Hands-off: automated & TMT-compatible sample preparation on the PreON platform employing the iST-NHS technology

¹Sebastian Steiner, ²Doris Jansen, ¹Jonas Albinus, ¹Sandra Goetze, ³Harald Quintel, ³Konstantin Lutze, ¹Bernd Wollscheid, ²Fabian Hosp, ²Nils Kulak ¹ETH Zürich, Institute of Molecular Systems Biology, 8093 Zurich, Switzerland | ²PreOmics GmbH, 82152 Martinsried, Germany | ³HSE AG, 8634 Hombrechtikon, Switzerland

1 Introduction

Sample preparation is an important component of the overall MS-based proteomics work-flow and remains to be a limiting factor for high-throughput analyses. Here, we present an automated end-to-end solution for standardized sample processing, including cell lysis, digestion, TMT labeling & peptide cleanup by combining the NHS adaption of the iST technology (Kulak et al., 2014) with a newly developed automation platform called PreON.

² Material & Methods

Sample preparation was done employing iST or iST-NHS kits, either by a manual operator or on the PreON platform. The instrument includes a built-in centrifuge and can process up to 12 samples per run in a fully automated fashion from lysis to cleaned up peptides. MS runs were performed on a QEplus instrument, data analysis by PD and TPP.

R= 0.93

R= 0.92

abundance [log]

R = 0.95

R = 0.97

20

10 μg

Manual_normalized

Manual

20

[log]

R= 0.95

R= 0.94

Fig. 1 | Dilution series of human serum. Manual iST sample preparation vs. operation on PreON.

100 μg

PreON_normalized

PreON

Fig. 6 | Sample prearation of yeast (*S.cerevisiae*), mouse brain and liver tissue, 100 μg input each; all samples processed on PreON. For tissue samples, lysis was done off-board with additional ultrasonication for enhanced tissue disruption (10 cycles 30 sec on/off; Diagenode Bioruptor® Pico). Single-shot MS analysis on LTQ-Orbitrap.

5 TMT Compatibility

ble membranes to prevent hydrolyzation on board during lysis and digestion time. All iST-NHS buffers are placed on the upper left deck.

Fig. 8 | Number of proteinGroups identified & TMT labeling efficiency for yeast and HeLa samples, 100 µg

Fig. 7 | Workdeck operation when

employing iST-NHS technology on

the PreON. All TMT reagents, aceto-

nitrile for label hydrolyzation and hy-

droxylamine for quenching are

placed on the bottom right deck.

TMT labels are covered with puncha-

PreON are currently in progress.

relative to 2:1 ratio [%]

Fig. 9 | Inverse correlation between labeling efficiency and peptide identifications. The recommended TMT:peptide ratio of 8:1 results in slightly higher labeling efficiency at the cost of reduced peptide identifications. Use of a 4:1 TMT:peptide ratio results in a more effective balance between labeling efficiency and peptide identifications.

6 Conclusions

- low technical variability
- high reproducibility R > 0.9
- automation for label-free & TMT on one instrument
- flexibility to operate 4-12 samples
- ease-of-use, plug & play methods
- optical & ultrasonic sensors control workflow quality
- fully complementary with ready-to-go iST and iST-NHS kits

time to process 12 samples [min]

Fig. 10 | Comparison of hands-on and hands-off times for a manual operator vs. operation on the PreON platform. Top chart for label-free applications, bottom chart for TMT labeling.

7 Outlook

We foresee the PreON evolving as the flexible platform for reproducible and standardized sample processing. Label-free and chemical labeling workflows are the first in a pipeline of applications that allow walk-away automation for mass spectrometry-based protein analysis.

Technologies for your proteomic applications