
Promptmanteau (by mentaleap)
port·man·teau is a word blending the sounds and combining the meanings of two others, for
example motel (from ‘motor’ and ‘hotel’) or brunch (from ‘breakfast’ and ‘lunch’).

Participants
- Amir Sarid
- Bary Levy
- Dan Barzily
- Edo Arad
- Gal Hyams
- Geva Kipper
- Guy Dar
- Itay Yona
- Yossi Gandelsman

https://mentaleap.ai

Introduction
We researched prompt tuning on GPT-2 for various tasks, with our main conclusion being that
the embedding space for prompt tuning tasks is convex.
We tried several iterations of training on the same prompt tuning task, each reaching different
results, and then checked different convex combinations and saw that they reached a similar
success rate in those same tasks. This implies that the different possible ways to solve this task
might all come from a single convex set of valid solutions, and allows us to generate many
various solutions that all achieve similar results on the task at hand.

Motivation
Prompt-tuning [1] is a technique for instructing the model toward a specific task in “its own
language” (the embedding space). The idea is to prepend yet-to-be-used tokens, and learn
embeddings for them (also known as soft prompts) while freezing the rest of the model
parameters. This technique is successful and mysterious and according to several attempts to
interpret soft-prompt it is considered difficult [2,3].

In the context of Mechanistic Interpretability (MI), prompt-tuning offers an interesting ‘hook’, as
most of the research is static / passive: you are given a set of weights / architecture and your
goal is to learn something about it. Prompt-Tuning gives a dynamic angle to the problem, it
allows a quick model fitting for a task of our choice. Moreover, soft-prompts are interesting since
they are exactly on the intersection between human-interpretable input and the network
algorithm - on an equal footing with natural language tokens, but also serve as a means to affect
the network’s algorithm. We believe having both static and dynamic tools is crucial for MI [4].

Research Diary
We used GPT2 for simplicity and speed considerations.

Attempt #1
Our first motivation to interpret soft-prompt is a technique called “Speaking Probes” [5],
conducted by one of our members. The idea is to use parameters of the network as part of the
input, and let the model work out an explanation using natural language prompts such as: “What
is the meaning of <neuron 2>”. The Speaking Probes code replaces under the hood the
<neuron 2> with the parameters (or vectors) in question. Even though this idea failed, we
moved to other similar questions with the aim of understanding properties of soft-prompts.

Other attempts
We started with a sentiment analysis task for rotten tomatoes with multiple soft-tokens (10 &
20). The model failed to learn the task successfully. We managed to find a simple task (+1)
which works for small numbers represented as a single token (the numbers from 1- 500). We
shrunk the number of tokens down the three and the model actually managed to solve the
problem. We tried changing the order of the token (which works quite well), to repeat the token
multiple times (hoping the model will apply +2) but it failed, we tried using only a subset of the
three tokens (it partially worked, seems like a single token was enough to reduce the result to
numeric), and it also tried to sum all the tokens (this also partially worked, it has interestingly
only worked when we summed the difference between the before and after training
embeddings!).

Successful attempt
Eventually we chose to study the +1 task, on GPT2 model. We trained a single token to
represent the plus_1_task reaching 100% accuracy. It is important to note that the model
naturally doesn’t output the next number of the input. We repeated the training several times
ending up with several different tokens representing the same task. We tried out convex
combinations for the task-tokens and for our supersize the model predicted the next number!

Results
Our main result is that prompts seem to lie in a convex set. That means the vectors that
represent this task can be added together as a convex sum to yield a different token which is
also instructing the model to conduct the same task. We managed to show that for a variety of
tasks: +1, +2, identity (+0), IMDB sentiment-analysis. Using multiple single-task tokens (one to
four tokens). Furthermore, the convex sums tokens show only a minor reduction in performance
of the task! We also made sure the learned tokens are not identical or similar using cosine
similarity (this method works also for orthogonal task vectors).

We believe these results extend beyond GPT2, and might also work with multiple-tokens per
task.

Some numeric results of our analysis:
Sentiment Analysis

● token1_imdb: 83.90%
● token2_imdb: 81.50%
● combination 1 [0.797 0.2033]: 63.10%
● combination 2 [0.358 0.642]: 59.00%

Identity

● token01: 99.60%
● token02: 99.20%
● combination 1 [0.707 0.293]: 95.00%
● combination 2 [0.743 0.257]: 96.20%

+1

● token11: 69.60%
● token12: 95.20%
● token13: 99.80%
● token14: 88.00%
● combination 1 [0.370 0.229 0.217 0.184]: 92.80%
● combination 2 [0.09 0.263 0.413 0.231]: 99.40%

+2

● token21: 77.00%
● token22: 77.60%
● token23: 84.40%
● combination 1 [0.439 0.075 0.485]: 50.80%
● combination 2 [0.334 0.235 0.431]: 41.40%

Further directions
1. An interesting question we had was to measure the dimensionality of the task convex

space but adding orthogonality regularization. We decided not to follow this direction
because of time considerations.

2. A different thing we wanted to study is a representation for a generalizable task, such as
a token that adds one, but also when repeated adds two.

3. [token] [num] => [num+1]
4. [token] [token] [num] => [num+2]
5. Fitting the embedding accordingly might yield a token which could be repeated n times to

express the instruction of +n.
6. We also wanted to fit a token for the task of “Explain the following” and then run:
7. [token] [token], the model would need to explain the meaning of the explanation token.

This recursive structure interested us.
8. We wanted to use prompt-leakage to maybe extract the meaning of the prepended

tokens by using a phrase such as “ the beginning of this sentence means”.
9. Compositionality: it would be cool to find a way to compose different token-tasks and end

up with a task reflecting both tasks! We had ideas on how to follow this question but we
did not have enough time. The idea is common in Computer Vision [6].

References
[1] The Power of Scale for Parameter-Efficient Prompt Tuning https://arxiv.org/abs/2104.08691

[2] Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous
Prompts, https://arxiv.org/abs/2112.08348

[3] Interpretable Soft Prompts https://learnprompting.org/docs/trainable/discretized

[4] Software Reverse Engineering and Mechanistic Interpretability,
https://www.neelnanda.io/mechanistic-interpretability/reverse-engineering

[5] Speaking probes, https://link.medium.com/tfcdeAOzDwb

[6] MyStyle: A Personalized Generative Prior, https://arxiv.org/abs/2203.17272

https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2112.08348
https://learnprompting.org/docs/trainable/discretized
https://www.neelnanda.io/mechanistic-interpretability/reverse-engineering
https://link.medium.com/tfcdeAOzDwb
https://arxiv.org/abs/2203.17272

