensor networks have been developed
such as Matrix Product States (MPS), Projected
Entangled Pair States (PEPS) and Multiscale
Entanglement Renormalization Ansatz (MERA)
among the principals. They all use the approxi-
mation of huge tensors by discarding uninforma-
tive parameters through the study of singular val-
ues. It has been proved that tensor networks form
a dense subspace of the Hilbert space where they
evolved. Thus, one can hope for a huge com-
pression ratio of a given high-order tensor by a
corresponding tensor network up to an approxi-
mation error. The physical and quantum nature
of these objects allow for a wide range of appli-
cation from physics simulation to constrained op-
timisation and machine learning with complete
performances. In this paper, we use a particu-
lar kind of tensor networks that are Matrix Prod-
uct States (MPS) and their operator counterpart,
Matrix Product Operators (MPO), to replace
fully-connected layers in neural networks2 18 12 19.
Indeed, fully-connected layers account for the
majority of parameters in deep learning models.
Thus, one would like to reduce their size with-
out losing too much precision. Multiple methods
already exist for a whole model such as distilla-
tion or layer fusion but it is quite hard to focus
on a single layer. Here, we propose to compare

the behaviour of a neural network with tensorised
fully-connected layers (in the sense of their ten-
sor train decomposition13 11) with its untensorised
(standard neural network) version to highlight
major changes in the way the network under-
stands information through gradient descent (in a
similar way to4 but for quantum-inspired neural
networks). It will be emphasized by the visual-
isation of two attention mechanisms for images:
GradCam14 for gradient-based localisations and
SmoothGrad7 for gradient-based saliency maps,
showing how tensor networks are good candi-
dates for future implementation in deep learning
and especially in physics-informed deep learning
where its link to the representation of quantum
states and ability to represent symmetry groups
is a top asset. Finally, we exposed theoretically
several gradient-based approaches20 16 10 2 ? to op-
timize these tensor layers for future works where
the interpretability of the neurons would be even
more visible by the geometric nature of these al-
gorithms.

1 Tensor train decomposition &
Matrix Product States

Given a d-dimensional tensor Ai1···id , one can de-
compose it into a product of 3-dimensional ten-
sors called a tensor-train decomposition or a Ma-
trix Product State (MPS)13

Ai1···id ≈ G1
α1
α0,i1

G2
α2
α1,i2

· · ·G1
αd
αd−1,id

with Gk
αk
αk−1,ik

being a rk−1 × nk × rk array (r0 =
rd = 0). This decomposition can be algorithmi-
cally done by performing a series of SVDs (or QR
decomposition for better complexity) truncating
the singular values to keep rk values at each step.
The same process can be apply to get an operator
equivalent, that is for a tensor with input indices
and output ones.

Bj1···jd
i1···id ≈ G1

α1,j1
α0,i1G2

α2,j2
α1,i2 · · ·G1

αd,jd
αd−1,id

with Gk
αk,jk
αk−1,ik

being a rk−1 × nk ×mk × rk array
(r0 = rd = 0).
When subjected to a weight matrix W of size

n×m, one can decide to arbitrarily reshape it into
a 2d-order tensor of size (n1 × · · · × nd)× (m1 ×
· · · ×md) with

∏
i ni = n and

∏
j mj = m. Then,

performing a tensor-train decomposition gives the
possibilty to approximate the weight matrix by an
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Figure 1: Matrix Product State diagram

Figure 2: Matrix Product Operator diagram

MPS. Hence, converting a general neural network
into a tensorised neural network is not a big deal.

Tensor train decomposition has been widely
used by some niche researchers and they pro-
vide a way to compress the information and
reduce the total number of parameters by a
huge amount in the dense layers allowing to
convert a 300 millions parameters Transformer
to a 100 millions one with almost no losses
(https://blog.tensorflow.org/2020/02/speeding-
up-neural-networks-using-tensornetwork-in-
keras.html).

Now, here conversion is not needed as directly
initialising an random MPS instead of a random
weight matrix and optimising it is the simplest
approach both spatially and temporarily. In this
way, from a simple Convolutional Neural Net-
work, all fully-connected layers are replaced by
their tensor dense equivalent (an MPO to ac-
count for the operator-ness of the weight matrix
of dense layers).

Figure 3: Tensor diagram of a dense layer vs a
tensor dense layer

2 Safety & Alignment

Previous works on alignment on fully-connected
layers1 have been realised and proven remarkable
results. Alignment is a form of implicit regular-
ization in linear neural networks under gradient
descent. There always exists a global minimum
corresponding to an aligned solution for the lin-
ear layer. Thus, a tensor train decomposition
is a decomposition of a linear layer into a more
compact form under a dense space of the global
Hilbert space considered the result in the pa-
per1 is straightforward. Nonetheless, it has been
shown that a fully connected layer under gradient
descent while fulfilling the definition of alignment
given by these previous works does not generalize
as an invariant under a constrained layer and sug-
gests that better approaches might be necessary
to understand exactly the implicit regularization.
Hence, our understanding of a tensorised neural
network under gradient descent is partially given
by the previous proofs. Furthermore, with the
result that I was able to get below, future work
must extend the notion of alignment on tensorised
neural networks as they may be key to under-
standing the implicit that fully connected layers
cannot entirely provide.

As for safety, the global concern in today’s
world is how can we face the quantum revolu-
tion and its threat of decrypting the classical
RSA algorithm through the Shor algorithm. Even
though there is still plenty of time before anything
can threaten our data (modern quantum comput-
ing are barely giving proper results and are ex-
tremely constrained), people need to focus on the
potentiality of quantum attacks that could well
reverse engineer easily neural network and endan-
gered the world of AI. Indeed, quantum-inspired
algorithms and methods such as tensor networks
can be extended to practically any numerical and
simulation field as has been the case with ten-
sor trains for machine learning and their abil-
ity to simulate quantum circuits efficiently under
classical machines may be problematic for neural
networks. Thus, ensuring the use of tensorised
layers until more complex ones are created that
account for more safety is primordial and the cor-
nerstone of the future of quantum-inspired AI. As
we will show below, with tensorised layers gradi-
ents are more localised and using proper gradient
descent such as tangent space gradient optimisa-
tion (TSGO)20 and Riemannian optimisation of
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submanifolds of fixed TT-rank16 could improve
the interpretability of these models. It would
permit the creation of complex quantum-inspired
neural networks given total interpretability, ex-
plainability, control and safety of everything that
is happening under the hood lifting the black-box
approach with white-box models locked by safe
mechanisms against any kind of attacks.

3 Gradient-based Visualisation
methods

3.1 Interpretability visualisation Meth-
ods

Using the Cifar10 dataset with a toy model com-
posed of three blocks of (Conv2D-BatchNorm-
Conv2D-BatchNorm-MaxPooling2D-Dropout)
with sizes respectively 32, 64 and 128 followed
by a feed forward network containing our fully-
connected layers for the neural network model
and tensor dense layers for the tensorised neural
network. The model is trained for 50 epochs with
an Adam optimiser with the results of the sparse
categorical cross-entropy loss and accuracy in
Figure [4] and [5].

Figure 4: Training and Evaluation loss of both
standard and tensorised neural network

Figure 5: Training and Evaluation accuracy of
both standard and tensorised neural network

An interesting result that has not been yet pub-
lished and not proved by what I observed dur-
ing my previous work on tensorised neural net-
works is that the loss is always converging faster

for the tensorised network. This is a hint to ex-
plore future work on the explainability of tensor
network models. Combining this statement with
how gradient-based optimisation works for tensor
networks might lead to stunning results in the
mechanistic interpretability of tensorised neural
networks.
The idea is to see how different tensorised neu-

ral networks are from their standard sibling. For
this purpose, the GradCAM (Gradient-weighted
Class Activation Mapping) technique for produc-
ing visual explanations for decisions has been
used to create a heatmap of the main pixels ac-
knowledging the class predictions of an image for
the given model. It uses the gradients flowing
into the final convolutional layer to produce an
unrefined localization map emphasising impor-
tant regions in the image for a particular class
prediction. Secondly, we used SmoothGrad7 to
compute saliency maps of given images with re-
spect to some target classes. SmoothGrad creates
noisy copies of an input image and average gradi-
ents highlighting areas of visual importance in the
picture by sharpening the resulting saliency map
and removing irrelevant noisy regions. We used
the tf-keras-vis Python package to visualize effi-
ciently and utilise GradCAM and SmoothGrad.
Let’s take a batch of Cifar10 images (Figure 6)

and process both the models through GradCAM
and SmoothGrad.

Figure 6: A batch of Cifar10 images

3.2 Results - GradCAM

The results are shown for the batch of images in
Figures [8] and [10] for the sample batch and in
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Figures [13] and [15] for a sample of 16 images of
frogs (Figure [11].

Figure 7: Neural Network GradCAM of the sam-
ple batch

Figure 8: Tensor Network GradCAM of the sam-
ple batch

Our observations show that in the GradSCAM
method14, the gradients are less localised for the
standard neural network with attention focused
on several parts of the images with spreading
areas and dissipated gradients. Contrastingly,
the tensorisation of the neural network induced
a more localised gradient heatmap with high val-
ues on specific parts of the image that correspond
more to the actual attention mechanism of human
vision. Indeed, taking the bottom-right images of
the deer, it is clear that the gradients for the neu-
ral network are less interpretable than the one of
the tensorised version which focus on the head
and antlers of the Cervidae.

Figure 9: Neural Network SmoothGrad of the
sample batch

Figure 10: Tesnor Network SmoothGrad of the
sample batch

Figure 11: A batch of frog images
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Figure 12: Neural Network GradCAM of frogs

Figure 13: Tensor Network GradCAM of frogs

3.3 Results - SmoothGrad

In the SmoothGrad method, we aim at getting a
saliency map which is an image that highlights
the region on which people’s eyes focus first. The
same phenomenon as for GradCAM is to be ob-
served with fewer spread gradients on the ten-
sorised neural network. Moreover, we see a high
correlation between areas highlighted in Grad-
CAM and SmoothGrad, thus, the flow of the gra-
dients through the tensorised layers is more con-
trolled..

3.4 Results - Conclusion

By the very nature of tensor trains, with several
cores encapsulating all the information, we can
expect a better distribution of the weights with
entanglement (in the quantum physical sense).
Thus, the previous results conclude that the dis-

Figure 14: Neural Network SmoothGrad of frogs

Figure 15: Tensor Network SmoothGrad of frogs

tribution of information in the different cores en-
ables the model to better grasp the accurate part
of the images that clarify the predictions. The
localisation of the gradients on important parts
of the images in contrast to classical neural net-
works which give a widespread with a lot of un-
interesting gradients give a better understanding
of the model predictions and can provide an ef-
ficient way to compress the gradient information
to make distillations of models in the future.

4 Future perspectives

In this work, we studied the flowing of gradients
in a standard neural network and tensorised neu-
ral network with an Adam optimiser to train the
model. However, more theoretically accurate gra-
dient optimisation methods exist for tensor net-
works and would be interesting to attempt. On

6



top of that, the study of how the Von Neumann
entropy of each tensorised layer evolved and is
spread for each core and compare them to the
entropy of the weight matrices in standard fully-
connected layers.

S(ρ) = −tr (ρ ln ρ)

It is simple to compute it given the fact that there
is a low entanglement in the underlying system
(which is the case as we are not dealing with the
superposition of states here and only the one in-
duced by the noise and the optimisation process
are present). It suffices to compute each reduced
density matrices for each core of the tensor train
(see Figure [16]).

Figure 16: A single-core reduced density matrix

4.1 DMRG-like optimisation

The first optimisation algorithm that comes to
mind is DMRG-like optimisation15 18 where we
optimise both tensor cores side by side from the
left to the right of the MatrixProduct State in
a sweep-like fashion. It allowed us to reduce
the global complexity because we had to con-
tract each index to result in a tensor output in
each dense tensorised layer in our model. This
accounts for much of the training time.

4.2 Tangent Space Gradient optimisation

Tangent spaces are inescapable in the context of
tensor networks when dealing with complex opti-
misation algorithms. It has been shown20 that
the gradient of a quantum state in a Hilbert
space can be restricted in the tangent space of
a one-dimensional hyper-sphere with a learning
rate that is naturally determined by the angle of
the gradients η = tan θ.

Figure 17: One optimisation step of the DMRG-
like gradient update

4.3 Riemanian optimisation

The set of all d-dimensional tensors that can be
entirely represented16 with a fixed tensor train
rank of r = (r1, · · · , rd)

Mr =
{
W ∈ Rn1×···×nd , tt− rank = r

}
forms a Riemannian manifold. This allows us to
use Riemannian optimisation5 to train tensor net-
works. THe Riemannian optimisation in the con-
text of tensor trains is quite simple to explain
(but more arduous to implement)

Wk+1 = ttr

(
Wk − λPTMr (W )

(
∂L
∂W

)
, r

)

where PTMr
is the projection operator onto the

tangent space inMr ofW and ttr(·, r) is the func-
tion that decreases the tt-rank of a tensor train
to r.

Figure 18: Visual representation of Riemannian
gradient descent18
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Conclusion

We showed how a tensorised neural network and
its standard version result in different learning
results with the tensorised one having a faster
loss convergence for a decrease in trainable pa-
rameters 498, 282 vs 551, 146. Using more ad-
vanced research on tensorised deep learning, one
can hope to replace the CNN layers with a ten-
sorised version and reduce the total number of
parameters drastically. On top of that, the inter-
pretability of the attention mechanism of Grad-
CAM and SmoothGrad through the flow of gradi-
ents in the model indicates that tensorised neural
networks are a good candidate for mechanistic in-
terpretability, explainability and model compres-
sion of neural networks in the future while being
well-performing for physics-based models with its
ease to encompass quantum information (because
they have been developed for this purpose first)
and to restrain tensors to symmetry groups that
are utterly important in quantum physics.
Different optimisation algorithms might be in-

teresting to employ to see if their logical nature
to boast with tensor networks would acknowledge
an even greater interpretation of the networks.
In the field of Natural Language Processing

where Transformers are reigning supreme, the
tensorisation of Transformer is a hot topic be-
cause of the high number of dense layers that
could be converted leading to a reduced model
with high accuracy.
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evolution methods for matrix-product states.
2015. https://arxiv.org/abs/1901.058

24.

[18] Kenneth Stoop. Machine learning with ten-
sor networks. https://libstore.ugent.b

e/fulltxt/RUG01/002/782/897/RUG01-0

02782897_2019_0001_AC.pdf.

[19] Danilo P. Mandic Yao Lei Xu, Giuseppe
G. Calvi. Tensor-train recurrent neural net-
works for interpretable multi-way financial
forecasting. 2021. https://arxiv.org/ab

s/2105.04983.

[20] Gang Su Zheng-zhi Sun, Shi-ju Ran.
Tangent-space gradient optimization of ten-
sor network for machine learning. 2020.
https://arxiv.org/abs/2001.04029.

9

https://www.researchgate.net/publication/220412263_Tensor-Train_Decomposition
https://www.researchgate.net/publication/220412263_Tensor-Train_Decomposition
https://www.researchgate.net/publication/220412263_Tensor-Train_Decomposition
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/cond-mat/0409292
https://arxiv.org/abs/cond-mat/0409292
https://www.researchgate.net/publication/227007498_On_manifolds_of_tensors_of_fixed_TT-rank
https://www.researchgate.net/publication/227007498_On_manifolds_of_tensors_of_fixed_TT-rank
https://www.researchgate.net/publication/227007498_On_manifolds_of_tensors_of_fixed_TT-rank
https://arxiv.org/abs/1901.05824
https://arxiv.org/abs/1901.05824
https://libstore.ugent.be/fulltxt/RUG01/002/782/897/RUG01-002782897_2019_0001_AC.pdf
https://libstore.ugent.be/fulltxt/RUG01/002/782/897/RUG01-002782897_2019_0001_AC.pdf
https://libstore.ugent.be/fulltxt/RUG01/002/782/897/RUG01-002782897_2019_0001_AC.pdf
https://arxiv.org/abs/2105.04983
https://arxiv.org/abs/2105.04983
https://arxiv.org/abs/2001.04029

	Tensor train decomposition & Matrix Product States
	Safety & Alignment
	Gradient-based Visualisation methods
	Interpretability visualisation Methods
	Results - GradCAM
	Results - SmoothGrad
	Results - Conclusion

	Future perspectives
	DMRG-like optimisation
	Tangent Space Gradient optimisation
	Riemanian optimisation

	Acknowledgements

