

Noncontact Infrared Temperature Measurement

ISO Certification

Emissivity

Advantages of Using IR Thermometers

Correct Use of IR Thermometer

Laser Sighting Guide

Spot Size Calculator

Industry Partners

SARS & IR

FAQ

Glossary of Terms

Site Map

Search

Home > Technology > Emissivity >

Emissivity Table for Non-Metals

In the table below, please use the 8-14 micron column if you have an MT, ST, or MX. Please check your user manual if you own a 3i to determine the correct column to use.

Note: These emissivities values are "approximate" and may vary depending on the actual material and conditions.

Material	Emissivity					
	1.0 µm	5.0 µm	7.9 µm	8-14 µm		
Asbestos	0.9	0.9	0.95	0.95		
Assphalt	n.r.	0.9	0.95	0.95		
Basalt	n.r.	0.7	0.7	0.7		
Carbon						
Unoxidized	0.8-0.95	0.8-0.9	0.8-0.9	0.8-0.9		
Graphite	0.8-0.9	0.7-0.9	0.7-0.8	0.7-0.8		
Carborundum	n.r.	0.9	0.9	0.9		
Ceramic	0.4	0.85-0.95	0.95	0.95		
Clay	n.r.	0.85-0.95	0.95	0.95		
Concrete	0.65	0.9	0.95	0.95		
Cloth	n.r.	0.95	0.95	0.95		
Glass						
Plate	n.r.	0.98	0.85	0.85		
Gob	n.r.	0.9	n.r.	n.r.		
Gravel	n.r.	0.95	0.95	0.95		
Gypsum	n.r.	0.4-0.97	0.8-0.95	0.8-0.95		
Ice	n.r.		0.98	0.98		
Limestone	n.r.	0.4-0.98	0.98	0.98		
Paint (non-Al.)		0.9-0.95	0.9-0.95			
Paper (any color)	n.r.	0.95	0.95	0.95		
Plastic						
Qpaque	n.r.	0.95	0.95	0.95		
Over 20 mils	n.r.					
Rubber	n.r.	0.9	0.95	0.95		
Sand	n.r.	0.9	0.9	0.9		
Snow	n.r.		0.9	0.9		
Soil	n.r.		0.9-0.98	0.9-0.98		
Water	n.r.		0.93	0.93		
Wood, (natural)	n.r.	0.9-0.95	0.9-0.95	0.9-0.95		

n.r. = not recommended

To optimize surface temperature measurement accuracy:

- 1. Determine the object emissivity for the spectral range of the instrument to be used for the measurement.
- 2. Avoid reflections by shielding object from surrounding high temperature sources.
- 3. For higher temperature objects use shorter wavelength instruments, whenever possible.
- 4. For semi-transparent materials such as plastic film and glass, assure that the background is uniform and lower in temperature than the object.
- 5. Hold instrument perpendicular to surface whenever emissivity is less than 0.9.
- In all cases, do not exceed angles more than 30 degrees from incidence.
- 6. For 1M and 2M models, avoid measurements in high ambient light conditions.

Related Items: Emissivity Table for Metals