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Abstract
Artificial intelligence is fast developing new capabilities and is able to interpret the context of
grammatical structures and sentences correctly. However, the problem of balancing
parentheses remains relevant and unsolved in the domain of NLP, which would enable more
human-like capabilities. Our team approached this problem by devising a reward function
based on the positional encoding of parentheses. A data set was generated by using a
smaller model of GPT-2, which an NLP model was trained on using PyTorch with an average
accuracy of 93%. In order to prove robustness, an attempt was made to use auto-LiRPA for
formal verification. Such models can be more broadly applied to processes such as causal
scrubbing–a method for rigorously testing interpretability hypotheses.2 Thus, we believe
excellent formal verification tools for paren-balance checking could be highly impactful for
groundbreaking AI alignment research in the future.

Introduction
Powerful AI systems may be used in high-stakes situations in the future when a single
mistake might be disastrous. In order to obtain superior worst-case performance, adversarial
training, which uses an adversary to produce training instances, is one method for
enhancing AI safety in high-stakes situations.

Earlier this year, Redwood Research tested the feasibility of achieving high reliability through
adversarial training using a safe language generation task (i.e., "avoid injuries")3. To identify
and remove flaws in a classifier that filters text completions supplied by a generator, they
developed a number of adversarial training strategies. They made assumptions about the
various components of the model and how they work together to accomplish the
classification goal.4

The results were positive with many concerns: it had the advantage of being flexible enough
to accommodate different types of completions. However, Scott Alexander argued that some
of the adversarial examples seemed to be failures of world-modeling5 and failed to delineate
the category that Redwood wanted precisely. Citing Daniel M. Ziegler, one of the primary
authors of the original study, Alexander advised that if they tried again, they should try to get
it to always output balanced parentheses, which should be simple to check:

5 Alexander, Scott. “Can This AI Save Teenage Spy Alex Rider From A Terrible Fate?” Astral Codex
Ten, 28 Nov. 2022, https://astralcodexten.substack.com/p/can-this-ai-save-teenage-spy-alex.

4 LawrenceC, et al. Causal Scrubbing: Results on a Paren Balance Checker.
www.alignmentforum.org,
https://www.alignmentforum.org/posts/kjudfaQazMmC74SbF/causal-scrubbing-results-on-a-paren-bal
ance-checker.

3 Ziegler, Daniel & Nix, Seraphina & Chan, Lawrence & Bauman, Tim & Schmidt-Nielsen, Peter & Lin,
Tao & Scherlis, Adam & Nabeshima, Noa & Weinstein-Raun, Ben & Haas, Daniel & Shlegeris, Buck &
Thomas, Nate. (2022). Adversarial Training for High-Stakes Reliability.

2 LawrenceC, et al. Causal scrubbing: A method for rigorously testing interpretability hypotheses
[redwood research]. AI Alignment Forum. www.alignmentforum.org,
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorousl
y-testing.
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[...] Daniel Ziegler suggests that when they do, they will try something less ambitious.
He suggested a balanced-parentheses classifier: ie does (((())()(()(())))() contain
exactly one open parenthesis before every close parenthesis? This will probably
produce more useful results - while also being much less fun to write about.

This project consists of training a language model to generate sequences of balanced
parentheses and using a formal verification tool to prove that this will be the case for any
input. The number of possible sequences of parentheses is huge, so we cannot verify the
model by just checking all the inputs comprehensively. Hence, our team wanted to use
formal verification to check that the model would never output an unbalanced sequence.

Our project shares a similar motivation to Redwood’s safe language generation task.
Confronted with an exponentially large space of situations that our model could face, we
want to ensure that our model behaves correctly by only evaluating it on a subset of those.
Approaching that problem in the simple case of balancing parenthesis can shed light on the
possibilities and limitations of the methods we have available for aligning LLMs. In the case
of Redwood’s experiment, their results informed us about the feasibility of using
human-assisted RL for the task. In our case, we want to see if formal verification tools could
also help us ensure that our model behaves appropriately outside of our test cases.

If we had the tools that robustly constrain the behavior of our models and such techniques
scaled to more powerful models, they would allow us to either identify or avoid deceptive
behaviors. Our work is far from reaching the goal of robustly aligning behavior, but it could
serve as a stepping stone towards more advanced techniques to do so in the future.

Methods
We trained a smaller version of GPT-2 to complete sequences of parenthesis, such that the
resulting string is balanced and 20 characters long6. Then we used the auto_LiRPA library of
formal verification tools to see if we could certify that the language model would correctly
complete all prompts of a given length.

To train the model, we generated an exhaustive list of all 20 character sequences of
balanced parentheses and used it as the training set. Then we evaluated the accuracy of the
model by taking the first k characters of a balanced parentheses string and judged the
completion as successful if the whole resulting string is balanced (prompt+completion). Here
you can see the percentage of successful completions as a function of the prompt length:

6 For example, if we prompted the model with the string “((((” a successful completion would be
“))))()()()()()()”.



In the end we didn’t manage to employ the auto_LiRPA library to analyze our model. Here
you can find a Google Colab Notebook with our attempts.

Discussion & Future research
Given the significant impact of Redwood Research’s alignment research and the potential of
paren-balance checking, excellent formal verification tools for paren-balance checking could
be highly impactful for groundbreaking AI alignment research in the future.

https://colab.research.google.com/drive/1RCq0UR6Du9bHJVOTgWd1YeX1u8nxqRZk?usp=sharing#scrollTo=ZrtajlemciV5

