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Abstract

In this project we form a theory of why Negative Name Mover Heads (Wang et al.,
2023) form in GPT-2 Small. We suspect that Negative Name Mover Heads i)
respond to confident token predictions in the residual stream via Q-composition
(Elhage et al., 2021), ii) attend to previous instances of such tokens in context and
iii) negatively copy these tokens into the current token position. We use maximum
activating dataset examples, negative copying score and a novel metric that tests
our theory. Our results represent early research thoughts and are subject to ongoing
investigation.1

For an up-to-date version of this writeup, we recommend reading our live report: https://www.
overleaf.com/read/zfzrrppmmnyx
In this writeup we describe some background on Negative Name Mover Heads on the IOI distribution
of text (Section 1), some evidence of the behavior of Negative Name Mover Heads (Section 2)
and finally the most important contribution of our work thus far is a metric that tests our theory of
Negative Name Mover behavior in any attention head in a model (Section 3). We find that indeed, the
two Negative Name Mover Heads have the largest value of this metric in GPT-2 Small.

1 The IOI Distribution

We refer to Wang et al. (2023) for an introduction to and discussion of the Negative Name Mover
Heads.

Why might we care about this pathological component in a language model? Prior work has found
negative components to be a road-block to the automation of interpretability (Conmy et al., 2023).
Additionally, Negative Name Mover Heads are related to the Backup Name Mover Heads found
by Wang et al. (2023): the Appendix of that works shows that when mainline circuitry of a model
is ablated, Negative Components can become positive components. Nanda (2023) discusses the
problems with Backup Circuitry for the problem of attribution of things models do to internal
components of those models. In future work we will document the strength of this evidence.

2 The General Distribution

We looked at which tokens the Negative Name Mover Heads pushed the most in the logits and which
they pushed the least. We found the tokens they pushed the most were generally uninterpretable
but the tokens they pushed the least were tokens that appeared in context and were often incorrect
completions.

3 The Prediction-Attention Score

Based on the evidence from Section 2, we formed the hypothesis that Negative Name Mover Heads
perform the following function:

1Our experiments are currently hosted at https://github.com/ArthurConmy/TransformerLens/
tree/hackathon
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Figure 1: Prediction-Attention Score on the two Negative Name Movers

1. Respond to confident token predictions in the residual stream via Q-composition.
2. Attend to previous instances of such tokens (that the model is confident in predicting) in the

current context.
3. Negatively copy these tokens into the current token position.

How might we test such a hypothesis? We observed that if 1. was carried out, we would expect that
when query vectors are computed from the unembedding vectors for particular tokens, then the model
attends to previous instances of that token in context. For example, let t be some token, WE,t be the
embedding vector for that token, WU,t be the unembedding vector for that token and WQ and WK be
the query and key parameters for a given head in a transformer language model. Then our hypothesis
predicts that an attention-score-like quantity.

WE,sWKWT
QWU,t (1)

will be large when s = t and smaller when s ̸= t.

An issue with the setup described so far is that in GPT-2 Small ties the embeddings so WE = WU .
Additionally, many prior works have found that Attention Layer 0 and especially MLP Layer 0 of
GPT-2 Small act as ‘effective embeddings’ in that their outputs are mostly a function of the current
token only (not mixing information across positions) and additionally the model appears to use their
outputs to identify the token at a given position rather than the embedding matrix. Therefore we
describe a way to generate an ‘effective embedding matrix’ WEE in Appendix A.

Additionally, computing the attention paid between all 50 thousand tokens in GPT-2 Small’s tokenizer
is intractable, so we needed smaller subsets of tokens to search over to compare the s = t and
s ̸= t cases. We collect sets of distinct tokens B from OpenWebText documents and describe
how we computed attention-score-like quantities for how much attention would be paid to various
unembeddings. Specifically, we calculated the ‘Prediction-Attention score’, our novel metric for each
of these bags of words B:

ScorePrediction-Attention(B) =
1

B

∑
t∈B

Softmaxs∈B

[(
WE,sWKWT

QWU,t

)]
t (2)

Specifically, we take the softmax over the s dimension (varying the key vectors), and then we look at
the tth entry of this distribution (t is used for the query). We find that the Prediction-Attention Score
is very close to 1 for Negative Name Mover Heads.

In Figure 1 and Figure 2 we plot the ‘attention’ values for all queries and keys in a particular bag
of tokens B. This corresponds to the green text in Equation (2). Therefore the Prediction-Attention
Score is the average of the diagonal elements of these figures.

This compares favourably to almost all other heads in GPT-2 Small, such as S-Inhibition Heads and
Positive Name Movers (Figure 2).

In fact, on random tokens the Prediction-Attention score was far larger for Negative Name Movers
than almost all other heads (Figure 3).
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Figure 2: Prediction-Attention Score on Other Heads. See scale for low values

Figure 3: Prediction-Attention Score across GPT-2 Small’s Heads
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Appendix

A Effective Embedding

Suppose we set the attention pattern of all Layer 0 heads in GPT-2 Small to the identity matrix.
Suppose we additionally set the positional embeddings of the model to all 0s. Then the output of the
model at MLP 0 is solely a function of the input token. This corresponds to a different dvocab × dmodel
matrix for computing the embeddings of a model that we call WEE .
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