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Abstract

The communication networks of today can greatly benefit from au-
tonomous operation and adaptation, not only due to the implicit cost
savings, but also because autonomy will enable functionalities that
are infeasible today. In this paper we motivate the need and present
our vision for the autonomous future of networking, the concepts and
technological means to achieve it, and the architecture which emerges
directly through the application of these concepts. We compare our
strategy for autonomy with the efforts in academia and industry and
describe the architecture which we intend to realize within the first
fully virtualized telecommunication network in existence. We further
argue that only a holistic architecture based on hybrid learning, func-
tional composition and online experimental evaluation like ours will
be expressive enough and capable of realizing true autonomy within
computer networks.
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1 Introduction
The importance and impact of networking and communication systems on
our every day lives is already enormous: Virtually every minute of our waking
day is in some way influenced (or even controlled) by our phones and “smart”
devices55. Yet this influence is expected to grow dramatically in the near
future, thanks to the expected proliferation of automotive120, wearable9,69,
and many other emerging IoT-related applications70 which will permeate ev-
ery aspect of our existence66. This massive transformation of human society
naturally depends on ever more advanced communication networks, which
enable the near-instant3,118 transport of massive68 amounts of data from the
tens of billion connected devices1 expected in the near future31,42.

The purpose of this paper is to present and motivate our vision for the
network of the future, a network which will transform the telecommunica-
tions industry as dramatically as the the aforementioned technologies did
our lives. Our goal in the long run is to make the network fully autonomous.
Specifically, a network that is not only able to cope and adapt to unforeseen
events, but also to improve and adapt itself to meet the challenges of the
future, by integrating new technologies as they become available, with little
or even no human intervention.

While there are numerous initiatives both in the telecommunications in-
dustry and academic research that cover important aspects of autonomous
networking, we feel that a holistic approach is needed, which bridges the gap
we perceive between both industry and academy, as well as between different
research fields.

We start this paper by motivating the need for a truly autonomous net-
work in section 2, and continue with a discussion of the efforts of the telecom-
munications industry and related standardization efforts w.r.t. autonomous
networks in section 3. Afterwards we discuss the fundamental technological
principles that we consider vital for achieving our vision, and outline how
they are manifested in our architecture in section 4. We then detail our
architecture blueprint in section 5 and explain our approach as applied to
real-world use cases in section 6, before concluding with a discussion of our
work and an outlook of our future work in section 7.

2 The Need for True Autonomy
The days when telecommunication networks exclusively facilitated commu-
nication between human users are long gone. Huawei is not alone in its

1The actual numbers seem to be difficult to predict, though87.
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prediction138 that the Machine-to-Machine communication market will lead
to billions devices being attached to telecommunication networks in the near
future. The demands this imposes on the physical layers are obvious, but the
complexities that need to be addressed on the transport layer and above also
grow. Increasingly heterogeneous devices, such as sensors, home appliances,
cars, etc. are introduced to the network and traditional communication de-
vices, such as “smart” phones, become ever more powerful. Additionally,
the devices themselves, the applications and services that these devices en-
able are rapidly diversifying and, in many cases, have become more latency
critical. This is demonstrated in the growing interest of research into ap-
plications that require extremely low latency links such as remote surgery,
cloud-based gaming and other applications requiring immediate visual or
haptic feedback8.

The short-term industry response is collectively known as 5G, which in-
cludes virtualisation78, Massive MIMO792, edge computing59, and network
slicing47. However, although 5G promises higher throughput and lower la-
tency, it also requires more base stations as the coverage area in which this
throughput can be achieved decreases136. Complex interference and wave-
form distribution patterns that depend on building materials and shapes,
humidity and air pressure might also necessitate adaptation of the antenna
tilt whenever the environment changes to maintain optimal service. This
issue might become even more apparent for future, even shorter bandwidth,
technologies.

Another industry counter-measure is edge compute, which promises to
drastically reduce communication latency by placing services physically close
to the user. This is a radical shift from the current paradigm of providing
compute power at a limited number of data centres. Providing all latency
critical services at such a large number of locations at once would obviously
lead to uneconomical massive over-provisioning. Thus increasingly complex
decision-making becomes necessary to balance resource costs against latency
demands. Since user demand changes dynamically and is very hard to predict
with sufficient accuracy, providers are forced to take increasingly complex
decisions at runtime to optimize the trade-off between resource costs and
latency expectations.

All of these challenges lead to a further intensification of the existing
trend towards more-and-more complex planning, adaptation, and optimiza-
tion based on network load, service demand, etc. Such tasks are the tradi-

2Multiple-Input and Multiple-Output, or MIMO is a method for multiplying the capac-
ity of a radio link using multiple transmission and receiving antennas to exploit multipath
propagation.
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tional domain of human engineers and go far beyond classical automation.
However, engineers are already one of the major cost factors for today’s net-
work operators, and their numbers cannot be scaled up to meet the ever
increasing demand, especially as increasing costs cannot be offloaded to the
user. Without moving towards a fully Autonomous Network, this future will
not be achievable.

The term Autonomous Network itself is becoming somewhat common-
place, but there seem to be different opinions about what constitutes auton-
omy. While efforts are being made by standards bodies and operators to
define what the autonomous future should look like, the approaches are, on
one side, vague visions for a far future, that lack a clear strategy or path
to realization. Or, on the other side, they are focused on the creation or
optimization of tools (such as machine learning) and processes for single use
cases, e.g. base station tilt optimization.

We, however, maintain that one single control or cognitive loop (see sec-
tion 4.2), which addresses a single use case, is insufficient to handle the
combined effects of the many concurrent autonomy-related tasks (such as
optimization or anomaly detection) that will indubitably be active in the
networks of the future – and details of which might not be known at the
design time of earlier deployed control loops that will still be active in the
network. And since all network entities share the same playing field, they
naturally influence each other. Thus a holistic, yet generic approach that
can accommodate yet unknown operational and structural changes is needed.
Use case specific approaches inherently necessitate the work of engineers to
adapt them to each new new scenario and environment. These approaches
thus only achieve automation, not autonomy, which according to the Cam-
bridge Dictionary is the ability to make your own decisions without being
controlled by anyone else.

We consider this ability of autonomy as a necessity for future networks.
Without it the ever more rapidly changing telecommunications environment
would require even more, not fewer, engineers to be employed. They would
be needed to adapt and fine-tune technologies and services to the rapidly
changing surroundings. This goes contrary to our goal of a network that is
generic enough to accommodate any potential future technology, and powerful
enough to adapt and optimize itself for optimal performance under unforeseen
(and unforeseeable) conditions.

In other words, the concepts and realization sketch we will present in
this paper are expected to not only meet, but to exceed the highest level
of autonomy previously considered the goal of an autonomous network (see
fig. 1). Autonomous cars, for example, can be expected to be adapted by
engineers if the operational parameters drastically change, such as for flying,
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Figure 1: Huawei60 likens the stages of an Autonomous Networks to the the
levels commonly defined for autonomous driving.

submarine travel, or in the case of massive overhauls of traffic rules and
conventions. We contend that autonomous networks need to be far more
capable, as changes to their operational environment and their functions
are more frequent and far more extreme than changes in the automotive
environment.

3 Industry and Standardization Efforts
We are not alone in believing in the goal of autonomous networks. Almost
every major national mobile network operator, vendor, and even standards
organisation is engaged in the topic of autonomous networking. In this sec-
tion we outline the major approaches and initiatives to place this work in
context from an industrial perspective.

Given the scope of the above, the terminology used to discuss autonomous
networking is inconsistent. Specifically, automation and autonomy are often
used interchangeably and the term AI is used to refer for everything from
cognition to machine learning techniques. Accordingly, in this section we
shall use the definition in section 2 for automation and autonomy and appro-
priately define the use of “AI” as required.

3.1 Operators: Transformation Before Autonomy
As explained in section 4.2.4, autonomy necessitates the ability to effect
change, i.e. not only to decide that a change should be made, but to actually
implement it. One such “lever” is abstraction of the underlying hardware,
thus enabling the free scheduling of software on arbitrary machines. This
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frees us from specific, proprietary vendor hardware that requires hand-con-
figuration. This concept manifests itself within the data centre environment
through compute37 and network11 virtualization. Similarly, in telecommu-
nication networks Virtual Network Functions (VNF)41 provide the first step
on the road to full Cloud Native Networks.

Currently, most network operators are engaged in the transformation of
their networks towards fully virtualised network5,12,17,88. Full virtualisation
is necessary to enable the flexibility and programmability required to achieve
anything beyond basic levels of automation or autonomy. However, the cur-
rent state of these networks is often a patchwork of proprietary technologies
assembled over decades from different vendors, which are able to interoperate
thanks to a meticulously woven set of standards. As a result, most industry
discussion of autonomous networks is still focussed on future planning and
evaluation of such autonomous ability29,72,124, instead of implementation as
their networks are not yet ready.

Luckily, we are in the exceptional situation of having access to a fully vir-
tualised telecommunications network operated by a nationwide carrier. We
will utilize this network as the testbed for our approach to autonomous net-
working, and gradually deploy our technology for the improvement of this
network and the service to our customers.

3.2 Vendors: Stuck In The Middle
Technology vendors are actively discussing autonomous networking. As they
focus on selling solutions, their descriptions of the utilized technology is overly
generic and lacks detail.

For example, Huawei has based their approach for enabling an au-
tonomous network on a collection of products collectively referred to as
iMaster 61. Within this product, virtualisation (see section 4.2.4) and au-
tonomy technologies are combined. Extrapolating from their descriptions,
their approach to autonomy is focused on “intelligent” operation and man-
agement, optimisation & resource scheduling, and evolving “AI”. In each of
these categories some potential use case areas are identified, but only at the
conceptual level. Neither the definition of AI nor its scope is given, although
they, like us, note that this AI must be able to respond to a network which
is dynamically changing or evolving; As opposed to our approach introduced
in section 4.5, their use of evolution does not refer to a concise, technical
approach.

Another example is Cisco, whose approach to autonomy is called the dig-
ital network architecture (DNA)24. Like Huawei’s approach, virtualisation
and concepts of autonomy are mixed, but a larger focus is placed on virtu-
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alisation. This is understandable as most operators are focused on transfor-
mation, as described above. Compared to Huawei, Cisco provides a more
comprehensive discussion of their approach and not their products. With re-
spect to autonomy, their system supports telemetry from the network, policy
driven specification of intent, controllers with network wide visibility, and
an orchestrator tasked with taking user intent and translating this to system
manipulation. Primarily this document describes a conceptual landscape in
which autonomy can be achieved but focuses on automation, not autonomy.
There is no discussion of the “intelligence” which is capable of inferring the
current state of the environment or making decisions.

One general, but important observation is that vendors are moving to-
wards a more active role than in the past. The industry-wide move towards
open source software, as well as wide adoption of machine learning frame-
works and generic computing machinery, enables operators to build and de-
ploy their own functionality to harness the data and knowledge in the net-
work instead of having to rely on proprietary vendor solutions. Similarly for
autonomous networks, operators are actively driving the change instead of
relying fully on the vendors’ vision.

3.3 Standards Bodies: Documenting The Visions
Before achieving autonomy, it is necessary to know what to automate and
how. Effort have already been made to describe both the processes necessary
to operate a network126, as well as the tools and common terminologies to
describe these processes125. By providing a better definition of the task of
network operation, albeit in an abstract and generic manner, the identifica-
tion of the use cases to be automated is simplified. The next steps are to
document the approaches to autonomy. There are three main thrusts from
standards bodies and industrial fora: ETSI, ITU, and the TM Forum, which
are driven by operators and vendors.

3.3.1 ETSI: Experiential Networked Intelligence

The ETSI Experiential Networked Intelligence (ENI) System Architecture40

describes a very conceptual approach to create an autonomous networking
framework; implementation and concrete descriptions are deferred to a sub-
sequent document. It is relevant to note that the primary author of this
document has a long track record in the field121 and has a similar mindset
to ours. Like our work, the ENI approach is based on the concept of the
cognitive loop (section 4.2), but describes a much finer grained decomposi-
tion of the analysis and decision phases. However, as our cognitive loops
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are defined at runtime, comparison of the abilities is difficult. ENI provides
an an extensive discussion on how the ENI framework interacts with the
network itself, detailing multiple different scenarios and approaches, but no
concrete approach or description. We address this issue through user-defined
modules and their specifications (as described in section 5), and provide con-
crete examples in section 6. ENI adopts a similar stance on decision making
technologies as us, in that it aims to be agnostic of a single approach.

A key limitation of ENI is that it does not explicitly consider self-evolu-
tion. There is a discussion on the use of reasoning to be able to adapt to
new situations, however, given the lack of grounded discussion it is not clear
to see how to achieve such adaption in practise. In contrast, our approach is
clearly documented (section 4) and actionable (section 5).

One aspect covered by ENI, but which we do not address in this document,
is the concept of inter-component on-demand negotiation to achieve some
outcome, for example, resource schedulers from different domains negotiating
to access a resource. While we do support the hierarchical organisation of
cognitive loops which requires interaction, our approach composes cognitive
loops at runtime. Therefore, the role that negotiation will play is use case
dependent. As this is an interesting question to explore, we plan to do so
once we start implementing our system for the actual network.

3.3.2 ITU

The International Telecommunication Union (ITU) has provided a specifica-
tion for a framework to apply machine learning (ML) to future telecommuni-
cation networks67. Note that this is not the same as autonomous networking.
Like ENI, it is also based around the concept of the cognitive loop, however,
unlike ENI, the ITU framework is more concrete and grounded. The frame-
work implicitly supports the cognitive loop, which is embodied in an ML
pipeline, equivalent to our concept of a controller (section 5.2). Like our
approach, there is reference to a flexible, abstract specification of both sys-
tem and ML applications. Also, there is the concept of a data sharing store,
however, there is no mention of the need for eventual consistency as required
by ML models and network elements which operate at different time scales.

Within the ITU framework there is discussion of the need to split ML
applications in response to the management and orchestration function mod-
ifying the network. This is only possible for pre-defined machine learning
applications, thus limiting the scope of adaptation to previously encountered
situations which models have been trained for. Our approach is capable of
achieving this for ML, statistical, heuristic, or any other approach that can
be expressed as one or more modules (section 5.1) and thus represents a
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superset of the ITU approach. Furthermore, that approach only describes
modification of the ML application and not modification of the orchestra-
tor. As we represent the orchestrator/controller(s) as cognitive loops, our
approach also provides this capability.

The ITU framework also discusses the use of security best practise in
not allowing data access to unauthorised parties. While we do not explicitly
discuss security here, we see it as another set of use cases to which our
approach can be applied. As long as the appropriate modules are available
and the domain defined, a controller can be created to address any number
of security considerations applied both to the network or to itself.

A key differentiator between our approaches and that of the ITU is that
the ITU framework requires human operators (via policies) to decide which
ML approach to take. Conversely, our evolution-based approach (section 4.7)
is in charge of such decision for ML or any other approach, thus reducing the
role of human operators and providing a more flexible framework. Further-
more, the ITU approach targets one independ model per use case, whereas
we believe that a holistic approach (see section 2) is needed.

Finally, the ITU framework is also a reference specification without an
implementation (that we are aware of) to validate the approach, whereas our
work is based on insights obtained through implementation64,65.

3.3.3 TM Forum

The TM Forum has an active working-group investigating the topic of au-
tonomous networking. The group is articulating their vision by means of
white papers17. They again emphasize the importance of transformation to
a fully virtualised environment (also known as the telco-cloud) as a precur-
sor for automation. Currently, the group is working to define the concept or
shape of an autonomous network. There is no concrete definition; instead
they are, like others (fig. 1), defining levels of automation based on the con-
cepts of self-driving cars or the IBM autonomic manifesto27. So far the TM
Forum has not discussed how to address the problem.

Based on the their previous efforts to describe the operation process126

and tools associated125 with a network, they provide a break down of use
cases, however, the use cases are (in the context of this document) high
level and abstract. In general, they describe automation in the context of
business, network, and architectural concepts, and it is difficult to understand
the overall practical approach at this point. One point of note is that at the
architectural layer the network is split into different autonomous domains
and that these domains should coordinate. The scope of a domain is not
defined, but this matches our concept of how to apply the cognitive loop.
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3.4 Summary
Based on the above, it is clear that there is an active and engaged community
seeking to address the topic of autonomous networking, thus showing that
it is a priority topic for the global community. As autonomous networking
is an unrealised dream, there is a wide range of conceptual, practical, and
business approaches to the challenge, however, all seem (maybe necessarily)
to be lacking concreteness, and thus finding the most promising contender is
not yet possible.

4 Core Technologies for Autonomy
An autonomous network cannot just come into existence from nothing in
a deus-ex-machina like approach, but instead will have to gradually evolve
from existing technologies. After stating our motivation for why we need
autonomous networks in section 2 in this section, we introduce how academic
research in various fields of computer science and beyond will enable us to
fully achieve this goal in the future, and partially today. What prevents us
from achieving full autonomy today, what research is needed to fill these
gaps, and why we assume that our approach will be future proof regardless,
is also discussed in this section.

4.1 Autonomy in Networking
Autonomous networks are not a new idea of the telecommunications indus-
try. The topic itself has been investigated for decades and led to several
independent larger research initiatives10,33,50,119. One seminal work is Clark
et al.’s knowledge plane for the Internet25, which inherently depends on the
following attributes:

Edge involvement Much of the information needed to efficiently operate
a network is generated outside the network, in the devices and applica-
tions that use it, and shall therefore be made available to the knowledge
plane.

Global perspective A holistic approach is needed to leverage all informa-
tion that could potentially enhance its performance, including observa-
tions gathered in other parts of the network.

Compositional structure Separate entities, such as distinct sub-networks,
shall be able to interact and merge their perspective and activities.
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Unified approach A single, unified system, with common standards and a
common framework for knowledge is required since real world knowl-
edge is not strictly partitioned by task.

Cognitive framework Cognitive techniques serve as the foundation of the
knowledge plane. Representation, learning, and reasoning allow it to
be “aware” of the network and the effects of its possible actions.

Based on these and other arguments presented both in academic and
industrial research, as well as our own experiences64,65, we derived the fol-
lowing five principles we deem necessary for achieving true autonomy. The
first three are variations of the attributes demanded for the knowledge plane.

Holistic approach In the spirit of the edge involvement, global perspective
and unified approach required for the knowledge plane, we expect truly
autonomous networks to have all-encompassing access to information
about the network. We extend this requirement to encompass access
to all network functionality that could benefit from autonomous con-
trol, e.g. network components, as well as all control, optimization and
adaption functionality deployed therein. For details, please refer to
section 4.3.

Abstraction and Genericity We apply the argument for a compositional
structure not only to the interoperability of parts of the network, but
extend it to encompass the interaction between distinct parts of “intel-
ligence” in the network. For this purpose we assume that the network
and all the control loops that co-ordinate its operation are composed
out of generic components, which expose their functionality through
abstract communication interfaces. In section 4.2 we introduce the
core abstraction of an autonomous control loop, arbitrary numbers of
which can operate independently or interact with each other in the net-
work. These control loops themselves are also similarly composed out
of generic components, as detailed in section 4.4.

Hybrid Intelligent System Autonomy naturally depends on the ability
to make informed decisions. The more complicated these decisions be-
come – especially if the task is perform (most of) the work currently per-
formed by highly skilled engineers – cognition becomes a pre-requisite,
just as for the knowledge plane. In addition, we expect the network
to leverage the right tool for the job, which likely means that both
symbolic and connectivist approaches will be utilized concurrently, as
detailed in section 4.5.

Functional composition We consider a self-reflective design – especially
the ability of the network to adapt and improve itself based on what it
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Figure 2: Autonomic Control Loop35

learned during its operation – vital for its success. Functional composi-
tion, the online construction of network components based on available
building blocks, provides us with the means to achieve this goal: it en-
ables the system adapt its own structure to the needs of the situation
and to integrate new technology as it becomes available. This makes
it future-proof and able to not only improve the underlying controlled
systems’ operation, but its own functionality as well.

Experimental Evaluation Since modern communication networks are too
complex to appropriately reason about theoretically or by means of
simulation92,117, we state the necessity of online experimentation to
evaluate the potential of new solutions or configurations in the actual
environment, especially when the goal is performance optimization. In
section 4.7 we make our case for application of the biological concept
of evolution and other randomized search strategies to the network to
tackle the complexity of the optimization case. The tradeoff between
the potential gains and the costs of deviation is also discussed.

In the remainder of this section we introduce several technologies that
will enable us to realize these principles, along with a brief overview of how
we intend to utilize them in our framework design detailed in section 5.
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Figure 3: Col. Boyd’s OODA loop, as commonly used for decision making
in warfare, cyberdefence, as well as business, applications.

4.2 The Cognitive Control Loop

Perhaps unsurprisingly, the core concepts which guide autonomous behavior,
cognition, reasoning, life and so on are based, are basically identical, even
though the nomenclature or field of study differs. All manifestations and
realization of artificial autonomy within artificial intelligence, cybernetics,
biology, medicine, and so on, very closely resemble the feedback loop from
Norbert Wiener’s seminal work from 1949, Cybernetics135. The feedback loop
is also known as the autonomic control loop34, the cognitive cycle85 (fig. 2),
and by several other names20,32, but the concept itself does not change.

The architecture of the controller (section 5.2) is based on the feedback
loop from fig. 2. The collection or sensing stage deals with the gathering
and aggregation of sensor data or other information from which, during the
analysis stage, an understanding of the current state of the system and its
environment is derived. The decision of how to act is taken based on the
knowledge of the world state combined with an estimate of the likely effect of
potential actions, during the synonymous decision stage. The corresponding
actions are then applied during the action stage. Note that all these stages
do not necessarily have to be performed strictly sequentially. Similarly to
the OODA loop19, which is depicted in fig. 3, we assume the ability for local
interrupt and restart of the individual phases based on updated information.
Furthermore, one control loop on its own will likely be insufficient in practice
for the realization of an autonomous network. We will therefore employ a
hierarchy of control loops, as explained in section 4.3.
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4.2.1 Sensing: The Need for Automated Data Abstraction and
Aggregation

Traditionally, any system able to adapt to its environment would be pro-
vided not only with the sensory input, but also with the means to derive
state information from this data, through inherent contextual understanding
that was designed into it. Just as a thermometer on its own is useless with-
out knowing what can be considered hot or cold, a temperature sensor in a
computer requires knowledge about the acceptable operating conditions of
the measured component. The actions needed to derive meaning from raw
sensor data provided from arbitrarily many distinct sensors can be very com-
plicated, as demonstrated by the complexity of the time series aggregation
capabilities of common network monitoring and analysis packages such as
Google’s Borgmon129 or the open-source Prometheus96.

In traditional systems, letting engineers supply a fixed logic to perform
these steps is obviously a very sensible approach: these engineers can be
expected to understand the purpose of deploying these sensors and thus also
how to retrieve valuable information from them. And just as an engineer
might need training to understand how to best utilize novel technologies, the
same holds true for a computer system, which traditionally gets taught by
means of programming, through code, scripts, or configuration data. In the
case of constantly (self-)evolving autonomous systems, however, the same
notion might no longer hold true. If the intention is to provide the system
with the means to go beyond its programming and thus reduce the workload
of the engineers, then we need to provide it with a way to derive meaning
and understanding from semi-raw data on its own.

In the same spirit as W3C’s use of OWL132 to describe the data on the
World Wide Web131,133 to enable machine-based semantic understanding, we
will utilize an ontology description language to give meaning to sensor data.
Because we do not intend for the autonomous network to add its own sensors,
giving the relatively small task of providing attributes for each sensor to the
engineer seems to be an acceptable trade-off, considering the potential for
automatic re-use of technology that has been built to utilize a sufficiently
similar sensor45: For example, for any sensor classified as a packet counter
and providing count ci at time ti in seconds, the average count per second
could thus be automatically aggregated as c1−c0

t1−t0
. We detail our description

language and its application in section 5.4.
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4.2.2 Analysis: From Metrics to Awareness

Vital information can be extracted from raw sensor data by means of
both top-down (i.e. symbolic reasoning) and bottom-up (connectionist)
approaches.

As sensors are expected to be limited in number and variation, and of-
tentimes already provide ontology information 3, we utilize semantic under-
standing to reason about their meaning. Several frameworks are already
available for this purpose54,98,140. Such techniques enable us to, for example,
automatically provide new aggregated metrics whenever sensors are added
to the system, by means of e.g. calculating the average for temperature and
summation for throughput.

Conversely, advances in machine learning have enabled the automatic
classification of massive amounts of raw sensor data and thus enabled auto-
matic diagnostic and mitigation of common networking issues without having
to address the challenge of comprehension. For example, connectionist128,
and in particular deep learning71,130, approaches can perceive issues in the
network and thus led to significantly improved capabilities of network intru-
sion detection systems. And advantages in the field of artificial intelligence
are likely to improve the ability of such systems further. We therefore also
use such techniques as appropriate.

However, thorough comprehension of the state of the network environ-
ment and the controlled systems themselves enables human engineers to solve
problems that are still out of reach for automated systems. As we discuss in
detail in section 4.5, this ability to extract meaning from seemingly chaotic
data is still a very active research field, and similarly general and capable
solutions have yet to be found.

For the time we therefore focus on providing an approach that is powerful
enough to tackle many of the current issues in networking and at the same
time flexible enough to easily integrate more advanced technologies as they
become available. The techniques that provide us with the flexibility to easily
integrate arbitrary future technologies are discussed in section 4.4.

We utilize a hybrid approach based on both symbolic reasoning and con-
nectionist technologies to derive meaning from sensor data. We also apply
heuristics when appropriate. For example, for optimization problems, we will
utilize an abstract measure of utility, also known as optimality or fitness, to
direct the search for the best solution (see section 4.6). Due to high impor-
tance of this metric and the difficulty of the learning task, we expect the
utility functions to be operator-defined. We provide more details about the

3Even venerable standards like SNMP95 provide a hierarchy or description which ex-
plicitely or implicitly encodes such information.
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techniques we intend to leverage insection 4.5.

4.2.3 Decision: The Difficult Path To True Autonomy

The decision of which actions to apply to the network, be it to self-configure,
to improve the operational characteristics of the controlled system, to counter
a detected intrusion, to fix a problem in a sub-component and so forth, are
fully use case dependent and can become arbitrarily simple or extremely
complex.

Self-Organising Networks (SONs)2 are an example of a straight-forward
decision process, as virtually all decisions a SON will take are based on sim-
ple heuristics, deterministic reaction, and defensive (resilient) design. For
example, if the master instance of a component fails, the pre-defined rules
will instruct the system to fall over to the backup, or if a host is unreachable
to restart it. This approach requires that one (or many) human engineers
designed, programmed, and tested these rules in the network before deploy-
ment, which limits the dynamicity of the resulting system.

Unfortunately, highly complex problems in the network are however very
common, and the human-centric approach that worked for SON does not
scale sufficiently well. Considering optimization problems on their own, nu-
merous strategies have been exploited, such as to decide where in the network
to provide a service6,80, how many resources to allocate for it22,77, or how to
configure antenna parameters to optimize throughput and coverage30,38,139.
Still, a practical yet optimal technique has in many cases not yet been found.

As this paper’s aim is to present a generic framework that can address all
potential use cases for autonomy in the network, we do not favour a partic-
ular solution for any of these problems. Instead, we show in section 4.4 how
any potential approach can be integrated into our system, and in section 4.3
how these techniques enable autonomous improvement of the system itself.
Furthermore, as discussed in section 4.2.2, our system will be able to address
these issues using the best currently available techniques thanks to its ex-
tensibility and easy integration of arbitrary future decision and optimization
techniques once they become available.

4.2.4 Action: A Lever for the Network

An autonomous network would be absolutely useless without the ability to
change the systems it controls on its own. Consequentially, it requires the
ability to affect the operation or organization of the network without the need
for manual intervention. Luckily, such capabilities are gradually becoming
more commonplace in telecommunication networks and beyond.
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For example, the move towards end-to-end network virtualization offers
huge cost saving potential for the operator. By replacing proprietary hard-
ware with abstract software Virtual Network Functions (VNF)41, it enables
us to freely choose where to deploy such VNFs at runtime. Thus rbitrary ser-
vices such as DNS, billing, or even customer edge application can be hosted in
generic containers independent of the underlying hardware. VNFs together
with Software-Defined Networking (SDN)44, which provides the necessary
levers to control the operation of network switches and routers online, has
resulted in renewed (business) interest in network overlays in the form of
network slicing102. Even mechanical features have become virtualized in the
last decades: Thanks to phased arrays82, modern 4G/5G base stations can
electronically control the direction the antenna is facing.

The benefits of automated configuration are not limited to the world
of telecommunication providers. The open-source Apache Mesos58 and
Google’s Kubernetes57 bring infrastructure virtualization to the data center,
which enables software-based job scheduling and placement. All of these
technologies enable us to not only automatically change the configuration
and operation of the network, but also provide tools we will leverage for the
purpose of autonomic operation.

4.3 The Control Hierarchy
Biological systems hierarchically control the actions of their subordinate enti-
ties. The higher-level brain functions of the frontal cortex make higher level
decisions, for example, to run away from a threat, but cannot implement
them without the help of the cerebellum, which translates “run towards the
door” into actions to be performed by the legs. The cerebellum in turn does
not control the actions performed to counteract sudden events which need
immediate actions. The latter is the domain of reflexes, which are hardcoded
and able to respond far quicker than the cerebellum or the even-slower frontal
cortex ever could.

The rationale for this split is that higher-level functionality is more costly,
as it involves more capable neurons, and takes longer. Offloading these func-
tions to older and less complex parts of the brain not only increases reac-
tion speed, such as when the cerebellum applies learnt operations without
cognitive involvement, but frees the more advanced parts to handle more
challenging tasks.

The same challenges described above had to be overcome by the first mo-
bile robots, whether they are bipedal or wheel-based, and have lead to the ap-
plication of hierarchical, layered architectures51. Equally, human procedure
also follows the same pattern, as exhibited by military and (some) corporate
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organisational structures, where long-term strategical decisions are taken at
a higher rank than tactical or short-tem battle decisions. Likewise, the afore-
mentioned OODA loop shown in fig. 3 inherently embeds this hierarchical
interaction between quicker reaction and longer deliberation in the form of a
feedback channel.

Our vision for an autonomous network reflects this concept of providing
multiple control loops in a hierarchical structure. We intend to model the
process how the cerebellum directs the actions of a leg, which can be overriden
when needed by a reflex, within our network: for example, a higher-level
controller assigns weights per data center, which in turn are used to distribute
application instances among machines in that DC.

In our design, however, the hierarchy is not limited to optimizing opera-
tion. The structure and composition of the underlying control loops them-
selves can be modified and improved by higher-ranked control loops. Fur-
thermore, we do not employ a single, linear order of layers, but instead use a
directed graph. In our approach, several subordinate loops can be controlled
by one or multiple higher-ranking loops, responsible for different optimization
aspects (operation vs. evolution). We provide a more detailled description in
section 5.3.

4.4 Functional Composition: Lego Pieces for Network
Castles

Modular designs that allow run-time construction of functionality from small,
generic building blocks have a long history in a large variety of computing ap-
plications. Dennis Ritchie100 introduced the flexible, coroutine-based stream
io subsystem for character devices into Unix back in 1984, which allows the
output of one device to be connected to the input of another via pipes. The
Ficus53 file system uses stackable layers (in other wordsmodules) with sym-
metric interfaces to access services provided by other modules in the stack.

Applications to the networking field also have a long track record. The
x-kernel62 enables runtime construction and composition of networking pro-
tocols, as well as abstractions for common protocol functionality since 1991.
Automatic reciprocal reconfiguration was explored by the Pandora91 / C/S-
PAN89 projects in 2000, which stack software components that communicate
through message exchanges and utilize reflexive interfaces for reconfigura-
tion. This, for example, enables Pandora and a collaborating web cache to
reactively tune each other according to the measured disk space and traffic
characteristics. Larger scale deployments of functional composition frame-
works have been explored in both the ANA7 and 4WARD4 projects. Their
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composition framework allows for transparent runtime rebinding of the com-
munication channels between functional blocks at the sole discretion of the
framework18.

Generic building blocks are functionality- and implementation-agnostic
and enable to build a future-proof and easily extensible system. Our own
design will utilize them for flexible runtime (re-)composition of functionality
modules. These modules communicate over strongly-typed transparent in-
terfaces, the format of which is at the discretion of the module designers, as
detailed in section 5.1.

4.5 Artificial Cognition
Research into artificial thinking and reasoning is spread across many different
areas of science, from biology and medicine to mathematics and philosophy.
In particular, it can be traced back two fundamentally distinct approaches,
trying to develop systems that either think rationally or like a human104.

The concept of rational thinking can be traced back to Aristotle’s syllo-
gisms and has been gradually mechanized over time. This process started
from research into formal reasoning, such as Frege’s Begriffsschrift 48 in 1879
and Whitehead and Russel’s Principia Mathematica134 in 1910, continuing
with the General Problem Solver86 in 1959, and leading to cognitive archi-
tectures such as SOAR74 and ACT-R101.

Artificial Neural Networks (ANN)105, the main connectionist83 approach
to explain human-like perception using artificial neural networks, have their
origins in Hebbian learning56. Their first practical realization was the
Stochastic Neural Analog Reinforcement Calculator (SNARC) in 1951, a
randomly connected network of 40 neurons, designed by Marvin Minsky106.
ANNs had mixed fortunes over the last 70 years, with the first hiatus maybe
caused by Minsky himself in 1969, when he discussed their limited pattern
classification and function approximation capabilities84. Fukushima’s Cogni-
tron49 inspired convolutional neural networks and consequently the advent
of Deep Learning112.

Especially thanks to the vast amounts of computational power and data
that had been missing before, ANNs have enabled huge performance increases
in several application areas, which lead to an enormous boost in their pop-
ularity in the last decades. Deep Reinforcement Learning has, for example,
enabled machines to excel at board (go, chess) and video games and consis-
tently best top human oppenents116. While the aforementioned approaches
showed impressive results in certain areas, no generic approach for learning
has been found so far. Lately, many researchers acknowledge the limitations
of Deep Learning approaches and explore potential solutions to advance the
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state of the art, for example by utilizing meta-learning of causal structures
to improve the adaption speed14.

Meta-learning76 explores how to overcome the inductive bias inherent
in learning algorithms through automatic optimization of machine learning
algorithms, for example by optimizing the parameters that guides these al-
gorithms. Of particular interest to us is the idea to employ a hierarchy of
learning systems, in which each layer learns how to improve the performance
of the underlying layer of the hierarchy, for example through Genetic Pro-
gramming13,113,114.

Even so, the fact remains that artificial intelligence is still extremely far
from matching the cognitive abilities of a human being. Building a system
which is able to reason on its own and, for example, solve a problem by
applying the scientific method, can be considered the holy grail of AI research.
Especially since achieving this goal seems at least as hard as acquiring the
grail.

Consequently, we will not be able to fully achieve our dream of replacing
all networking engineers with an autonomous system in the near future, as
this would amount to the creation of an entity capable as a real engineer.
This is still far beyond our abilities. The easiest to articulate of several issues
that hinder general artificial intelligence’s coming into existance is the lack of
providing it with sufficient context knowledge to solve all problems a human
engineer might be posed with: Human engineers possess context knowledge
that exceeds the scope of networking and can apply it to solve seemingly
unrelated or infrequent issues. Thus they can, for example, preemptively
provide more resources for a service which will become more popular due
to a popular sporting event or news item. However, as stated before, we
designed the framework to be flexible enough to integrate any future AI
technology as it becomes available, and thus utilize a manifestation of this
artificial engineer, whatever it may look like.

Even partial autonomy will allow us to reduce costs as well as increase the
capabilities of the network, and is therefore worth pursuing. We believe that
the current state of AI research enables us to build a semi-autonomous net-
work, and that it can be realized by means of a combination of both semantic
/ symbolic / computationalist and connectionist / emergent approaches, as
appropriate for the application context. If context and logical relationships
can reasonably be provided by the engineer, such as in the case of sensors,
we intend to leverage it by means of symbolic reasoning. Whenever this is
infeasible, due to the amount of data, variation or lack of knowledge about
relationships, for example, how exactly an intrusion attempt would manifest
itself in the network, then we will focus on connectionist approaches.
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4.6 Metaheuristic Optimization
Many, if not most, optimization problems encountered in computer networks
can be expressed by means of a utility function107, which provides a measure
of optimality for a particular potential solution, state, or configuration set-
ting. In case of difficult (high-dimensional, non-convex) or unknown search
spaces, which can not exhaustively be explored, common heuristics, such
as hill-climbing108 or simulated annealing109, are not applicable. Here, the
introduction of randomicity not only helps to traverse the potentially vast
search space of the network, but also deals with uncertainty in cases were the
underlying relationships between actions and outcomes are either unknown
or difficult to reason about. Stochastic meta-heuristic approaches offer a flex-
ible way of finding a sufficiently good, but not necessarily optimal, solution.
Many examples of such approaches are based on or inspired by biological
processes such as genetics (Genetic Algorithms110), evolution (Evolutionary
Algorithms21), the behavior of ant colonies (Ant Colony Optimization36), or
biased random exploration (Rapidly-Exploring Random Trees75).

Since all these approaches share common inputs (current state, (partial)
history, information (utility, etc.) about previously visited points) and output
(new state to explore or set of such states), modularization and use as building
blocks for functional composition (see section 4.4) is straight-forward. By lay-
ering these approaches in inter-dependent control loops, meta-meta-heuristic
optimization thus becomes possible and is applied in our framework.

4.7 The Case for Experimental Online Evolution
In 1997 the Internet was already too complicated to appropriately simulate92

and the same claim can easily be extended to today’s massive telecommuni-
cation networks. Even if the system itself was not complex, the interaction
with the environment can easily make it so117, especially considering that
the traffic carried on these networks is predominantly human-initiated and
-controlled.

Sentient beings inherently overcome similar problems through online ex-
perimentation and continuous learning137. Similar approaches have been em-
ployed for finding the best networking protocol to deploy in the network97, to
learn the best radio parameters for battle field communications in a limited
number of trials127, or to find the best bit-rate for wireless communication16.

The trade-off between exploration and exploitation, is a major issue for
online search heuristics111,122: more experiments lead to better results in
the long run by exploring more potential improvements, but each test natu-
rally can result in performance degradation at least as easily as it can lead

23



P. Imai, P. Harvey, T. Amin Towards A Truly Autonomous Network

to improvements. The multi-armed bandit problem has been a particular
focus of study, which led to strategies such as ϵ-greedy, Bayesian approaches,
or approximate methods. In general, however, the best strategy to choose
depends on the problem set and a general solution for the full reinforcement
learning case has yet to be found123.

One additional caveat is the possibly exponential growth of the search
space that needs to be explored experimentally, if optimization is to be per-
formed on multiple interdependent layers. The optimal strategy to this prob-
lem again depends on the peculiarities of the problem set.

In our framework, we will employ online experimentation of potentially
better solutions for optimization problems, with the deployment and testing
strategy being provided as a functional building block (FBB) and therefore
subject of online optimization itself. In addition, we will perform sanity
checking, simulations, and gradual rollouts to reduce the number of experi-
ments to perform and the impact on the network operations, as detailed in
section 5.8.

5 A Framework for Autonomous Network
Evolution

Guided by the core concepts and related technologies we identified and mo-
tivated in section 4, we designed the following architecture for the telecom-
munication network of the future. Instead of presenting a complete technical
design, we explain how the key elements of our approach are embodied in our
framework. We will seperately provide a thorough design document to de-
tail APIs, robustness, ontology formats, various code and metric repositories,
failure and recovery handling and other engineering-focused topics.

5.1 Module: Building Block for Functional Composi-
tion

The functional building block (FBB) is a key element of our approach to au-
tonomy (section 4.4) and realized within our framework as a module, (fig. 4).
We define a module as consisting of both a software component and the cor-
responding composition information. This enables us to compose controllers
out of compatible modules using the process described in section 5.5.

The software section represents the operational logic of a module and
consists of three parts: code, parameters and API. Code represents the logi-
cal operation of the module and is expressed as software. The scope of this
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Figure 4: A Module

software is defined by the designer and may be of arbitrary size; such consid-
erations are independent of our design. Parameters are used to initialise and
configure the operation of the code, for example, how long to wait before a
timeout. Finally, there is a well defined API which enables this code module
to be interacted with.

This API is identified by a globally unique ID together with an arbitrary
number of optional tags that specify the provided functionality more closely.
For example, an audio codec might provide an Encode API, which can have
the optional tags lossless or lossy, to indicate whether decoding the encoded
output would return the bit-wise identical input data or not.

Importantly, in our framework the globally-unique API identifier com-
bined with the optional tags are expected to constitute a “contract” for
composability and interoperability. This contract guarantees that a mod-
ule which requires a certain API can utilize any API with the same given
ID. The actual API used or its calling conventions are of no importance to
the composition system, and are therefore not represented within the module
definition. Incompatibilities w.r.t. functionality or code-level iteraction con-
sequently necessitate the use of a different API identifier. The inverse case,
i.e. the use of a different name or API for compatible functionality, should
also be avoided, as it reduces the freedom of choice of the composition system.
This approach could be implemented similarly to the assignment process of
Internet protocol numbers by IANA63, which does not register any specifics
about the protocols themselves, only assigns unique numbers to be used by
them. We do however defer the decision about how to handle this process to
future deliberation.

Modules can depend on the presence of APIs provided by other modules.
The same API can be provided by multiple different modules, for example,
sound encoding functionality could be implemented by a lossless FLAC or a
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Figure 5: A Generic Controller Architecture With Cognitive Loop Flow. The
theoretical “flow” of information around the cognitive loop is represented by
red arrows.

lossy MP3 module. Likewise, differently parameterized instances of the same
module could be utilized concurrently. Dependencies are therefore specified
by means of the API UID and an arbitrary number of tags that need to be
provided by the target module instance, to which this module instance will
be connected. In programming terms, such a connection could, for example,
be represented by a pointer to an object which provides the necessary API,
or by a RPC function on a remote host.

We emphasize that we do not assume the design of a module requires any
particular technology choice in either the software used, the overall opera-
tional purpose, or the scope of the module. This is equivalent to the concept
of deciding the size and scope of a software module in an application. Also
note that our framework assumes that modules are user provided instead of
autogenerated. While software generated modules can be accepted by our
system, we consider them out of scope for the current document.

Given these specifications, modules can now be programmatically (or
automatically) composed together to create controllers (section 5.2).

5.2 Controller: An instantiation of the Cognitive Loop
As introduced in section 4.2, the cognitive loop is one of our fundamental
concepts of autonomy. In our framework, the cognitive loop is manifested
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as a controller, fig. 5. A controller is responsible for the control, operation,
or optimisation of some task or domain within our network. Just as with
modules, the size and scope of this task or domain is defined by the user.

The four phases (sense, analyse, decide, and act) of the cognitive loopa
are all present within a controller. We assume that each controller element
operates on an independent time scale from the others. For example, sensing
can be a continuous process, where as analyse is likely to operate only from
time to time to interpret collected data. Decisions are either periodic or
triggered by changes in the environment, and actions are in response to
decisions. Each controller phase is a composition of modules.The composition
process is described in section 5.5.

Each phase of a controller can be seen as a directed graph of nodes. The
nodes in this graph each reprent one module instance. The root of this
graph is the sink, an abstract module which depends on the required inputs
of the next phase in the cognitive loop and whose sole purpose is to ensure
that each phase delivers everything that is needed for the next phase of the
controller. The next phase contains a corresponding source module, which
provides access to the output of the previous phase. A detailed description of
what exactly is required for each phase is provided by the controller specifica-
tion (see section 5.4.3), in conjunction with additional requirements derived
from the modules present within this next phase. Modules can possess an
arbitrary number of dependencies (see section 5.1). These identify the re-
quired APIs used by the module as defined in the module description (see
section 5.4.1), and the vertices in the graph represent these dependencies.
The structure of this graph, however, is not fixed. Since the dependencies of
each module instance (node) guide the structure of subgraph starting in that
node, arbitrarily complex graphs are possible.

It is the manipulation by means of creation from scratch, re-arrangement,
replacement, and configuration changes of module compositions that enables
our framework to adapt to both new and evolving situations (see section 5.5).
While a controller could be expressed through one single composition, we de-
cided to split the composition of the controller into four interconnected parts
which embody the sense, analyse, decide and act phases, respectively. This
separation both simplifies (human and machine) comprehension and reduces
the state space of potential module configurations. It is important to note at
this point that our framework currently requires the user to provide a metric
for how to measure the fitness or utility of a controller by means of a util-
ity function. We do not prohibit auto-generation of utility functions either,
but due to the complexities and pitfalls associated with such approaches, we
plan to thoroughly research and discuss this matter (also through practical
application) separately in the future.
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Figure 6: Conceptual controller hierarchy as separate layers.

Additionally, all controller phases share access to persistent knowledge
through a knowledge base. This is necessary to understand previous choices
and their consequences, changing system state, and to ease synchronisation
across distinct update periods. The exact knowledge to be kept is dependent
on the specific controller, but can be utilized by separate controllers if ap-
plicable. The knowledge store is an eventually consistent distributed data
store, which we will also discuss separately.

5.3 Controller Hierarchy: A Layered Approach to Con-
trol

As stated in section 4.3, our approach uses flexible runtime-defined hierar-
chies of controllers, which consist of operation controllers (OC) and evolution
controllers (EC).

Operation controllers either directly control network elements or super-
vise other operation controllers. They provide, for example, heuristics for
network load balancing, resource distribution and job scheduling logic or
anomaly detection and mitigation technologies.

Evolution controllers optimize and adapt the composition and configura-
tion of other controllers for the purpose of achieving the best possible utility
under the current operation conditions. This is an open-ended, exploratory
task and refered to as evolution (see section 5.5). Evolution controllers can be
under the supervision of other (meta) evolution controllers and thus evolve
themselves, as we explain below.
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For illustration purposes, fig. 6 separates controllers into different layers
according to the roles they perform. In practice, however, all controllers are
arranged in a single hierarchy graph as depicted in fig. 7. The leaves of the
hierarchy graph are all operation controllers.

Operation controllers can be controlled by other higher-level operation
controllers, if needed. In this case they supervise and direct the operation
of their subordinate operation controllers, instead of controlling underlying
network components directly. For example, the leaf operation controllers
might be responsible for the optimization of a process pertaining to individual
data centers. The boundary conditions within which operational adjustments
are possible could then be decided by a regional operation controller. Above
the regional operation controllers, a global operation controller might again
be deployed. Operation controllers cannot influence the controller graph or
the evolution process. The leaves in this hierarchy graph are all operation
controllers.

Evolution controllers on the other hand decide when and how to evolve
the controllers they are responsible for. The major distinguishing factor be-
tween the controller graphs (which define the composition of a controller
phase out of module instances) and the hierarchy graph (the nodes of which
are controllers) is that each evolution controller in the hierarchy graph has
the liberty to define in software its own dependencies. This means that
each evolution controller defines the specification of the controllers (and how
many of them) it needs in the layer directly below itself, either in software
or directly in its corresponding controller description (see section 5.4.3 for
details). Thus evolution controllers are, for example, able to apply one or
multiple independently evolved operation controller per data center, per re-
gion, or globally at their discretion, compare the results, and decide which
approach is most efficient, as measured by their utility function.

The creation of a hierarchy of operation controllers enables us to sepa-
rate local decisions, which might require fast reactions, from more deliberate
global decisions which can be performed more slowly. For example, a single
base station controller can quickly decide to adjust its tilt based on the num-
ber and conditions of the connected devices, however, the global controller
can get feedback from many local controllers and provide more general policy
decisions at a larger temporal granularity. Thus our framework represent and
encompass the same underlying concepts centralized and distributed SON1

provide, such as the deployment of agents in each cell to co-ordinate and
minimize interference.

Whether such a separation into multiple operation controllers is sensible
or not strongly depends on the use case and application environment. This is
one of the reasons why we allow evolution controllers to decide the hierarchy
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Master
Evolution
Controller

Meta Evo Ctlr -
Traffc Shaping

Meta Evo Ctlr -
Antenna Tilt

Global Evo Ctlr -
Traffc Shaping

Local Evo Ctlr #1 -
Traffc Shaping

Local Evo Ctlr #2 -
Traffc Shaping

Global Evo Ctlr -
Antenna Tilt

Local Evo Ctlr #1 -
Antenna Tilt

Global Oper Ctlr -
Traffc Shaping

Local Oper Ctlr #1 -
Traffc Shaping

Local Oper Ctlr #2 -
Traffc Shaping

Global Oper Ctlr -
Antenna Tilt

Local Oper Ctlr #1 -
Antenna Tilt

Local Oper Ctlr #2 -
Antenna Tilt

Local Oper Ctlr #3 -
Antenna Tilt

Figure 7: An example controller hierarchy. Operation control is depicted
by red diamond-tipped arrows, evolution control by blue triangle-tipped ar-
rows. Correspondingly, red boxes indicate operation controllers, blue ellipses
evolution controllers.

below themselves, as it enables them to try out different potential operational
separations of control and choose the right one for the current situation
without having to depend on input from an actual engineer.

Evolution controllers can not only control operation controllers, but also
evolution controllers, in a role we call meta evolution controller. Having a
hierarchical ordering of evolution controllers enables us to apply different
evolution approaches depending on the task at hand and the operational en-
vironment, as often the optimal optimization or adaptation strategy depends
on these: For example, the optimization strategy for in-data center resource
allocation might differ from the regional strategy (different time scale, ex-
plicit allocation to machines vs. weights per application group, etc.). The
mapping of meta evolution controller to evolution controller follows a similar
logic, as the ideal amount and responsibilities of evolution controllers might
depend on the use case and application environment, it is the prerogative of
the meta evolution controller to decide (i.e. evolve) the composition of the
hierarchy below itself.

Figure 7 shows a somewhat complex controller hierarchy to illustrate
the potential of a hierarchical separation of control. In this example, two
use cases are represented, traffic shaping and antenna tilt optimization. For
the traffic shaping case, a global operation controller decides the high-level
weight allocations per location, and two local operation controllers shape the
traffic while obeying the global weights. These three operation controllers are
being independently evolved by their corresponding local or global evolution
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controller. For the tilt case, all three local operation controllers are evolved
by one evolution controller. All evolution controllers of the traffic shaping
and tilt optimization use cases, respectively, are evolved themselves through
a corresponding meta evolution controller, which in turn are evolved by the
master evolution controller. Please note that we do not intend to indicate
that for the given use cases the depicted separation was ideal. Our intention
is solely to point out the flexibility of our approach to encompass either
design.

In the first version of our framework, it is the engineers’ decision to decide
whether evolution controllers should be given the opportunity to try out
different hierarchies of operation and/or evolution controllers, or whether it
the hierarchy should remain static and evolution should be limited to the
composition of the given controllers. For example, higher and lower level
operation controllers can either be designed to work together to solve some
use case, or evolved to do so. Whether to use a dedicated controller to
supervise underlying controllers (or network entities) or to utilize a shared
one depends strongly on the use case, controller design, or evolution outcome.
And whether to give more freedom to experiment to the (meta) evolution
controllers by e.g. letting them freely decide the hierarchy below them, and
thus sadly also to increase the time it takes for them to come up with a close
to optimal solation will be investigated by us in more detail in the future.

5.4 Description Language: Meta-Data for Symbolic
Reasoning, Controller Composition and Use Case
Specification

The description language steers the functional composition (section 4.4) and
derivation of meaning (symbolic reasoning) from sensor data (section 4.2.1).
It provides a normalisation layer that enables our system to programmatically
understand and reason about the modules and sensors provided. Addition-
ally, it allows us to specify constraints for controllers, controller hierarchy
branches, as well as the corresponding utility functions, and thus to add
new use case-specific controller (hierarchies), as detailled in sections 5.2, 5.3
and 5.4.3

5.4.1 Module Description

As illustrated in fig. 4, we enable our framework to sensibly compose con-
trollers out of modules by specifying the capabilities, configurable param-
eters, and interface of a module using a description language. There are
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Module LowPassFilter:
Provides: Codec , Filter;
Requires: Codec;
Parameters: 0..9, 1..100, {5, 7, 9};

Module HighPassFilter:
Provides: Codec , Filter;
Requires: Codec;
Parameters: 1..100, 1..10;

Module FLAC:
Provides: Codec(lossless), FLACCodec(lossless);
Requires: FLACFile;

Figure 8: Example Module Specifications

many different approaches specify such properties26,43,94. To maintain the
genericity of this document, we defer description of our specific approach
to the subsequent design document: Experimentation will help us identify
the most suitable approach for the large number of domains that we seek to
tackle in our telecommunications network. However, as a guiding example,
we present a simple description in fig. 8 which shows the symbolic repre-
sentation of three modules. Each module is identified by a unique name.
The remainder of the description defines the capabilities that this module
provides, its requirements, and the acceptable ranges of its configuration pa-
rameters respectively. For the latter, each module specification describes
either the range of values that each (optional) configuration parameter can
take, or the set of possible parameter values. These are discussed further in
section 5.5.

As described in section 4.4, having each module provide a standard de-
scription enables equivalent but different modules to be interchanged pro-
grammatically. For example, a compression module designed for web server
can be reused in a logging system so long as the module descriptions are com-
patible. This concept of module reuse is a key requirement of our system,
see section 5.5.

5.4.2 Sensor Description

There are two types of description for sensors. The first is similar to the
modules above and concerns the symbolic description of the sensors, such
as thermistor, packet probe, energy meter, as well as the data types that
they produce, e.g. degrees centigrade, packet loss, joules. Also like in the
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case of modules, we require the developer to provide this information via
a specification. To assist, our framework will support a taxonomy of sensor
types and data. Existing work in sensor networks73 and more recently IoT103

have made efforts to classify both sensor types and data by problem domain
to better exploit the right tool for the right job. Our framework will do the
same; just as modules are symbolically described, so too must sensors within
the context of our taxonomy. By doing so:

• sensors from one domain can be reused in another

• equivalent but different sensors can be interchanged

• classification can guide the process of “good” module compositions

• classification can help automate the process of sensor data aggregation
and later reuse of this aggregation between similar sensors classes

The second description type concerns the inference of meaning from the
raw sensor data (section 4.2.1). In this case, the use of taxonomies combined
with ontologies will enable these relationships to be inferred39.

5.4.3 Controller Description

The constraints that guide which controllers are required to be present in
the framework for a particular use case are also specified by means of a
description language. As explained in section 5.2, the conceptual structure
of the controller is constant and always consists of the sense, analyse, decide,
and act phases. The connections between the phases is provided through
the corresponding source and sink modules of each stage. Figure 9 shows
an example of such constraints as applied to a load balancing use case, in
which one evolution controller is responsible for the evolution of two distinct
load balancing operation controllers. Note that only the required outputs
are specified explicitly. The required inputs are derived directly from the
requirements of a composition that provides the needed outputs. These input
requirements can also lead to additional output requirements for preceding
phases.

The utility metric used to evaluate all controllers under an evolution
controller can also be defined either in software (via a module provided for
this purpose) or directly within the controller specification by means of a
simple mathematical syntax, as shown in the example above. In accordance
to the holistic approach (see section 4.1) we take, any available infornmation
can be used for the utility estimation purpose, be it sensor data, module
output provided by other controllers, or statistics gathered directly from the
network.
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Controller LoadBalancer:
ReqOutputs:

Sense: LinkStats ,
MachineResourceStats ,
QueryStats ,
LBPerfStats;

Analyse: NetLoadPerSecond ,
MachineLoadPerSecond ,
QPS,
QuerySuccessRatio ,
QueryLatencyScorePerSecond;

Decide: LinkWeights ,
MachWeights;

Act: DNSWeightAssignments ,
MachJobAssignments;

Utility: Product(QPS, QuerySuccessRatio , QueryLatencyScore);

Controller LoadBalancerEvoCtlr:
ReqControllers: LoadBalancer[2];
ReqOutputs:

Sense: LoadBalancer[2]->Stats ,
EnvironmentStats;

Analyse: LoadBalancer[2]->ControllerUtility ,
EnvironmentSituation;

Decide: ControllerPlans[2];
Act: ControllerComposition(LoadBalancer(0)),

ControllerComposition(LoadBalancer(1));
Utility: Module:UtilityEstimator(

LoadBalancer[2]->ControllerUtility);

Figure 9: Example Controller Specifications

5.5 Composition & Online Evolution
One of the key strengths of our framework is its ability to not only adapt
and improve the operation of the controlled network entities, but also to
evolve itself, i.e. adapt and improve its own functionality, as motivated in sec-
tion 4.7. Functional composition, introduced in section 4.4, provides us with
the flexibility to compose the most suitable controllers for each application
and network environment. The flexible controller hierarchy (see section 4.3)
employed by our framework in turn dictates which controllers are employed
for what tasks and how they interact, within the boundaries defined by the
controller specification. We discuss the evolution of individual controllers in
section 5.5.1 and of the hierarchy as a whole in section 5.6. In section 5.7,
finally, we describe the process of finding a better composition of controllers
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Figure 10: Example search domain and two potential compositions within
it. The graph boxes and dotted lines in this graph are not actually instanti-
ated and are only given to highlight potential modules that could have been
choosen.

and of the controller hierarchy.

5.5.1 Controller Evolution

Controllers are composed from the available modules by choosing either a
new or existing instance of one module that provides a dependency of one
of the nodes already in the graph and “plug” this new instance into the
dependency “slot”, as explained in section 5.1. This process continues until
all dependencies of all modules in the controller are filled. We assume that
the last requirements “layer” in this graph will be provided by the source
module, which can be imagined as the mirror image of the aformentioned
sink module: it provides all the data that the previous phase in the cognitive
loop has made available.

The set of all potential valid controllers, that is all valid compositions of
module instances and their configurations, defines the search space that needs
to be traversed by the evolution process. The composition process is illus-
trated in fig. 10. The search domain of all valid compositions is represented
by all possible paths from source to sink in fig. 10a. Two valid controller
compositions are given in fig. 10b and fig. 10c, respectively. The evolution
process can utilize any of the possible solutions within the search domain
to instantiate a controller. Please refer to section 5.7 for details about this
search process.
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5.6 Hierarchy Evolution
As explained in section 5.3, evolution controllers are allowed to define how
the subgraph of controllers below them is composed at runtime. The com-
position of the hierarchy of controllers therefore is an iterative process. The
root of the controller hierarchy graph is known as the master evolution con-
troller. It is instantiated first and informs the framework about its intentions
regarding the composition of the sub-graph below it. The corresponding con-
troller instance for the sub-graph layer below the master are then instantiated
according to the requirements of the master.

This process is then iteratively continued for all underlying evolution con-
trollers. As mentioned before, operation controllers do not have the liberty
to choose there dependencies at runtime, instead their dependency graph is
derived via an administrator-defined specification.

When an evolution controller decides to change the composition of the
subgraph it manages, then the above process is applied to that subgraph
alone.

The set of all potentially valid controller graphs (akin to all potential
valid subgraphs of the module graph shown in fig. 10a) constitutes the search
space to be traversed by the evolution process. Due to the excessive over-
head incurred if all valid graphs were to be explored through instantiation,
we utilize an iterative search process. Specifically, we instantiate a limited
set of potential controllers, evaluate their performance, and refine our search
process based on the knowledge gained by doing so. Similarly, we iteratively
generate one controller hierarchy and let it operate unmodified until an evo-
lution controller decides to change the hierarchy below it. The search space
traversal itself is detailed in section 5.7.

5.7 Traversing the Composition Search Space
As introduced in sections 5.5.1 and 5.6, the composition of controllers, as well
as of the controller hierarchy that is contains them, is an iterative process,
and the search space that needs to be explored is a very complex and high-
dimensional one. In fact, not even the number of dimensions is static. For
the controller composition case, every connection between module instances,
and every configuration parameter of each instance constitutes one dimen-
sion. If a different module is chosen, the number and types of parameters
and dependencies changes Likewise, for controller hierarchies, each evolution
controller can define the components, i.e. controllers, of its own subgraph
and therefore the number of dimensions.

Approaches for discovering an optimal solution in such a complex envi-
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ronment have already been explored in practice for the network stack compo-
sition case in our previous work65, and we are confident that the techniques
developed there can be utilized for both controller composition and hierar-
chy evolution. The former case is straight-forward and should pose no insur-
mountable issues. For the latter case, we acknowledge the need for research,
and therefore defer a detailed discussion until later. We intend to provide a
follow-up paper as soon as we can provide results validated in practice.

5.8 Online Experimentation
With the ability to evolve controllers programmatically, our framework can
now automatically generate a large number of new controllers. However,
to understand their utility or fitness as applied to some domain of control
(section 4.6) we require online experimentation.

Within our framework, online trial-and-error experimentation is the re-
sponsibility of the experimentation manager. As motivated in section 4.7, we
adopt a multi-layered approach to experimentation. First, new controllers
are sanity checked to ensure that logical mistakes are not made. For exam-
ple, a controller is trying to use a light sensor module where no such sensor
exists. The use of taxonomies and ontologies (common sense) can be used
to assist in this. Next, candidate controllers are tested in simulation to ini-
tially estimate their utility, optionally followed by deployment in a staging
environment as needed. While not perfect, simulation tools, such as ns-399,
iFogSim52, or Naos46, can serve as indicators of potential success or outright
failure. Based on this information, the experiment manager can decide to
move to the next stage, during which controllers will be gradually tested
within the real production network.

For network trials, it is the responsibility of the experimentation manager
to limit their (physical and temporal) scope, with gradual expansion based
on the particular controller’s measured (or estimated) utility.

As well as overseeing the experimental trials of a new controller, the
experiment manager also acts as coordinator for different concurrent exper-
imentations. This is necessary as there will be multiple ECs or MECs re-
questing experimentation of newly evolved controllers. Intuitively, not all
experiments can be run concurrently as conflicts and false utility may be
observed due to experiments interfering. Additionally, there is also the risk
of instability, interference in high-gain operations, priorities of tests, etc. As
noted in section 2, a telecommunications network is a large interconnected
system meaning that interference is inevitable, however the experiment man-
ager seeks to limit this. In this sense, the experimental manager is also acting
as a scheduler and resource allocator,
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Figure 11: Evolution Controller and Experimentation Manager

More importantly, the experiment manager ensures that experiments are
performed independently of each other. Similarly, the experiment manager
needs to ensure that experiments are fair, meaningful and representative of
the actual operation environment.

For example, consider the comparison of a messaging protocol running
over TCP with another one which utilizes UDP, using a utility metric being
based on throughput, latency and reliability.

As long as this experiment is performed over a reliable transport without
packet loss or reordering, UDP will have an unfair advantage due to less
overhead (no three-way handshake, smaller header size). However, once the
transport becomes unreliable – be it through a change in the environment or
another concurrent experiment affecting the transport layer – TCP’s ability
to retransmit and order incoming packets might put it into an advantageous
position.

An experiment consists of the controller to test, its parameter configu-
rations, utility functions, current experimental scope, and results. These
results are used to determine if this controller under experimentation should
replace an existing controller. Based on the provided information, potential
conflicts in experimentation can be inferred.

A high level overview of how an evolution controller interacts with the
experimentation manager as well as high level concepts associated with each
of its phases is shown in fig. 11. Discussion of the specific concepts are
deferred to the subsequent design document.
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5.9 Summary
In this section we have described a high level overview of an architecture
to apply evolutionary approaches and online experimentation to a modern
telecommunications environment to achieve autonomous operation. By ask-
ing the user to provide well defined functional building blocks (modules) as
well as the definition of “fitness” for the job (by means of a utility function),
our framework can adapt to unseen situations as well as optimise known
contexts.

6 Autonomous Networking Use Cases
The technologies introduced in section 4 combined with the high level ar-
chitecture detailed in section 5 provide us with the means to implement a
framework for autonomous networking. In this section, we provide two con-
crete use cases to illustrate how our framework can serve as the basis of a
fully autonomous network. One concrete use case concerns autonomous net-
work protocol stack evolution, which we already implemented and trialled in
practice in the past. The other use case is related to mobile edge compute,
which we are preparing to explore practically in the near future.

6.1 Network Protocol Stack evolution
Our work on autonomous networking is based on our previous experience
with designing, developing and experimentally evaluating a system for au-
tonomous network protocol stack evolution65. As the similarities to the
framework presented in this paper might not be obvious, but are important
to understand our contribution, we provide a short introduction of that work
in comparison to our current approach below.

Autonomous network protocol stack evolution can be considered a subset
of a fully autonomous network. In fact, finding the optimal composition and
configuration of the protocol stack based on the operation environment the
system is deployed in is one of the optimization use cases that our autonomy
framework is expected to solve. Our approach then and now, is based on arti-
ficial evolution (using genetic algorithms, q-learning, etc.) based on an utility
measure derived through online experimentation. We also utilized functional
composition to invent and build new network stacks out of small modules
that constituted either full protocol implementations or components thereof.
For example, we decomposed the TCP protocol into its core features (sequen-
tiality, reliability through retransmission, window scaling, selective acknowl-
edgements, slow start, and so on), and thus allowed our system to derive new
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versatile protocols that are similar to TCP, but outperform it under certain
conditions. Likewise, we generalized all protocol implementations such that
TCP or UDP could, for example, operate directly over Ethernet, omitting
IP and thus overhead, if communicating with a directly reachable endpoint
within the same local network segment. We encoded the blueprints of poten-
tial new stacks in such a way that learning algorithms could be applied and
evolved separate populations of such stacks that were optimized for different
situations (high load, low latency links, etc.) that would actually occur in
the network. These situations were automatically classified using algorithms
such as k-Means, etc. We did, however, not include the ability to evolve the
composition evolution engine itself in our system back then. The algorithms
utilized for different tasks would evolve autonomously, but the composition
system itself was only applied to the network stack, not the framework.

In relation to the core technologies we present in this paper, many of the
same concepts are present, have been realized, and tested in practice for the
stack composition case. The cognitive control loop (controller) is manifested
in the design of the evolution engine. There is, however, no hierarchy between
controllers. Instead these components are a part of the framework itself.
Meta-evolution is performed, but structural changes to the architecture of
the evolution engine itself are out-of-scope of the implementation presented
for the stack evolution framework. Functional composition is only applied
to the protocol stacks themselves. Online evolution and experimentation, as
well as situational classification are performed.

One of the major distinguishing factors of this work is that we obtained
actual results from a practical implementation which we deployed in a real
network. We developed and deployed several embedded devices in geograph-
ically separate locations, based on FreeBSD, TUN interfaces and raw sockets
to take over and replace the network stack. We even implemented our own
functional TCP/IP stack, since the available implementations were naturally
not composable. Our results back then were promising but cut short due to
lack of funding. Finally, we are now able to continue and vastly exceed our
previous work.

6.2 Content Delivery Network
Content delivery networks (CDNs) geographically distribute content and
services to improve latency, throughput, availability, and resilience for cus-
tomers and end users that access the customers’ content. Originally focussed
on improving download and streaming performance through caching, CDNs
nowadays provide many additional services such as mobile content accelera-
tion, content transcoding, Distributed Denial of Service (DDoS) attack pro-
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Figure 12: Simplified Traffic Load Balancing for CDN

tection, web application firewalls. Through the addition of compute function-
ality, CDNs are on the way to becoming mobile edge computation providers.

CDNs necessarily have to over-provision services to ensure high availabil-
ity in case of failures (resiliency) and to cope with spikes in demand. Due to
the inherent costs of this approach, optimization of where to place additional
content copies – or to spin up software instances, for that matter – and how
to dimension them is essential. We address these two topics separately in
the future.

Providing the content in multiple places on its own, however, does not
ensure that the load will be spread evenly – or better even, optimally –
between the different locations. The reasons for this problem’s existence,
and how we solve it using our autonomy framework, is detailed below in
section 6.2.1.

6.2.1 Traffic Load Balancing

Clients historically access content and services by means of transport-layer
routing to the one server hosting the destination IP address. If the same
content is to be provided in multiple places, this approach on its own is
no longer sufficient. Common technologies to overcome this issue are IP
Anycast90 based on BGP and explicit load balancing based on the client IP
via HTTP93 or DNS28.

Since user demand is dynamic, and in some cases even erratic, a static
allocation would inherently be sub-optimal and needs to be avoided. For our
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discussion below we thus assume a dynamic DNS based approach, where the
approximate latency from each IP range to each serving location is known,
and where each point of presence (PoP) is allocated its own IP range.

As shown in fig. 12, we utilize one global operation controller (OC), which
distributes weights for each PoP and service to the distributed, anycasted
DNS servers. DNS servers in turn report how many responses for each (ser-
vice, PoP)-pair they have sent out during the last time cycle. Likewise, the
PoPs’ ingress and egress link loads and service utilization and capacities are
also reported or known to the controller. Furthermore, the controller knows
the importance or utility of each service, as well as its latency and bandwidth
requirements.

If user demand could be reliably estimated, the logic for deciding where
to redirect users to would be relatively straightforward. In reality, however,
demand is hard to predict, especially since real world events, such as news,
can sway users to access or stop accessing a service on short notice.

6.2.1.1 The Operational Controller An example of the requirements
the global operation controller could fulfil is detailed in table 1. Based on
these requirements, we specify modules in table 2 from which the OC is to
be composed.

Phase Outputs

Sensing

• number of incoming requests per IP range, per service
• location, capacity and load of services
• aggregation of results over a specified time period
• measured latency between IP ranges and CDN locations
• any additional data useful for predicting future user demand

Analysis

• updated latency based on measurement samples
• estimated latency for unknown IP ranges
• short-term predicted traffic based on incoming DNS requests
• longer-term predicted traffic

Decision • assignments (weights) per service, per location
Action • assignments propagation to DNS servers

Table 1: Example output of the operational controller phases

For each module in table 2, a corresponding description in the specifica-
tion language of its capabilities and interface has to be provided. An example
set of module compositions for the sense phase is shown in fig. 13. The differ-
ent example diagrams in this figure present a non-exhaustive list of possible
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Phase Modules

Sensing

• HTTP server request metric
• Service deployment database
• time series database
• HTTP server request timing metric; RTT probe
• news, twitter scraping, etc.

Analysis

• Latency estimator using mean latency over fixed period,
sample length as parameter

• BGP announcement based IP hole mitigator
• DNS request based short-term traffic predictor
• history-based long-term traffic predictor

Decision • weight calculation heuristic employing a linear
optimization solver

Action • DNS configurator

Table 2: Example modules per phase

configurations of the modules in table 2.
It is important to note that the listed modules are not all uniquely asso-

ciated with the task of traffic load balancing. Each of the sensing modules
could also be used for a CDN health monitoring controller. Hence, module
reuse is a key advantage of our approach.

Using this information, our framework has the basic inputs required to
create and deploy controllers for the CDN traffic load balancing task. By
using the analysis and sensing phases, the controller can understand how
its actions (i.e. the weight assignments) impact the operation of the service
for the current environmental state. Accordingly, the decision element can
decide how to change the weights to be propagated to the DNS servers by the
action phase. The utility function provides an easily comprehensible measure
of how well the overall weight assignments matched the current conditions
of the network. The general utility function we utilize is∑

r∈R

u(l(r), t(r), s(r))

where R is the set of all requests, l(r) is the latency measured for request
r, t(R) is the measured throughput, s(r) is the service the request was des-
tined for. u is an administrator-defined function which calculates the utility
of each request based on the service value, the measured latency, and the
measured throughput. To simplify the use case, we assume that the cost
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Figure 13: Example module compositions for the sense phase

of handling each request is identical and independent of the utilized band-
width and location, which in practice might not be the case. The goal of
the operation controller is to maximize the general utility function. The util-
ity function utilized by each controller can be either expressed inline in the
controller description or provided as a stand-alone code module.

Designing and re-designing the operation controller as needed based on
its measured performance is the task of the evolution controller.

6.2.1.2 Evolution Controller In this use case, the evolution controller
(EC) is not only responsible for ensuring that the OC is achieving its goal
of efficiently load balancing the traffic, but also to come up with new OCs
based on the available modules, which might outperform the existing OC.
This requires current and historical data from the network, as well as the
classification of the environment, the current blueprint of the OC, and a
definition of the utility of the current OC. As the historical data implies, the
EC will make decisions over a longer time period in this example. A list of
example EC modules is shown in table 3. This table is again non-exhaustive,
as the exact details of how to best achieve our goals requires further research.
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Controller Element Modules

Sensing • general utility for each time cycle during which
the current EC was active

• situational characteristics at each time cycle

Analysis • classification of situation for each time cycle
• relative (as the achievable optimum is unknown)

utility of EC for each encountered situation

Decision • decide whether to come up with a new EC,
which modules it should consist of,
and how they should be configured
using appropriate optimization techniques

Action • evolve new controller
• request controller experimentation
• update knowledge base with experimental results

Table 3: Modules of the Evolutionary Controller For Traffic Load Balancing

If the OC is deemed insufficiently effective at its task for a given situation
– as determined by the measured utility – the EC can decide to replace it with
another existing or new OC. If the situation changes and a different controller
has shown to outperform the current one under the new conditions, it might
get chosen. If no sufficiently performant EC is known, a new composition is
likely to be generated. A detailed discussion follows below.

6.2.1.3 Trial & Error Experimentation and Deployment For the
case of online load balancing, trial & error experimentation is responsible
for taking newly evolved controllers and seeing if they perform better at
load balancing the traffic under the current conditions than other, existing
controllers. As always, better is defined as delivering a higher utility score
when measured using the same utility function as the current controllers.
This stage is equivalent to continuous integration/continuous development
(CI/CD)115, acceptance testing81, or build testing15 found in other fields,
just that the deployment decision it fully automated. We deploy new controls
as follows:

First, we perform a sanity check to ensure that the new controller is
complete. One sanity check is to ensure that all actions the controller may
request to take are confined to the domain of load balancing and that actions
are not being taken in other domains. This can be identified through the
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action module capabilities and the network impact graph4. Another check
can be to ensure that the new controller make progress, also known as not
dead-locking.

Second, we verify through simulation that the controller operates as ex-
pected: We instantiate it in a sandbox environment, feed it recorded sensor
data, and estimate how the weight changes it generates would impact the
actual load-balancing, using the request log for the time period during which
the new weights would have been applied, and calculate the utility of these
changes. We also verify that sudden dramatic changes which would shift a
lot of traffic from one location to another and oscillations in assignments are
infrequent or non existing.

Third, we gradually deploy the new controller in the network, starting
with low impact regions or for relatively unimportant services, and for a
limited period of time. If the performance is poor, we roll back immediately
before the allocated trial time is over. If the controller looks promising, we
extend the trial to more important areas and services.

The above stages mimic the steps that a human would take, but can be
fully automated. Whether we can fully remove the human from the loop,
however, is a business, not a scientific decision.

6.3 Others
The above problems fit in the general category of resource allocation and
scheduling. However, there are other problem areas within a telecommunica-
tions network. One such type is monitoring. This is where the autonomous
network must deploy monitor operation controllers to collect information for
either a specific or general task. Examples include network probes, inventory
management, health checks, or anomaly detection. The latter is a meaning-
ful sub category in itself and is concerned with the detection of abnormal
activity in the network for a particular domain. Such detection can be for
the purpose of security, optimisation, or troubleshooting.

Another problem type is problem solving and is the hardest challenge for
an autonomous network. Having identified an anomalous situation above,
the autonomous framework must identify the cause of the situation and seek
to rectify it. In the telecommunications field this is known as trouble ticketing
As noted in section 4.5, this goal is not currently achievable, and so instead
we decompose the problem and seek to address it in stages.

4The network impact graph is a representation of the current state of the network
and is a combination of network telemetry and ontological descriptions. Its discussion is
deferred to future work.
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Every time a problem occurs in the network, we can apply a classifier to
detect the type of problem and select which graphs in the EMS23 to present
to the incident handler. We also record which other graphs this person is
looking at while debugging and which actions they take to resolve them.
After the problem is resolved, the incident handler is not only required to
write the usual postmortem, but also to provide feedback regarding which
graphs and which actions they performed where actually useful for resolving
the problem. This information is then fed in to a (reinforcement) learning
algorithm, which decides the actions to take in the future. Once enough data
has been gathered, the next stage not only presents the most useful graph,
but also suggests the potential problem cause. Once the problem is resolved,
the responder has to provide feedback about how useful the suggestion was.
In the final stage, the algorithm will also try to provide a resolution strategy,
once confidence is high enough that the suggestion is likely correct.

Given our approach to autonomy, the above stages naturally fit into our
design: the choice of learning algorithm to apply, the evaluation of the util-
ity or fitness of the proposed solutions, and experimentation with different
approaches. Accordingly, we deploy one operation controller for each stage
described above. The composition of this controller will be evolved based
on the feedback from the users via a machine learning approach embedded
within the evolution controller associated with a particular stage. Whether
a controller is actively operating the network or only learning based on feed-
back is decided by the satisfaction measure.

7 Conclusion
This document presents a concise and practical approach towards realizing
true autonomy in the communication networks of the future. For this purpose
we presented a truly autonomous, self-evolving framework for autonomous
networking and telecommunications. We motivated the need for this ap-
proach and presented our vision for this autonomous future in section 2. Our
vision is based on several core principles and key technologies, which we dis-
cussed and motivated in section 4. In conjunction, these core technologies
clearly outline the road towards an architecture that will enable autonomy
and that is flexible enough to encompass arbitrary future technologies, yet
concise enough to be deployable in actual networks (summarized once more
below). The architecture that directly derives from and manifests these con-
cepts is explained in section 5.

The concept of the cognitive loop enables us to express arbitrary reasoning
tasks in an abstract and generic way, and allows interaction and collabora-
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tion between multiple independently designed control and optimization tasks.
The controller hierarchy allows us to unify all of these tasks in a holistic man-
ner, where higher-level cognitive loops supervise, control and evolve their sub-
ordinates. Evolution is realized by means of a hybrid intelligent system, that
applies the appropriate cognition, learning and optimization strategies as
needed. This feat of online evolution becomes possible thanks to functional
composition and experimental evalution. Functional composition allows our
framework to use small functional building blocks to compose and configure
new and unique control entities on its own. These controllers are not limited
to controlling and improving the operation of network infrastructure, but
will also modify and improve the very architecture and functionality of the
controlling systems themselves at runtime. It further enables our framework
to seemlessly integrate new technologies and research output as they become
available. Experimental evolution enables us to test and validate the per-
formance of these autonomously evolved controllers in practice, within the
actual network. The combination of all these technologies finally enables us
to realize truly autonomous control and optimization in an emergent manner.

Our future work will consist of implementing this framework not only for
the purpose of experimentation, but for production deployment with the aim
of enriching the first fully deployed virtualized telecommunication network.
While we expect the road towards this goal to be full of rocks and pitfalls, as
we learned through our efforts on autonomous network stack evolution, we
plan to leverage the experience we have gained in the past and are confident
to overcome these issues collectively with our partners, to achieve the world’s
first truly autonomous network.

As telecommunication operators cannot and should not exist in isolation,
but instead interact and interoperate extensively with each others, we ob-
viously will try to integrate our own efforts with the main standardization
bodies’. This way we hope be able to achieve truly autonomous network-
ing, not just several approaches tailored to particular use cases. We believe
that our own focus on a holistic and evolution-based approach that can on
its own adapt to and optimize itself for any use case is superior to both a
one-size-fits-all effort and to hand-crafted, per-use case designs.
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