
Fast Modular Multiplication

Yuval Domb
yuval@ingonyama.com

July 25, 2022 (version 1.0)

Abstract

Modular multiplication is arguably the most computationally-dominant arithmetic
primitive in any cryptographic system. This note presents an efficient, hardware-
friendly algorithm that, to the best of the author’s knowledge, outperforms existing
algorithms to date.

1 Introduction

The standard modulo-prime multiplication problem in Fs can be cast as

r = a · b mod s (1)

where a, b, r ∈ Fs, s is prime, and the standard Z-algebra is utilized. Equivalently this can
be written as

a · b = l · s+ r (2)

with l ∈ Z such that 0 ≤ r < s.
The purpose of this note is to provide an efficient, hardware-friendly method for fast

computation of (1).
Assume that all variables are represented by d-radix digits, and denote by n the required

number of digits used to represent any element in Fs, thus

n = ⌈logd s⌉ (3)

For simplicity, let us set d = 2 and use bits in place of digits, for the remainder of the note.
Finally, although this note is primarily concerned with modulo-prime multiplication,

its results can be generalized to any case of a mod s where a < s2 for any s, prime or not.

2 Contribution

The main contribution of this note is to show how Barrett’s Reduction [1], together with
good parameter selection and a simple bounding technique, can be used to approximate
the quotient l up to a small constant error independent of n, for any n. Surprisingly,
the resulting reduction algorithm closely resembles Montgomery’s Modular-Multiplication
algorithm [2], without the coordinate translation requirement. This bounding technique
can be used to further lower the calculation complexity of special cases of interest, not
presented here, at the price of increased constant error.

1

3 Reduction Scheme

3.1 Assume l is approximately known

Assume that l is approximately known and denote by l̂ its approximation, such that

l − λ ≤ l̂ ≤ l (4)

where λ = O(1) is a known constant.
Starting initially with λ = 0, it is clear that

ab[2n− 1 : 0]− l̂s[2n− 1 : 0] = r[n− 1 : 0] (5)

where the brackets denote bit locations and sizes. Note that λ = 0 means that we know
apriori that the remainder is at most n bits in length, so that all remaining most-significant
(ms) bits in the rhs of (5) must be zero.

Utilizing simple bit manipulation, this can be cast as the following long addition

1

l̂s[2n− 1] ... l̂s[n] l̂s[n− 1] ... l̂s[0]
+ ab[2n− 1] ... ab[n] ab[n− 1] ... ab[0]

0 ... 0 r[n− 1] ... r[0]

where the over-line denotes the bit-inversion operator and the 1-bit at the top-right is
treated as an initial carry bit. The important insight is that only ab[n − 1 : 0] and
l̂s[n − 1 : 0] are necessary in order to complete this calculation, which immediately saves
approximately half of the calculations. Note that the resulting adder is a fixed width adder,
(i.e. n + n → n). This means that any overflow ms bits must be ignored. An equivalent
alternative to the above is a fixed-width subtractor (n−n → n), where the result is treated
as an unsigned integer.

Let us denote the type of multiplier required to generate the above products as an
n×n → nlsb multiplier, where nlsb refers to the n least-significant bits of the full product.
This means that the products a ·b and l̂ ·s can be generated using n×n → nlsb multipliers.
In addition, if s is constant, l̂ ·s can be generated using a constant n×n → nlsb multiplier.

Finally when λ ̸= 0
ab− l̂s = r + λs (6)

and the number of bits required to represent the rhs of (5) is

⌈log2(r + λs)⌉ ≤ n+

⌈
log2

r + λs

s

⌉
≤ n+ ⌈log2(1 + λ)⌉ (7)

so if λ = 1 the total number of additional bits required would be 1.

3.2 Use Barrett’s Reduction to approximate l

Barrett’s modular reduction approximates l as follows

l =

⌊
ab

s

⌋
= lim

k→∞

ab ·m(k)

2k+n
(8)

2

where

m(k) =

⌊
2k+n

s

⌋
< 2k+1 (9)

is a function of the k, representing the maximal, k+ 1 bits, lower-bound approximator for
(8). For finite k, the approximation error is

e(k) ≡ 1

s
− m(k)

2k+n
< 2−(k+n) (10)

where the upper-bound can be derived by examining the maximal difference between the
binary representation of the left and right terms. This immediately leads to the approxi-
mation error on l(k)

e(l, k) ≡ ab

s
− ab ·m(k)

2k+n
< 22n · 2−(k+n) = 2n−k (11)

Thus if k ≥ n the approximation error is at most 1.

3.3 Choose the parameters and bound the error

Choosing k = n (i.e. m(n) < 2n+1) leads to the following approximation on l

l̂0 =

⌊
abm

22n

⌋
(12)

e(l̂0) < 1 (13)

where the multiplication is n × n × (n + 1) → (n + 1)msb, and the approximation error
obeys (11).

Let us instead perform the above multiplication in two stages. Initially, assume that
ab[2n− 1 : 0] is available and perform the multiplication as follows

abm

22n
=

ab[2n− 1 : n] ·m
2n

+
ab[n− 1 : 0] ·m

22n
(14)

<
ab[2n− 1 : n] ·m

2n
+ 2 (15)

where the right-most term is trivially upper-bounded by 2. This immediately leads to the
following approximation on l

l̂1 =

⌊⌊
ab

2n

⌋
· m
2n

⌋
(16)

e(l̂1) < 3 (17)

where the inner multiplication is n × n → nmsb, the outer (constant) multiplication is
n × (n + 1) → (n + 1)msb, and the approximation error is upper-bounded by the sum of
(13) and the right-most term of (15). Note that since m(n) is typically very close to 2n

and n is typically large, no additional bits need to be added (i.e. n + 1 bits suffice) to
represent the constant error (17). Nonetheless, this overflow corner-case must be examined
and ruled out per a given setup.

3

3.4 Putting it all together

Below is a block diagram of the hardware-optimized modular multiplier. The diagram
assumes that s and m are known constants, and uses the l̂1 approximation for l.

Note that the left-most multiplication module is independent of the reduction logic,
allowing the remainder of the circuit to be generalized beyond multiplication reductions.

ab[2n-1:n]
n

a * b

Full
Mult

l1[3n:2n]
n+1

m[n:0]
n+1

ab * m

MSB
Mult

l1 * s

LSB
Mult

l1s[n+1:0]
n+2

ab[n+1:0]
n+2

ab - l1s

Fixed
Width
Adder

a[n-1:0]
n

b[n-1:0]
n

s[n-1:0]
n cin=b'1

r+[n+1:0]
n+2

Subtract
Redundant

s

0 to 3s

r[n-1:0]
n

~

Figure 1: Hardware-optimized modular multiplier

3.5 Examples

3.5.1 Example for n=16

−− params −−
n = 16
s [n−1:0] = 65521
m[n : 0] = 65551
a [n−1:0] = 64111
b [n−1:0] = 11195

−− d i r e c t c a l c −−
l [n : 0] = 10954
r [n−1:0] = 5611
5611 = 64111∗11195 − 10954∗65521

−− a∗b f u l l mult −−
ab [2 n−1:0] = 717722645
ab [2 n−1:n] = 10951
ab [n+1:0] = 234517

−− ab∗m msb mult −−
l 1 [3 n : 2 n] = 10953
e (l 1) = 1

−− l 1 ∗ s l s b mult −−
l 1 s [n+1:0] = 163385

−− ab−l 1 s f i x e d width adder −−
r+[n+1:0] = 71132

4

−− subt rac t redundant s −−
r ha t = 5611

3.5.2 Example for n=32

−− params −−
n = 32
s [n−1:0] = 4294967291
m[n : 0] = 4294967301
a [n−1:0] = 1152833672
b [n−1:0] = 2546222476

−− d i r e c t c a l c −−
l [n : 0] = 683444321
r [n−1:0] = 2821307461
2821307461 = 1152833672∗2546222476 − 683444321∗4294967291

−− a∗b f u l l mult −−
ab [2 n−1:0] = 2935371006736011872
ab [2 n−1:n] = 683444320
ab [n+1:0] = 3699053152

−− ab∗m msb mult −−
l 1 [3 n : 2 n] = 683444320
e (l 1) = 1

−− l 1 ∗ s l s b mult −−
l 1 s [n+1:0] = 13762647584

−− ab−l 1 s f i x e d width adder −−
r+[n+1:0] = 7116274752

−− subt rac t redundant s −−
r ha t = 2821307461

3.5.3 An exotic example

If s = 65717 and a = 65535, b = 65631, we get that the real value of l is
⌊
ab
s

⌋
= 65449.

On the other hand, our approximation gives l̂1 = 65446, and so the error e(l̂1) is 3 in this
case. However, primes s for which such examples exist are sparse and for most primes, the
largest possible error will not exceed 2.

References

[1] Paul Barrett. Implementing the rivest shamir and adleman public key encryption algo-
rithm on a standard digital signal processor. In Advances in Cryptology — CRYPTO’
86, pages 311–323, 1987.

[2] Peter L. Montgomery. Modular multiplication without trial division. In Mathematics
of Computation, volume 44, pages 519–521, 1985.

5

