
Sample Company

Web Application Penetration Test

COMPLETE REPORT
Jan 10, 2023

This engagement was performed in accordance with the Statement of Work, and the procedures were limited
to those described in that agreement. The findings and recommendations resulting from the assessment are
provided in the attached report. Given the time-boxed scope of this assessment and its reliance on
client-provided information, the findings in this report should not be taken as a comprehensive listing of all
security issues.

Contact Information
+1 (888) 337- 0467
andres@redsentry.com
jenny@redsentry.com

mailto:jenny@redsentry.com

TABLE OF CONTENTS

Summary 4
Project Overview 4

Goals 4

Dates 4

Findings 4

Scope 5

Executive Summary 5

Web Application Penetration Test Findings 6
Insecure Direct Object Reference (IDOR) 6

GraphQL Introspection enabled 10

User Enumeration 13

Stack Trace 16

Appendix (A) Severity Description 18
Severity Descriptions 18

Summary

Project Overview
Sample Company engaged Red Sentry to assess the security of their web
application. The following report details the findings identified during the course of
the engagement, which started on January 1st, 2022.

Goals
Identify vulnerabilities in the company’s web application, both externally and
internally, that could be leveraged by an attacker or malicious insider.

Dates
Jan 1, 2023 Jan 1-Jan 8, 2023 Jan 10, 2023

KICKOFF TESTING PERIOD DELIVERY

Findings

GRADE

Scope
● m.joinExample.com (staging environment)
● api.joinExample.com/graphql

Executive Summary
The assessment team conducted a penetration test on Sample Company’s staging
web application. Overall, the application presented 2 instances of high
vulnerabilities among the total 7 discovered by the team. These vulnerabilities
involved insecure object references, sensitive information exposure, and error
messages improperly handled.

Ordered by type, two instances of a high vulnerability were found. An Insecure Direct
Object Reference is an issue that allows unauthorized third parties to access
information belonging to other entities like users, for example. In this way, User A
could see the information related to User B. The application allowed this behavior on
GraphQL queries that revealed data about users payments and login tokens.

A medium vulnerability was also identified. A GraphQL feature that allows listing all
available queries was enabled. This finding can lead the way to discovering higher
vulnerabilities like the one described above.

One low vulnerability, a user enumeration issue, was detected in the reset password
query and, lastly, three instances of an informational issue were also found.
Handling error messages in an improper manner can expose sensitive information
about how the application works inside.

To improve the organization’s security posture, the assessment team recommends
implementing further input validations to avoid sensitive data exposure, restricting
access to the application stack information by means of a properly defined role
access schema and handling error messages in a proper manner.

Web Application Penetration Test Findings

Insecure Direct Object Reference (IDOR)

Insecure direct object references (IDOR) are a type of access control vulnerability

that arise when an application uses user-supplied input to access objects directly.

IDOR vulnerabilities are most commonly associated with horizontal privilege

escalation, but they can also arise in relation to vertical privilege escalation.

Details

After extracting the list of allowed queries from the GraphQL API (see the GraphQL

introspection enabled vulnerability for further information), the assessment team

found two instances of queries using an insecure implementation of the “id”

parameter to retrieve information about payments and user tokens.

Figure 1: Payment data GraphQL query

From the image above, it can be seen that the query takes the “id” parameter as

the only POST parameter and retrieves information about the credits, discounts,

refunds and balances of the user matching that “id” parameter and since this

parameter corresponds to a simple number which could either be increased or

decreased, after fuzzing it the assessment team discovered that data from other

users could be successfully extracted.

Figure 2: Fuzzing id parameter from payment data GraphQL query

Relatedly, this same pattern applied to a query which retrieved information about

users’ tokens. Tokens are alphanumeric combinations of characters which carry

information that allows an application to validate if a login session corresponds to

an authenticated user.

Figure 3: Fuzzing id parameter from login token query

Once extracted, these tokens could be leveraged to make valid requests on behalf

of other users and extract further information from their sessions.

IDORs are a common vulnerability found in applications and they’re usually caused

by design flaws such as using simple patterns as query parameters and the lack of

enough validations that allows users to retrieve data from other users.

Recommendations

To mitigate the risk of this issue, the assessment team recommends the following

steps:

● Implement access to certain functions limited to the user's role.

● Implement authorization checks with user policies and hierarchy.

● Do not rely on IDs that the client sends. Use IDs stored in the session object

instead.

● Check authorization for each client request to access database

● Use random IDs that cannot be guessed (UUIDs for instance)

Locations & Occurrences (2)

● api.Example.me (payment data query)

● api.Example.me (login token query)

Resources

GraphQL Cheat Sheet

cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html

Hacking GraphQL for fun and profit (Part 1)

www.secjuice.com/hacking-graphql-for-fun-and-profit-part-1-understanding-gra

phql-basics/

Hacking GraphQL for fun and profit (Part 2)

www.secjuice.com/hacking-graphql-for-fun-and-profit-part-2-methodology-and

-examples/

https://cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html
https://www.secjuice.com/hacking-graphql-for-fun-and-profit-part-1-understanding-graphql-basics/
https://www.secjuice.com/hacking-graphql-for-fun-and-profit-part-1-understanding-graphql-basics/
https://www.secjuice.com/hacking-graphql-for-fun-and-profit-part-2-methodology-and-examples/
https://www.secjuice.com/hacking-graphql-for-fun-and-profit-part-2-methodology-and-examples/

GraphQL Introspection enabled

The GraphQL query language is strongly typed. Due to its strong type system,

GraphQL gives you the ability to query and understand the underlying schema by

using the Introspection feature. Introspection is the ability to query which resources

are available in the current API schema, such as the queries, the types, the fields,

and the directives it supports.

Details

The assessment team discovered that the api.Example.me GraphQL had the

introspection feature enabled after making an Introspection query to retrieve

information about the API schema.

Figure 4: GraphQL introspection query

This information serves as a map for a malicious user to know what queries are

possible to make and what information is needed to make them work. This type of

information increases the attack surface by revealing information that shouldn’t be

accessible to a basic user that could be leveraged to find critical vulnerabilities like

SQL injections or IDORs.

Recommendations

To mitigate the risk of this issue, the assessment team recommends the following

steps:

● You can turn off introspection in production by setting the value of the

introspection config key on your Apollo Server instance.

● Please note that it's possible for bad actors to learn how to write malicious

queries by reverse engineering your GraphQL API through a lot of trial and

error, disabling introspection is a form of security by obscurity. It’s not the best

form of security, but paired with other techniques like size, depth, amount

limiting and operation whitelisting, it can make a substantial difference.

Locations & Occurrences (1)

● api.Example.me

Resources

Why you should disable GraphQL Introspection in production

www.apollographql.com/blog/graphql/security/why-you-should-disable-graphql-

introspection-in-production/

HackerOne case report

hackerone.com/reports/1132803

https://www.apollographql.com/blog/graphql/security/why-you-should-disable-graphql-introspection-in-production/
https://www.apollographql.com/blog/graphql/security/why-you-should-disable-graphql-introspection-in-production/
https://hackerone.com/reports/1132803

User Enumeration

User enumeration is when a malicious actor can use brute-force techniques to

either guess or confirm valid users in a system. The web application reveals when a

username exists on the system, either as a consequence of misconfiguration, or as

a design decision.

Details

The assessment team discovered a reset password mutation located in the

api.Example.me GraphQL API and identified a pattern that could allow a malicious

user to enumerate valid users.

Figure 5: Reset password success case

Firstly, after using an email corresponding to a valid user, it displayed a success

message and a 200 status response.

Figure 6: Reset password failure case

Secondly, after making the same request but using a randomly made email, it

displayed an error message clearly stating that the user couldn’t be found with the

given email.

These response patterns can be leveraged to extract information about the list of

users and then attempt to extract the login password by means of brute forcing or

phishing techniques.

Recommendations

To mitigate the risk of this issue, the assessment team recommends the following

steps:

● An effective remediation would be to have the server respond with a generic

message that does not indicate which field is incorrect. If the response does

not indicate whether the username or the password are incorrect, the attack

surface decreases

Locations & Occurrences (1)

● api.Example.me/graphql (Reset password query)

Resources

User enumeration

https://www.rapid7.com/blog/post/2017/06/15/about-user-enumeration/

Testing for Account Enumeration and Guessable User Account

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Applic

ation_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Accoun

t_Enumeration_and_Guessable_User_Account

https://www.rapid7.com/blog/post/2017/06/15/about-user-enumeration/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/03-Identity_Management_Testing/04-Testing_for_Account_Enumeration_and_Guessable_User_Account

Stack Trace

Improperly-handled verbose error messages reveal debug Information which gives

insights that can be exploited to retrieve sensitive data or to discover further

vulnerabilities inside the underlying application.

Details

The assessment team found 3 instances of improperly-handled error after

performing HTTP requests to the assets listed below.

Figure 7: Verbose error message

With this information, an attacker could gain insight on how the application works or

its technology stack and leverage this to craft a payload to retrieve further

information.

Recommendations

To mitigate the risk of this issue, the assessment team recommends the following

steps:

● Always do input validations

● Avoid displaying debugging messages

Locations & Occurrences (3)

● api.joinExample.com/graphql?query={__schema}

● api.Example.me/graphql (Server name disclosure)

● api.Example.me/graphql (Invalid characters inputted)

Resources

Improper Error Handling

owasp.org/www-community/Improper_Error_Handling

https://owasp.org/www-community/Improper_Error_Handling

Appendix (A) Severity Description

The assessment team used the following criteria to rate the findings in this report.
Red Sentry derived these risk ratings from the industry and organizations such as
OWASP.

Severity Descriptions
The severity of each finding in this report is independent. Finding severity ratings
combine direct technical and business impact with the worst-case scenario in an
attack chain. The more significant the impact, and the fewer vulnerabilities that
must be exploited to achieve that impact, the higher the severity.

Critical

Vulnerability is an otherwise high-severity issue with additional security
implications that could lead to exceptional business impact. Examples: trivial exploit
difficulty, business-critical data compromised, bypass of security controls, direct
violation of communicated security objectives, and large- scale vulnerability
exposure.

High

Vulnerability may result in direct exposure including, but not limited to: the loss of
application control, execution of malicious code, or compromise of underlying host
systems. The issue may also create a breach in the confidentiality or integrity of
sensitive business data, customer information, and administrative and user
accounts. In some instances, this exposure may extend farther in the infrastructure
beyond the data and systems associated with the application.

Medium

Vulnerability does not lead directly to the exposure of critical application
functionality,sensitive business and customer data,or application credentials.

However, it can be executed multiple times or leveraged in conjunction with another
issue to cause direct exposure. Examples include brute-forcing and client- side
input validation.

Low

Vulnerability may result in limited exposure of application control, sensitive business
and customer data, or system information. This type of issue provides value only
when combined with one or more issues of a higher risk classification. Examples
include overly detailed error messages, the disclosure of system versioning
information, and minor reliability issues.

Informational

Finding does not have a direct security impact but represents an opportunity for
additional layers of security, is considered a best practice, or has the possibility of
turning into an issue over time. Finding is a security-relevant observation that has
no direct business impact or exploitability, but may lead to exploitable
vulnerabilities. Examples include poor communication between organizations,
documentation encouraging poor security practices, or lack of security training.

