PREOMICS
 iST-NHS Sample Preparation Kit 192x

Pelleted cells \& precipitated protein

Introduction Sample preparation is one of the essential steps of bottom-up proteomics. The PreOmics iST sample preparation kit is designed to assist researchers achieving best results with few sample preparation steps and little hands-on time. For sample-specific protocols and optimization visit www.preomics.com/downloads or contact info@preomics.com.

Kit Contents The kit contains everything to perform a complete sample preparation. It includes all chemicals to
per package, total of two packages denature, reduce and alkylate proteins, as well as the enzymes to perform a tryptic digestion and a final peptide cleanup.

Pre-Requisites

Common lab equipment is required for the sample preparation.

Equipment	Quantity and Description
PIPETTE	Careful sample handling and pipetting reduces contaminations and improves quantification.
SAMPLE	Pelleted cells or precipitated protein. For other sample types contact PreOmics for adapted protocols.
96 WELL PLATES	96 deep well \& 96 well skirted plates to balance WASTE \& MTP PLATES in centrifuge.
HEATING BLOCK	Two MTP plate heaters are recommended to support protein denaturation and digestion.
CENTRIFUGE	Swing-bucket centrifuges are required for loading, washing and elution.
SONICATOR	If the sample contains DNA, shear it by sonication (e.g. Diagenode Bioruptor®).
VACUUM EVAPORATOR	Vacuum manifolds evaporate volatile buffers from the eluate before LC-MS.
ULTRASONIC BATH	Optional: can be used to resuspend peptides.
LABELING REAGENT	Labeling reagent (e.g. $400 \mu \mathrm{~g}$ labeling reagent in 41μ L dry acetonitrile for $100 \mu \mathrm{~g}$ peptides).
LABELING BUFFER	Anhydrous acetonitrile \& quenching buffer (5% hydroxylamine), as recommended by the manufacturer.

| 1. LYSE 10 min
 Reduce \& Alkylate © $95^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |

$\begin{array}{ll}\text { 2. DIGEST } & @ \\ \text { LysC \& Trypsin } & 80 \mathrm{~min} \\ \text { B } & 37^{\circ} \mathrm{C}\end{array}$

| $\left.\begin{array}{ll}\text { 4. PURIFY } & \text { ® } 60 \mathrm{~min} \\ \text { Wash \& Elute } & 8 \\ \hline\end{array}\right]$ |
| :--- | :--- |

Method

1. LYSE *Critical Note*

1.1. Add $50 \mu \mathrm{~L}$ LYSE-NHS \bigcirc to $1-100 \mu \mathrm{~g}$ of protein sample, place it in a HEATING BLOCK $\left(95^{\circ} \mathrm{C} ; 1,000 \mathrm{rpm} ; 10 \mathrm{~min}\right) .{ }^{*}$ NOTE1 *
1.2. Optional: Spin down droplets (RT; max. $300 \mathrm{rcf} ; 10 \mathrm{sec}$).
1.3. If the sample contains DNA, shear it in a SONICATOR (10 cycles; 30 sec ON/OFF). Let sample cool down to RT.

2. DIGEST

2.1. Add 5 mL RESUSPEND \bigcirc to DIGEST \bigcirc (1 vial for 96 reactions), invert vial several times (RT; 10 min).
2.2. Add $50 \mu \mathrm{~L}$ DIGEST to sample and place it in a pre-heated HEATING BLOCK ($37^{\circ} \mathrm{C} ; 500 \mathrm{rpm} ; 1-3$ hours). *NOTE2*

3. LABEL

3.1. Resuspend LABELING REAGENT in anhydrous acetonitrile (e.g. 4:1 ratio of label:peptides).
3.2. Add resuspended LABELING REAGENT to sample, pipette up/down, incubate shaking (RT; $500 \mathrm{rpm} ; 1$ hour).
3.3. Add $10 \mu \mathrm{~L}$ QUENCHING BUFFER (5\% hydroxylamine) to sample, pipette up/down.
3.4. Add $100 \mu \mathrm{~L}$ STOP to sample (precipitation may occur), shake (RT; 500 rpm ; 1 min), pipette up/down. *SP*

4. PURIFY

4.1. Use ADAPTER PLATE to place CARTRIDGE on top of WASTE PLATE. Label plate and wells.
4.2. Transfer sample to CARTRIDGE. Be careful not to damage the bottom layer of the CARTRIDGE.
4.3. Spin CARTRIDGE in a CENTRIFUGE ($2,250 \mathrm{rcf} ; 1-3 \mathrm{~min}$). If needed, adjust time to ensure complete flow-through.
4.4. Add $200 \mu \mathrm{~L}$ WASH $1 \bigcirc$ to CARTRIDGE, repeat step 4.3.
4.5. Add $200 \mu \mathrm{~L}$ WASH $2 \bigcirc$ to CARTRIDGE, repeat step 4.3. ${ }^{*}$ SP*
4.6. Use ADAPTER PLATE to place CARTRIDGE on top of the MTP PLATE. Label plate and wells.
4.7. Add $100 \mu \mathrm{~L}$ ELUTE \bigcirc to CARTRIDGE, repeat step 4.3., keep flow-through in MTP PLATE.
4.8. Repeat step 4.7., keep flow-through in the same MTP PLATE.
4.9. Discard CARTRIDGE and place MTP PLATE in a vacuum evaporator ($45^{\circ} \mathrm{C}$; until completely dry).
4.10. Add LC-LOAD \bigcirc to MTP PLATE. Aim for $1 \mathrm{~g} / \mathrm{L}$ concentration (e.g. $100 \mu \mathrm{~L}$ to $100 \mu \mathrm{~g}$ protein starting material).
4.11. Sonicate MTP PLATE tube in an ULTRASONIC BATH (5 min) or shake (RT; $500 \mathrm{rpm} ; 5 \mathrm{~min}$). *SP*
Critical Note For automation processes, only use Protein LoBind plates as buffer reservoirs to avoid polymer contamination. Contact us at info@preomics.com for advice on buffer and plasticware usage on liquid handling platforms.
NOTE1 Volumes of buffers can be adjusted according to protein starting amounts. Lysis temperature should be between $60-95^{\circ} \mathrm{C}$.
Visit our FAQ website for more information and optimized procedures for chemical labeling: www.preomics.com/faq.
NOTE2 During the digestion, place the silicon mat lightly on top of the CARTRIDGE. Do not close the silicon mat tightly to prevent pressure buildup.
SP - Storage Point: At this point, close the peptide containing tube or CARTRIDGE using the silicon mat. Peptides can be frozen at $-20^{\circ} \mathrm{C}$. Storage of peptides should not exceed two weeks at $-20^{\circ} \mathrm{C}$. For extended storage, finish the protocol and store at $-80^{\circ} \mathrm{C}$.

Data analysis
MODIFICATION
ALKYKATION
Please refer to www.preomics.com for our General Terms and Conditions.

