Investigation of Factors Contributing to Cyanobacteria Blooms in Rainbow Reservoir (Farmington River) Windsor, CT.

Farmington River Watershed Association
749 Hopmeadow Street
Simsbury, CT 06070

Sponsoring Agency:

Connecticut Department of Energy and Environmental Protection

January 2022

Contents

ntroduction	
Methods	
Results	8
Review of Data from Other Sources	8
Precipitation and Flow	8
Water Quality	8
Biological Data	10
Wastewater	10
Thermal and Oxygen Regimes from 2021 Data	11
Nutrient Status	12
Nitrate Nitrogen	12
Ammonium Nitrogen	12
Total Kjeldahl Nitrogen	14
Total Nitrogen	14
Total Dissolved Phosphorus	16
Total Phosphorus	16
Conductivity/Total Dissolved Solids	18
Turbidity/Chlorophyll-a/Secchi Transparency	19
Sediment Features	21
Phytoplankton	24
Zooplankton	26
Evaluation and Management Needs	28
Cyanobacteria Blooms	28
Possible Control Options	29
Summary and Recommendations	32

Tables

Table 1. Watershed Towns in Connecticut and Massachusetts.	1
Table 2. Precipitation in the Rainbow Reservoir area (from Bradley Airport)	8
Table 3. NPDES Permit designed flow rates and secondary treatments.	11
Table 4. Ratios of TN:TP in Rainbow Reservoir over time.	18
Table 5. Sediment features at five sample stations in Rainbow Reservoir in 2021.	22
Table 6. Available sediment phosphorus in Rainbow Reservoir in 2021	
Table 7. Zooplankton biomass in Rainbow Reservoir in 2021.	27
Figures	
Figure 1. Rainbow Reservoir	2
Figure 2. Rainbow Reservoir bathymetric map.	3
Figure 3. Rainbow Reservoir bathymetric map (continued).	4
Figure 4. Rainbow Reservoir Depth vs Area.	5
Figure 5. Rainbow Reservoir Depth vs Volume	5
Figure 6. Rainbow Reservoir sampling stations for this investigation.	7
Figure 7. Daily Discharge at USGS gauge, Farmington River at Tariffville	9
Figure 8. Trophic Classification of 49 Lake, DEP 1991, Rainbow Reservoir	9
Figure 9. Temperature and Oxygen profile at Station 5 Rainbow Reservoir on 7/1/21	12
Figure 10. NO _X over space and time in Rainbow Reservoir.	13
Figure 11. NH ₄ over space and time in Rainbow Reservoir	13
Figure 12. Total Kjeldahl Nitrogen over space and time in Rainbow Reservoir	14
Figure 13. Total Nitrogen over space and time in Rainbow Reservoir	15
Figure 14. Total Nitrogen input at Station 1 over time.	15
Figure 15. Dissolved Phosphorus over space and time in Rainbow Reservoir	16
Figure 16. Total Phosphorus over space and time in Rainbow Reservoir.	17
Figure 17. Total Phosphorus input at Station 1 over time.	17
Figure 18. Average Conductivity over space and time in Rainbow Reservoir	19
Figure 19. Average Turbidity over space and time in Rainbow Reservoir.	20
Figure 20. Average Chlorophyll-a over space and time in Rainbow Reservoir.	20
Figure 21. Secchi Depth over space and time in Rainbow Reservoir.	21
Figure 22. Portion of Rainbow Reservoir with organic substrate.	22
Figure 24. Phytoplankton biomass in Rainbow Reservoir in 2021	25

Introduction

Rainbow Reservoir, located in Windsor, CT, is a run of the river impoundment on the Farmington River (Figure 1). The dam is 8.33 miles upstream of the confluence with the Connecticut River and the reservoir receives water from a 609 square mile watershed that extends generally northwest from Rainbow Reservoir and crosses the Connecticut border with Massachusetts. There are 33 towns in the watershed (Table 1), 23 of which are in Connecticut. The watershed land use can be described as mixed, according to the National Land Cover Database 2011 (NLCD 2011), with approximately 58% forested, 8% wetland, 7% agricultural, 3% open water, and 24% developed. There are 9 wastewater treatment facilities that discharge upstream (Table A-28 to Table-A-36).

Rainbow Reservoir covers an area of 235 acres at full pool elevation according to a 1991 DEP compendium of data for Connecticut lakes but the water level is controlled at the dam and can be appreciably lowered in anticipation of storms for flood control and protection of the hydropower apparatus. From the point where the channel widens markedly downstream of Rt 187 the area is about 225 acres (910,000 m²) and is often the case with run-of-the-river impoundments, it is difficult to be certain where the river becomes the reservoir. The reservoir is generally linear with increasing depth from upstream to near the dam. The bathymetry at full pool elevation (Figures 2 and 3) indicates a volume of 2569 acre-feet or 112 million cubic feet or 3,170,000 cubic meters and a mean depth of 11.5 feet or 3.5 meters. The bathymetric map is not accurate near the dam, possibly due to access issues, but is the only source available. The distribution of depth vs area (Figure 4) indicates a fairly uniform loss of area with declining water level to a depth of 3 m, after which the decline is more rapid. The distribution of volume vs depth (Figure 5) similarly suggests roughly uniform loss of volume to about 3 m, after which more volume is lost per unit of declining water depth in an accelerating fashion.

Table 1. Watershed Towns in Connecticut and Massachusetts.

Wate	Watershed Towns, Connecticut						
Avon	Avon Farmington						
Barkhamsted	Granby	Suffield					
Bloomfield	Hartland	Torrington					
Bristol	Harwinton	Wolcott					
Burlington	Burlington New Hartford						
Canton	Norfolk	Windsor					
Colebrook	Plainville	Windsor Locks					
East Granby	Plymouth						
Waters	hed Towns, Massac	husetts					
Becket	New Marlborough	Tolland					
Blandford	Otis	Tyringham					
Granville	Sandisfield						
Monterey	Southwick						

Figure 1. Rainbow Reservoir

Figure 2. Rainbow Reservoir bathymetric map.

Figure 3. Rainbow Reservoir bathymetric map (continued).

Figure 4. Rainbow Reservoir Depth vs Area.

Figure 5. Rainbow Reservoir Depth vs Volume

Rainbow Reservoir is a multi-use waterbody with a hydropower facility at the dam, a large day camp on the north shore (Camp Shalom) and considerable open space in several parks and wildlands along the south shore. Swimming is popular at the day camp, from some parks, from boats, and from many private residences. Rainbow Reservoir has a public boat ramp and is also popular for fishing. There is a fish ladder at the dam and anadromous fish that include American shad, alewife, and blueback herring have historically run in the Farmington River and utilized Rainbow Reservoir for spawning.

The Farmington River Watershed Association (FRWA) has been devoted to the protection and improvement of the Farmington River since 1953. The FRWA and has worked on issues that include water quality, water allocation, habitat restoration, recreation, open space, and wetland and floodplain protection. The FWRA works with federal, state, and local governments, business and industry, and with people in the watershed's 33 communities to protect the river and its surrounding landscape. With the help of members, supporters, and partners, the FWRA looks after the river that connects so many people, with a wide range of research, education, and advocacy programs.

Cyanobacteria have become an issue in recent years in Rainbow Reservoir throughout much of the summer and early autumn that seems to be increasing in frequency and duration. The blooms impair water quality in Rainbow Reservoir and ultimately spill downstream below Rainbow Dam throughout the Wild & Scenic Farmington River to the confluence at the Connecticut River. Rainbow Reservoir is used by boaters, anglers, swimmers, summer camp youth, park visitors, a rowing group, and a canine training search and rescue team. From 2019-2020 the CT DEEP callin line for cyanobacteria blooms had approximately 500 notifications from the public. There are potential health risks for swimmers, boaters, dogs and wildlife encountering toxins that may be produced by the algae. Pets swimming in waters containing cyanobacteria toxins may become ill or die after drinking or licking themselves, and unfortunately, dog deaths can sometimes be the first warning that a toxic cyanobacterial bloom is occurring.

Toxins associated with cyanobacteria have been implicated as the cause of mass mortalities of fish and birds. Rainbow Reservoir is obviously suffering cyanobacteria blooms, but whether or not, or when, they are producing toxins is unknown, thus precautions must be taken to avoid contact with waters potentially affected when blooms are present. The cyanobacteria blooms have prevented Camp Shalom from allowing campers to use the waterfront as a recreational resource during parts of the past few summers. Concern by users and the FRWA resulted in application for a grant from CT DEEP to evaluate the factors leading to these blooms. The grant was received, and this report covers the results of the investigation conducted by the FRWA with the assistance of Water Resource Services, Inc. of Wilbraham, Massachusetts.

Methods

Five stations in Rainbow Reservoir were sampled (Figure 6) on nine dates between May and September 2021. A boat and driver were provided by Camp Shalom. Analyses included multiprobe sensor monitoring for temperature, conductivity, oxygen, turbidity, pH and chlorophyll-a on most sampling dates using a Xylem YSI ProDSS sonde. Turbidity was not measured June 24th through September 10th, except for July 22nd. Chlorophyll-a was not measured from September 16th to September 30th.

A Van Dorn bottle was used to collect samples, with a single sample at 1 meter at stations 1 and 2, composite samples of the top 3 meters at stations 3, 4, and 5, and samples just off the bottom at stations 4 and 5 on each of the nine dates. Water samples were tested at the UCONN CESE laboratory for forms of nitrogen and phosphorus. Phytoplankton samples were collected as whole water samples (part of the near surface water quality samples), preserved with glutaraldehyde and analyzed microscopically by WRS. Zooplankton were sampled at station 5 on two dates by towing a net through 30 m of water, yielding a concentrated sample representing 380 L of water. Zooplankton were preserved with glutaraldehyde and analyzed microscopically by WRS. Sediment type was assessed with the aid of an underwater video viewing system on July 22nd, to define where soft, organic sediment began in transects from shore to deeper water. Sediment samples were collected with an Ekman dredge at each of the five stations on July 22nd.

Flow data were obtained from USGS site 01189995, Farmington River in Tariffville, CT, 2.67 miles upstream of Rainbow Reservoir. Weather data were obtained from the Bradley Airport station. Additional data were obtained from other CT DEEP and FRWA programs.

Figure 6. Rainbow Reservoir sampling stations for this investigation.

Results

Review of Data from Other Sources

Precipitation and Flow

The weather pattern in 2021 was rather unusual, indicative of the high variability induced by ongoing climate change. Precipitation in May was slightly above average while precipitation in June was well below average. More importantly, precipitation in July was about three times the long-term average and precipitation in August and September was approximately twice the long-term average (Table 2). While the precipitation in any month is not expected to closely track the long-term average, the rainfall during summer was historically wet and resulted in much higher flows in the Farmington River than normally encountered. This greatly increased flushing of Rainbow Reservoir and resulted in water level management by Farmington River Power Company, a subsidiary of Stanley Black & Decker, Inc., to limit damage to hydropower turbines.

Table 2. Precipitation in the Rainbow Reservoir area (from Bradley Airport).

	Precipitation in Inches					
	Long-term					
Month	Average	2021				
May	3.3	4.9				
June	3.9	2.6				
July	3.2	10.1				
August	3.2	7.0				
September	3.6	7.5				

The USGS 01189995 Farmington River at Tariffville site is 2.67 mi upstream from Station 1 on Rainbow Reservoir at latitude 41.908278, longitude -72.759361. While not all flow entering Rainbow Reservoir is captured at this site, it is a reasonable surrogate for flow into the reservoir. Flow at the dam is managed for hydropower and may not represent natural upstream flows.

The Farmington River at the USGS gauge in Tariffville, CT, typically has lower flows in the range of 150-400 cfs during the months of July to October. In 2021, flow was higher than usual, staying above 500 cfs and with a maximum of 8300 cfs in September (Figure 7).

Water Quality

Available water quality data for the reservoir include measurements reported in Trophic Classification of 49 Lake, CT DEP 1991, where the trophic classification of Rainbow Reservoir is listed as eutrophic. Total phosphorus, organic nitrogen, NH₄, NO_X and total nitrogen were measured (Figure 8). CT DEEP sampled chemical properties in 2019 and 2020 (Tables A-12 to A-35). In general, phosphorus and nitrogen concentrations are high, alkalinity is moderate, and water clarity is low. Oxygen is low only occasionally near the bottom in the deepest part of the reservoir. While reports of cyanobacteria appear to be more recent, Rainbow Reservoir has suffered from excessive fertilization and related productivity for many years.

Figure 7. Daily Discharge at USGS gauge, Farmington River at Tariffville

Figure 8. Trophic Classification of 49 Lake, DEP 1991, Rainbow Reservoir.

Date	Alkalinity/CaCO ₃	Transparency	Sample Depth	PH.	Chlorophyll-a	Total P	Organic N	NEI N	Non + Non	Total N
٠.	mg/3			units			p	рь		
05/02/90	24	2.6	сопр	7.4	-	65	470	131	579	1180
07/24/90	24	1.8	0.3	7.7	8.6	108	360	36	747	1143
			5.5	6.7	-	122	370	125	751	1246
		:	10.7	6.3	-	143	800	298	508	1606

Biological Data

CT DEEP fisheries data include electrofishing data from 1989, 1992, 1998, and 2014 (Tables A-5 to A-6) and numbers of anadromous fish passing through the Rainbow fishway from 1976-2021 (Table A-7). There are many species of fish in Rainbow Reservoir, and it hosts spawning areas for multiple anadromous species. The high fertility has generally been considered favorable for fish production, but with the advent of more frequent cyanobacteria blooms, this attitude may shift.

CT DEEP issued a warning in July 2019, based on data that included a sample at Camp Shalom beach with results of 59,389 total algal cells/mL, 56,862 of which were cyanobacteria (all *Microcystis* sp.). This sample result suggests moderate probability of adverse health effects according to the World Health Organization Recreational Guidance of 20,001-100,000 cells/mL, but no toxicity test results were available.

Available biological data generated by the FRWA include bacterial and macroinvertebrate assessments. FRWA site FR-EG1 is the closest site upstream Rainbow Reservoir, located 1.6 miles upstream from station 1. FR-EG1 is at the Farmington River in East Granby on Spoonville Rd at the Rt. 187 Bridge. This site has been monitored for *E.coli* and temperature from 2007 to 2021, excluding 2008-2010 and 2020. The Recreational Geometric Mean for designated swimming, non-designated swimming, and all other contact recreational uses is less than 126/100 mL. FR-EG1 geometric means are typically above 126/100 mL although not by much, except for 2001 at 365/100 mL and 2018 at 293/100 mL. 2013, 2015 and 2019 offered lower values with ranges of 74-78/100 mL (Table A-9.)

Macroinvertebrate data from upstream tributaries covers Salmon Brook in East Granby, East Branch Salmon Brook and West Branch Salmon Brook in Granby, plus Hop Brook in Simsbury. All macroinvertebrate data were collected using the CT DEEP RBV protocol. The protocol aims to assess high-quality waters by monitoring with a target of four or more most sensitive species. Salmon Brook has been monitored with all collections containing 4 or more sensitive species, indicating high quality water. East Branch Salmon Brook was monitored with only two collections, containing less than four sensitive species. West Branch Salmon Brook has been monitored with six years having four or more sensitive species. Hop brook was monitored and both collections had less than four sensitive species (Table A-8). There is clearly a range of water quality in tributaries to the Farmington River.

Wastewater

The permitted wastewater discharges upstream of the reservoir are of concern in overall river water quality and possible impacts on the reservoir. The Farmington River receives over 35 million gallons per day of treated wastewater from 9 publicly owned sewage treatment plants, with MDC Windsor located downstream Rainbow Reservoir (Table 3). Nitrogen and phosphorus limits with sampling frequency (Tables A-36 to A-44) suggest high quantities of nutrients in most discharges. Phosphorus limits are <1 mg/L for the Plainville, Bristol and Plymouth facilities, but are in excess of 2 mg/L in the other facilities and some have no limit at all. While the removal of phosphorus from the three treatment facilities with relatively low phosphorus discharge concentration limits is

in line with best practical technology, the concentrations are still too high to avoid productivity issues in slow moving water and dilution is an essential component of minimizing impacts.

Table 3. NPDES Permit designed flow rates and secondary treatments.

Permitee	Designed Flow Rate (Million Gallons per Day)	Secondary Treatment
MDC Windsor	5	Chlorine Disinfection
Farmington	5.65	Nitrification and chlorine disinfection
Plainville	3.8	Denitrification, UV disinfection, and seasonal phosphorous removal
Bristol	10.75	Denitrification, phosphorous removal and UV disinfection
Plymouth	1.75	Smmonia removal, denitrification and UV disinfection
Simsbury	3.8	Denitrification and UV disinfection
Canton	0.95	UV disinfection
New Hartford	0.4	Denitrification and UV disinfection
Winchester	3.5	Nitrification and chlorine disinfection (and dechlorination)

Thermal and Oxygen Regimes from 2021 Data

Rainbow Reservoir can stratify to some extent in a "dry" year but did not in 2021, owing to the high flows in the Farmington River. While there is a slight thermal gradient on some sampling dates (Figure 9, showing the greatest top to bottom differential observed, and Figures A-1 through A-44) and some variation in oxygen content, the reservoir was relatively well mixed throughout the sampling period and oxygen depletion was not observed near the bottom at any station. As P can be released from sediment exposed to low oxygen, the continued presence of oxygen is expected to have limited such release. The potential for such release would exist during periods of low oxygen (<2 mg/L in the overlying water) in low flow years but not in 2021. Actual release will depend on the severity and duration of low oxygen episodes and the amount of available P in the surficial sediments (see Sediment Features section).

The maintenance of mixed conditions and at least moderate oxygen levels during 2021 is one of the benefits of elevated flow. Internal loading of P (and N) will be minimized and any development of cyanobacteria at the sediment-water interface with synchronous rise to form blooms will be retarded. The general lack of a low flow period during the 2021 sampling program limits our ability to assess what might have happened in terms of thermal stratification, oxygen regime, and internal P loading, but there are additional aspects of this investigation that shed some light on those issues.

Figure 9. Temperature and Oxygen profile at Station 5 Rainbow Reservoir on 7/1/21

Nutrient Status

Nitrate Nitrogen

Nitrate nitrogen is the most available form of this essential plant and algae nutrient and is often exhausted in lakes during the summer. Nitrite nitrogen is measured as part of nitrate nitrogen in this testing program but is a very minor component of the total in oxic waters; the combined total is often referred to as NOx. Many cyanobacteria can utilize dissolved nitrogen gas and depend less on NOx, so the loss of NOx tends to favor cyanobacteria. NOx concentrations <0.3 mg/L are considered low while values >0.6 mg/L are considered high. Concentrations of NOx at the five stations within Rainbow Reservoir over the sampling period (Figure 10) exceeded 0.3 mg/L on all 2021 dates except July 22 but were below 0.6 mg/L on all dates except September 16. NOx was never low enough to favor cyanobacteria during the 2021 sampling program.

Ammonium Nitrogen

Ammonium nitrogen (NH₄) is another available form of nitrogen used by algae and higher plants but tends to be relatively low in oxic waters, the conversion to nitrite and nitrate being fairly rapid in the presence of oxygen and key bacteria. A portion of the ammonium nitrogen, depending on pH, dissolved solids, and temperature, will be ammonia (NH₃), which can be toxic. However, in oxic waters it is very rare to have ammonia at a high enough level (>0.02 mg/L) to cause any toxicity. NH₄ concentrations <0.3 mg/L are considered low while values >0.6 mg/L are considered high. Concentrations of ammonium nitrogen at the five stations within Rainbow Reservoir over the sampling period (Figure 11) were always <0.3 mg/L and usually <0.1 mg/L.

Figure 10. NOx over space and time in Rainbow Reservoir.

Figure 11. NH₄ over space and time in Rainbow Reservoir

Total Kjeldahl Nitrogen

TKN is a measure of organic nitrogen plus ammonium nitrogen. Adding NOx to TKN yields total nitrogen. The organic fraction (TKN-NH₄-N) may reflect algal abundance, but other particles in the water column also contain organic nitrogen (e.g., leaf bits, zooplankton). By themselves, TKN values are hard to interpret, as the split between organic nitrogen and NH₄ is important, but values <0.5 mg/L are often considered low and values >0.8 mg/L are considered high. Concentrations of TKN at the five stations within Rainbow Reservoir over the sampling period (Figure 12) were always <0.5 mg/L and usually <0.3 mg/L.

Figure 12. Total Kjeldahl Nitrogen over space and time in Rainbow Reservoir

Total Nitrogen

Total nitrogen (TN) includes all measurable forms of nitrogen and is usually compared to total phosphorus to get an impression of which of these two key plant and algae nutrients is more limiting to productivity. TN values <0.6 mg/L are usually considered low and values >1 mg/L are often considered high. Much higher values are possible where wastewater or runoff from agricultural areas is substantial. Concentrations of TN at the five stations within Rainbow Reservoir over the sampling period (Figure 13) were not higher than 1 mg/L on any 2021 sampling date but were higher than 0.6 mg/L on all dates except July 22 and September 10. Overall, nitrogen was not excessive in Rainbow Reservoir in 2021 but concentrations were mostly moderate and there was ample nitrate for non-cyanobacteria to flourish.

Figure 13. Total Nitrogen over space and time in Rainbow Reservoir

Based on the flows into Rainbow Reservoir on sampling dates in 2021 and the corresponding total nitrogen concentrations at station 1, the daily load to the reservoir ranged from 847 kg/day to 3337 kg/day (Figure 14). The daily load increased with the greater precipitation in July, August and September.

Figure 14. Total Nitrogen input at Station 1 over time.

Total Dissolved Phosphorus

Total dissolved phosphorus (TDP) is the readily available form of phosphorus in the aquatic environment but is rarely abundant in natural waters. It is measured by the same method as total phosphorus (TP) after a filtration step to remove particulates. TDP is not the same as soluble reactive phosphorus or orthophosphorus, potentially including other dissolved phosphorus forms, but the values for those various dissolved fractions are usually similar.

Phosphorus is most often the limiting nutrient for growth of higher plants and algae in freshwater lakes and is rapidly taken up. TP may be much higher than DP and is usually a better indicator of overall fertility, as DP is often undetectable but is recycled rapidly in the water column. Concentrations of DP <10 ug/L are low while concentrations >20 ug/L are high, a fairly narrow range. Concentrations of DP at the five stations within Rainbow Reservoir over the sampling period (Figure 15) were routinely high, often very high, with most values exceeding 30 ug/L (0.03 mg/L). This suggests a large source of readily available P for algae growth.

Figure 15. Dissolved Phosphorus over space and time in Rainbow Reservoir

Total Phosphorus

TP is most often the nutrient that determines how much algae can grow. It may not always be the limiting factor, as light or flushing may control algal biomass, but TP tends to correlate best with overall algal biomass in most lakes whereas total nitrogen (TN) and its ratio to TP tends to determine which types of algae will be most abundant. TP <10 ug/L is considered low while values >25 ug/L are considered high, a fairly narrow range from minimal bloom probability to a high probability of algal blooms. Sometimes the TP is mostly refractory (unavailable organic) particles and TP will correlate less well with algal biomass, and sometimes other factors (like light or flushing) control algal biomass, but TP is considered a major predictive factor for algae blooms. Concentrations of TP at the five stations within Rainbow Reservoir over the sampling period

(Figure 16) were routinely >40 ug/L but rarely exceeded 100 ug/L. Once TP exceeds 100 ug/L phosphorus is often not limiting, so most of the TP values are in what could be considered a transition zone.

Figure 16. Total Phosphorus over space and time in Rainbow Reservoir.

Based on the flows into Rainbow Reservoir on sampling dates in 2021 and the corresponding TP concentrations at station 1, the daily load to the reservoir ranged from 91 kg/day to 511 kg/day (Figure 17). Except for the load on July 22 and perhaps September 10, TP loading was fairly constant at around 100 kg/day.

Figure 17. Total Phosphorus input at Station 1 over time.

TN:TP ratios for Rainbow Reservoir (Table 4) rangde from 5.3:1 to 20.9:1 and station averages ranged from 11.3:1 to 14.4:1, all considered moderate values. Ratios <10:1 tend to favor cyanobacteria while ratios >20:1 tend to favor other algae, especially green algae (Chlorophyta). There is no clear temporal pattern for the ratios, suggesting that the nature of inflows dominate ratios in the reservoir. There is also no spatial pattern for the surface samples from the five reservoir stations; ratio values do not routinely increase or decrease as water passes through the reservoir. However, the values for the bottom stations within the reservoir (4B and 5B) are among the lowest observed and suggest that there may be some influence from P released from sediment at those deeper stations.

Table 4. Ratios of TN:TP in Rainbow Reservoir over time.

	1	2	3	4	5	4B	5B
27-May	13.7	17.8	16.6	18.8	19.9	17.0	18.5
24-Jun		9.8	9.7	7.6	16.0	8.7	10.4
1-Jul	8.7	8.3	10.0	11.2	11.0	9.9	9.9
22-Jul	6.5	8.3	5.7	10.5	5.7	8.0	11.3
29-Jul	13.9	13.5	12.5	8.9	8.2	11.7	6.4
10-Sep	15.1	13.4	14.2	16.0	16.7	13.5	
16-Sep	20.9	19.3	17.5	19.8	18.0	17.4	5.3
21-Sep	18.2	17.2	16.7	17.8	17.1	16.6	16.2
30-Sep	17.4	18.3	15.9	13.9	16.7	16.6	12.7
Average	13.8	14.0	13.2	13.8	14.4	13.3	11.3
Maximum	20.9	19.3	17.5	19.8	19.9	17.4	18.5
Minimum	6.5	8.3	5.7	7.6	5.7	8.0	5.3

Conductivity/Total Dissolved Solids

Conductivity is the ability of water to conduct electricity, which is largely dependent on the quantity of charged solids dissolved in that water. While the relationship between conductivity and total dissolved solids (TDS) varies somewhat among water sources and with increasing concentration of TDS, in southern New England over the range of values typically found here, TDS in mg/L is about two thirds of conductivity as uS/cm. Conductivity values <100 uS/cm are considered low while values >500 uS/cm are considered high. Additions of agricultural or urban runoff and wastewater discharges raise conductivity. Salt used on road also increases conductivity significantly and accumulation of previously applied salt in groundwater can raise conductivity for many years. While higher conductivity is generally undesirable for most uses, higher conductivity (or TDS) does not have strong meaning without some analysis of the solids causing elevated values.

Conductivity in Rainbow Lake (Figure 18) was routinely between 100 and 200 uS/cm on all sampling dates in 2021, all in the moderate range and with very little variation over space on any date. There is no temporal pattern to the data, suggesting that inflows to the reservoir are controlling conductivity levels.

Figure 18. Average Conductivity over space and time in Rainbow Reservoir.

Turbidity/Chlorophyll-a/Secchi Transparency

Water clarity is a major feature of water with distinct implications for various uses. Clarity is a function of light penetration, which is reduced by higher concentrations of suspended particles, which can include algae or suspended non-living particles of organic or inorganic origin. Turbidity is a measure of light transmission through a sample and is related to particle concentration, although the relationship depends on the size distribution of particles. Smaller particles impart greater turbidity than the same mass of larger particles as a function of the probability of light hitting a particle and being scattered.

Chlorophyll-a is a photosynthetic pigment common to all plants and algae. Its abundance in water is proportional to the mass of algae present, although different types of algae have different ratios of biomass to chlorophyll-a, so the relationship can vary considerably. Actual water clarity is measured by the very simple Secchi disk, a circular disk with black and white quadrants that is lowered to the point where it is no longer visible. Values <2 m are considered low, values between 2 and 4 m considered moderate, clarity between 4 and 6 m judged to be high, and Secchi transparency >6 m viewed as exceptional. Loss of clarity is often the result of increased algae abundance but can also be a function of other suspended particles, especially during high flows.

Turbidity (Figure 19), chlorophyll-a (Figure 20) and Secchi transparency (Figure 21) in Rainbow Reservoir exhibited a substantial range, but generally suggest low to moderate clarity as a function of non-algal particles in the water column. Chlorophyll-a concentrations are not high enough to cause the lower clarity readings, suggesting that suspended sediment, organic or inorganic, is more likely to have controlled clarity during the 2021 sampling period. Algae blooms in past summers produced higher chlorophyll-a values and were likely a stronger influence in water clarity, but the high flows and flushing of 2021 limited that effect.

Figure 19. Average Turbidity over space and time in Rainbow Reservoir.

Figure 20. Average Chlorophyll-a over space and time in Rainbow Reservoir.

Figure 21. Secchi Depth over space and time in Rainbow Reservoir.

Water clarity did change spatially over the five reservoir stations, but not with any consistent trend. Sometimes clarity increased, a phenomenon expected as particles settle out in the slower flowing reservoir water, but clarity also increased on several dates, suggesting either additional particulate inputs between the stations or high variability in Farmington River features, a strong possibility with the many rainstorms of summer 2021.

Sediment Features

Soft sediment, or substrate that is more water than solids and can be penetrated easily with a rod or even the viewing camera on a cable, tends to be dominated by organic matter and often contains substantial amounts of P that can be released back into the overlying water. Coarser materials like sand and gravel almost always contain less P overall and certainly less available P. Examination of Rainbow Reservoir revealed no soft sediment in the vicinity station 1. Sand and gravel graded into organic muck at around 2.5 m (8.3 ft) of water depth, although there was some variation and the range of water depths for the sand to muck "edge" was 1.6 to 3.8 m (5.3 to 12.5 ft). Given the bathymetry of Rainbow Reservoir, the approximate edge of the muck layer delineates an area of 105 acres (Figure 22). Based on a reservoir area of 225 acres, this represents 47% of the total reservoir area at full pool elevation and suggests a substantial area on which low oxygen could act to release P into the overlying waters.

Five sediment samples were collected at the monitoring stations (Figure 6) and tested for solids content, specific gravity, and various phosphorus fractions (Table 5). Except for station 2, which seemed like fairly coarse sediment when sampled but tested differently, there is a clear gradient from upstream (station 1) to downstream (station 5). Solids content declined; sediment farther downstream in the reservoir contained finer, more organic material with a higher water content among the particles. Even when dried, the specific gravity also decreases in the downstream direction; the upstream material is sandier and therefore denser. Station 2 is a bit of an anomaly and the lesser fit to the pattern may be a function of the aliquot of sediment tested.

Table 5. Sediment features at five sample stations in Rainbow Reservoir in 2021.

			NH4Cl extracts (mg/kg dry			BD extracts (mg/kg dry			NaOH extracts (mg/kg dry		
			sedimen	nt) = loosely	sorbed	sedimen	t) = redox a	ıvailable	sediment) = biogenic and		
				fraction			fraction		alun	ninum fract	ions
	Solids	Bulk									
	content	Density									
Sample	%	(g/mL)	Р	Al	Fe	Р	Al	Fe	Р	Al	Fe
R1	59.4%	1.39	1.06	0.90	8.49	32.40	7.64	391.01	158.51	772.09	752.14
R2	13.9%	1.04	6.29	3.52	10.22	18.79	9.64	244.72	0.00	358.36	418.23
R3	29.3%	1.21	2.40	3.00	20.24	12.23	8.59	259.00	440.53	809.13	937.01
R4	28.0%	1.21	1.62	1.72	11.86	9.80	5.55	219.35	837.67	1060.79	1292.46
R5	20.0%	1.13	1.46	1.82	15.97	5.25	3.28	155.65	934.52	988.10	1292.53

The testing included sequential extractions to quantify fractions of the phosphorus pool and associated phosphorus binders present, specifically aluminum (Al) and iron (Fe). The ammonium chloride (NH₄Cl) extract captures the loosely sorbed phosphorus, which is mostly dissolved P in the porewater of the sediment. This fraction tends to be a negligible component of sediment P (<20 mg/kg) and that was the case for all five Rainbow Reservoir sediment samples. The corresponding amounts of Al and Fe were similarly low.

The BD extraction involves creating low oxygen conditions that promote redox reactions that release P bound to Fe. For the five Rainbow Reservoir samples there was a clear upstream to downstream gradient with BD extractable P decreasing, and this is counter to what is observed in most lakes. The values are all low (<50 mg/kg) but the decrease in the downstream direction suggests that much of this P enters as particulates and is not particularly mobile after settling. There was no anoxia in 2021, but minimal anoxia would be expected at shallow stations 1-3 in any year and any anoxia at stations 4 and 5 may be transient. Any P released may be swept out of the reservoir with its low detention time.

The NaOH extraction reflects several P fractions that were not further subdivided in this analysis. Most P bound to Al turns up in this fraction, as does P bound in organic matter. The amount of Fe in the NaOH extraction is higher than usual, suggesting that Fe may be part of other complexes in this waterbody and that associated P is not readily available even with low oxygen. This is often the largest P fraction and that was the case for Rainbow Reservoir. A portion of the organically bound P may become available by normal decay and mineralization processes, and is called the biogenic P. The portion of the NaOH extractable P that is biogenic is not known, but it is not closely tied to anoxia like the BD extractable P and is usually of less concern in a P loading analysis for a waterbody. Biogenic P can become available for algal use, but the process is slower and with the high flushing rate of Rainbow Reservoir it is of less concern than in most other lakes. Yet biogenic P is likely to be a larger source of internally loaded P than Fe-P in Rainbow Reservoir.

While the concentrations in sediment offer insights, a conversion to actual P mass that can become available is needed to fully understand the potential for internal loading to support algae blooms. Using the solids content, specific gravity, and BD extractable P values for each station and assuming a 10 cm (4 inch) depth of sediment interacting with the overlying water, the mass of potentially available P can be calculated (Table 6). For that P to become accessible there has to be low oxygen in the surficial sediment, and that is unlikely to ever occur at station 1, would be rare at stations 2 and 3, but could occur at times during summer at stations 4 and 5.

Yet the actual mass of Fe-P in the upper 10 cm of each square meter was relatively low and when the reservoir is divided into areal sectors associated with each sediment sample, the total available sediment P appears rather small. Only about 81 kg of P exists in the potentially interacting sediment in areas that might experience anoxia (stations 4 and 5) in a hot, dry year, and the release is not rapid. Only about 10% of the available sediment P is expected to be released over the course of summer and this would equate to only a little over 8 kg over 3 months. Compared to the watershed input, which exceeded 91 kg/day on all sampling dates and averaged 165 kg/day during the summer of 2021, this is a minor part of the total P load to Rainbow Reservoir.

Table 6. Available sediment phosphorus in Rainbow Reservoir in 2021.

Station	1	2	3	4	5
Mean Available Sediment P (mg/kg DW) (uses BD Fe-P)	32.40	18.79	12.23	9.80	5.25
Target Depth of Sediment to be Treated (cm)	10	10	10	10	10
Volume of Sediment to be Treated per m2 (m3)	0.100	0.100	0.100	0.100	0.100
Specific Gravity of Sediment	1.39	1.04	1.21	1.21	1.13
Percent Solids (as a fraction)	0.59	0.14	0.29	0.28	0.20
Mass of Sediment to be Treated (kg/m2)	82.7	14.5	35.6	34.0	22.6
Mass of P to be Treated (g/m2)	2.68	0.27	0.44	0.33	0.12
Target Area (ac)	12.0	13.0	23.0	55.0	14.0
Target Area (m2)	48387	52419	92742	221774	56452
Total mass of avaialble P in upper 10 cm in area (kg)	130	14	40	74	7

If 25% of NaOH extractable P was assumed to be biogenic, with 10% of that becoming available, the release of sediment P could increase substantially to almost 400 kg over the course of the summer, but the maximum conceivable P release in the 69 acres associated with stations 4 and 5 is still small in comparison to the input from the watershed (equal to <3 days of input in 2021). It might be significant under summer drought conditions with much lower watershed inputs, but on a regular basis the load of P from the sediment to Rainbow Reservoir is a minor component of the total P load.

Phytoplankton

Phytoplankton samples were collected on each of the water quality sampling dates and were analyzed microscopically to quantify the types of algae present in the water column (Appendix Tables A-1 to A-4). The summary of phytoplankton composition and biomass (Figure 23) reveals generally low algal biomass and almost no cyanobacteria at any time in 2021. Biomass tended to increase in the downstream direction on most sampling dates, a function of algal growth and biomass accumulation in the reservoir, but relatively few biomass values exceed the 1000 ug/L threshold below which no impairment by algae is expected. No values exceed the 3000 ug/L threshold above which algal impairment is common.

Diatoms (Bacillariophyta) dominated the biomass of most samples, with golden (Chrysophyta) and green (Chlorophyta) algae groups next most abundant. Many diatoms were benthic species that had undoubtedly been scoured from upstream substrates and deposited into the reservoir. The main golden alga was *Dinobryon*, a common form that thrives in water of moderate to high organic content. The main green algae were flagellated forms (Volvocales) or small colonial forms (Chlorellales, Sphaeropleales). A few samples contained crypomonads or dinoflagellates (Pyrrhophyta) at significant concentrations, but no sample had excessive algae biomass. No cyanobacteria were detected until late in summer and concentrations were always minimal. High flushing was likely a major influence in 2021, but the detention time for Rainbow Reservoir is usually short, so blooms would only be expected to develop during the lowest flow conditions, typically in late summer or early autumn.

Zooplankton

Zooplankton were sampled on two of the water quality sampling trips from station 5 only. Approximately 380 liters of water was filtered by hauling a net with 53 um mesh through the water column. Zooplankton were scarce in Rainbow Reservoir in 2021 (Table 7), with biomass values of <1 ug/L for each sample. Values <50 ug/L are considered low and values >100 ug/L are needed to supply adequate grazing pressure to limit edible phytoplankton abundance and provide food for small fish. The means that the size of zooplankton was small to moderate. Predation by small fish is likely a strong influence in Rainbow Reservoir, given its use as a shad and alewife nursery, but flushing is also a major influence and may have been a particularly strong influence in 2021. Abundance of zooplankton was much lower than older values reported by the CT DEEP.

Zooplankton composition included just a couple of rotifer species, a couple of small copepod forms, and a couple of small cladoceran species. The CT DEEP data from about 30 years ago found similar composition but much higher abundance. Lakes with juvenile clupeids (herring family) usually have low zooplankton biomass and a small mean size of zooplankton as a function of intense predation, but the flushing of Rainbow Reservoir will also limit development of zooplankton populations.

Table 7. Zooplankton biomass in Rainbow Reservoir in 2021.

	#,	/L		ug	:/L
	Rainbow	Rainbow		Rainbow	Rainbow
	5	5		5	5
TAXON	5/27/21	7/22/21	TAXON	5/27/21	7/22/21
PROTOZOA			PROTOZOA		
Ciliophora	0.0	0.0	Ciliophora	0.0	0.0
Mastigophora	0.0	0.0	Mastigophora	0.0	0.0
Sarcodina	0.0	0.0	Sarcodina	0.0	0.0
ROTIFERA			ROTIFERA		
Keratella	0.0	0.1	Keratella	0.0	0.0
Polyarthra	0.0	0.1	Polyarthra	0.0	0.0
COPEPODA			COPEPODA		
Copepoda-Cyclopoida			Copepoda-Cyclopoida		
Cyclops	0.2	0.1	Cyclops	0.5	0.3
Copepoda-Calanoida			Copepoda-Calanoida		
Diaptomus	0.0	0.1	Diaptomus	0.0	0.1
Other Copepoda-Nauplii	0.0	0.0	Other Copepoda-Nauplii	0.0	0.0
CLADOCERA			CLADOCERA		
Bosmina	0.2	0.1	Bosmina	0.2	0.1
Chydorus	0.2	0.0	Chydorus	0.2	0.0
OTHER ZOOPLANKTON			OTHER ZOOPLANKTON		
SUMMARY STATISTICS			SUMMARY STATISTICS		
DENSITY			BIOMASS		
PROTOZOA	0.0	0.0	PROTOZOA	0.0	0.0
ROTIFERA	0.0	0.3	ROTIFERA	0.0	0.0
COPEPODA	0.2	0.3	COPEPODA	0.5	0.4
CLADOCERA	0.4	0.1	CLADOCERA	0.4	0.1
OTHER ZOOPLANKTON	0.0	0.0	OTHER ZOOPLANKTON	0.0	0.0
TOTAL ZOOPLANKTON	0.6	0.7	TOTAL ZOOPLANKTON	0.9	0.5
S-W DIVERSITY INDEX	0.48	0.70	MEAN LENGTH (mm): ALL FORMS	0.43	0.38
EVENNESS INDEX	1.00	1.00	MEAN LENGTH: CRUSTACEANS	0.43	0.57

Evaluation and Management Needs

Cyanobacteria Blooms

The primary concern that prompted the study covered in this report is the occurrence of potentially toxic cyanobacteria blooms in Rainbow Reservoir, threatening use by the public and possibly ecological functions. The year 2021 was not the ideal time for such a study, given higher than average flows and a lack of distinct cyanobacteria blooms in summer 2021. However, considerable data provides insights into how conditions in Rainbow Reservoir interact to foster cyanobacteria blooms.

Cyanobacteria blooms form by one of three main mechanisms:

- 1. Growth from some small seed population in the upper waters, requiring adequate P and light and a long enough detention time (two weeks or more) to allow bloom development by growth processes. Almost any cyanobacterium could form a bloom by this mechanism and the limiting factor in Rainbow Reservoir is likely to be the flushing rate, as average detention time is listed as only about 1 day by the CT DEEP.
- 2. Growth near the thermocline, utilizing P released from sediment below but with enough light to allow development of an algal layer that can then be mixed or actively rise to the surface by forming gas bubbles within cells. *Planktothrix*, *Planktolyngbya*, and *Pseudanabaena* are examples of cyanobacteria that bloom by this mechanism. There does not appear to be a stable thermocline in Rainbow Reservoir from all available data, but it is possible that temporary stratification covering an area of up to 25 acres in the downstream end of the reservoir might support this growth mode in dry summers. Yet it seems unlikely that this growth mode could produce enough cyanobacteria to cause a widespread problem in Rainbow Reservoir.
- 3. Growth at the sediment-water interface, utilizing P released from sediment before it gets into the water column, but with enough light to allow growth, with a synchronous rise of cell aggregates by formation of gas bubbles within cells to form surface blooms. The need for light will limit such growth to the portion of the reservoir with water depth of <3 times the average summer Secchi depth, or about 6 m for Rainbow Reservoir. The need for P from the sediment will limit growths to the portion of the reservoir with a substantial P-rich, organic sediment base, or about 70 acres. The overlap of organic sediment and adequate light suggests a supporting area of about 45 acres or 20% of the reservoir. *Microcystis*, *Dolichospermum* (formerly *Anabaena*), *Aphanizomenon*, and *Woronichinia* (formerly *Coelosphaerium*) are the most common cyanobacteria that bloom by this mechanism. This growth mode may be restricted to the downstream portion of the reservoir but could be a factor in observed blooms, especially with windblown accumulation along shorelines.

In light of past and present hydrology, nutrient concentrations, and algae reports, it seems that bloom formation in Rainbow Reservoir may be most limited by flushing rate. The typical low flow range during summer is 150 to 400 cfs, suggesting a detention time of no more than 9 days. In 2021 the summer flow averaged close to 1000 cfs, yielding a detention time of 1.3 days, close to the long-term average listed by CT DEEP for the entire year. During drought conditions it is conceivable that detention time could increase to two weeks or more, allowing bloom development

from excessive concentrations of nutrients in the water column as a function of inputs from the Farmington River. Such drought conditions are not a regular occurrence but are increasing in frequency with climate change and may be largely responsible for the increased frequency of cyanobacteria blooms in recent years.

In addition to the effect of climate change on drought (and flood) frequency, the accompanying increase in temperature also favors cyanobacteria. Algae have seasonal periodicity related to food storage products, with cyanobacteria metabolizing reserves best at higher temperatures (>25 °C). Diatoms and golden algae prefer colder temperatures (<20 °C), leading to dominance from late fall through early spring in most aquatic habitats. Green algae are intermediate, tending to follow the diatoms and goldens in the spring as the water warms and giving way to cyanobacteria later in summer when water temperature is maximum. In a system like the Farmington River, temperatures tend to be colder, and with short detention time in Rainbow Reservoir, temperatures often do not favor cyanobacteria. However, the temperature throughout the water column exceeded 25 °C on July 1, 2021 after a relatively dry June, just before the very rainy period commenced. Temperatures also approached 25 °C on July 29, 2021, during a lull between rainy periods that summer. Temperatures >25 °C were also recorded in the CT DEEP data of recent years, suggesting that during periods of lower flow the reservoir may heat up fairly quickly and become a favorable habitat for cyanobacteria.

The contribution of P from sediment to the water column concentration appears inconsequential; the maximum conceivable summer load is no higher than the inputs from the Farmington River over a three-day period in 2021. In a drier summer the relative contribution could be higher but is unlikely to ever exceed 10% of the total P load to the reservoir. However, there is potential for certain cyanobacteria to grow at the sediment-water interface from P available from the sediment then synchronously rise to form a bloom in surface waters. With the typical summer detention time of just a few days, such blooms would be very short-lived and unlikely to represent a major threat to human use of the reservoir. However, with drought conditions such a cyanobacteria bloom could linger and even intensify with the high availability of P in the water column.

The ratio of N to P is lowest near the bottom of the reservoir, favoring cyanobacteria developing at the sediment-water interface, although the deepest part of the reservoir may not supply adequate light. The moderate concentration of nitrate in the water column will not favor cyanobacteria but will not strongly favor other algae and if cyanobacteria rise from the sediment there could be ongoing growth with high available P in surface waters. Flushing remains the most likely overall control on bloom formation in Rainbow Reservoir, but with lower flows it is not hard to conceive of cyanobacteria bloom formation under the conditions in the reservoir.

Possible Control Options

Direct control of cyanobacteria is possible with flushing or algaecides, whereby the algae are removed from the system. High flushing is the normal condition in Rainbow Reservoir, but when watershed flows decline to the point where detention is high enough that a bloom could exist in the reservoir, it is because there is not enough water entering the reservoir. Providing additional water will be very difficult. More water could be released from upstream waterbodies, but under

the kind of drought conditions that could sufficiently limit flushing of Rainbow Reservoir it is unlikely that such releases would be acceptable to those managing those upstream waterbodies. The only practical alternative would be to discharge more water from Rainbow Reservoir. This is done in anticipation of flood events, was fairly common in 2021, and could also be done when flushing is too low, albeit with a drop in water level that could restrict access and enjoyment of the reservoir. Such an approach would only work for a short time unless a very large drawdown is acceptable, and even then, the bloom might be sent downstream with possible impacts in other locations, so this approach is not ideal.

Control by algaecides is only likely to be needed sporadically, probably no more than once per year, and the low cost of algaecides may be attractive. Proper use requires tracking of the algae assemblage however, best done on a weekly basis, necessitating some additional expense for monitoring. Ongoing vigilance and rapid response when a problem appears imminent is also needed.

Most algaecides are based on copper or peroxide as the active ingredient and treatment of waterbodies with most algaecides is restricted by permit to half the waterbody. Peroxides work well on most cyanobacteria and have fewer non-target impacts. Peroxides would be recommended for Rainbow Reservoir, given the many life forms in or downstream of the reservoir that could be affected by copper. It is possible to apply a pelletized peroxide formulation that would sink to the bottom and attack the cyanobacterial colonies growing at the sediment-water interface. It has not been determined that this is the primary mode of bloom formation in Rainbow Reservoir, but if that is the case such a treatment could be conducted over the roughly 45 acres of area that appear suitable for such cyanobacteria growth at a reasonable cost and could prevent surface blooms from forming.

Direct control is less desirable than prevention, whereby conditions are altered to minimize the probability of a bloom. Decreasing light penetration by the addition of dyes is one option, but with the short detention time in Rainbow Reservoir, even under extreme drought, the dye would travel downstream and may raise permitting issues as well as cost concerns for maintaining adequate dye concentrations. Lowering P concentrations is the logical target of preventive effort intended to minimize algae blooms in general and cyanobacteria blooms in particular.

In order to reduce P concentrations in Rainbow Reservoir it will be necessary to reduce the amount of P entering from the Farmington River. The concentration of TP in the incoming Farmington River water in 2021 samples was mostly between 40 and 100 ug/L, enough to support algae blooms, although particulate P may settle out if the detention time is long enough. Yet the portion of TP that was readily available was substantial, with concentrations mostly between 20 and 70 ug/L in 2021 samples. While the ratio of N to P is not consistently low enough to suggest that cyanobacteria will be favored, there is enough available (total dissolved) P to support algae blooms if other factors, mostly notably flushing rate and light, are not limiting.

The daily load from upstream flows and data for P at station 1 suggest that in summer 2021 the lowest measured P input was about 91 kg/day, while the highest measured input was 511 kg/day and the average was 165 kg/day. Eliminating the one very high input on July 22, 2021, the average

was 122 kg/day, and slightly lower values might be expected during drought conditions, although inputs from the wastewater treatment facilities upstream will keep the concentration from declining too much with less watershed runoff. In order to have an inflow TP concentration of <20 ug/L, a value that should minimize cyanobacteria abundance, the TP load from the watershed would need to be lowered to no more than 63.4 kg/day. Assuming a current summer load of no less than 100 kg/day, that represents a 37% decrease. If the load is higher, the % decrease will be higher as well, while decreases in non-point source watershed loading of more than 20% are very difficult to accomplish and usually require multiple years to bring to fruition.

A decrease in P loading will require addressing both point sources and non-point sources in the Farmington River watershed. A detailed assessment of loading is beyond the scope of this assessment, but data for wastewater treatment facilities should be available and sampling of key tributaries is advised to assess whether there are "hotspots" of P input in the watershed that can be prioritized to establish a plan for P loading reductions. The primary sources are direct discharges from wastewater treatment facilities, many of which have high or no permit limits on the concentration of P discharged, agricultural lands which produce P-rich runoff and have been historically difficult to regulate, and urban land that contributes P-laden stormwater runoff.

It may be possible to select representative tributaries to sample based on land use in their drainage areas, then sample to determine if there are features of those drainage areas that make high P concentrations more or less likely. Stormwater drainage systems and best management practices are likely critical factors for non-point sources, while the level of treatment and size of discharge are the primary issues for point sources. At least some of the communities draining to the Farmington River are subject to Municipal Separate Storm Sewer System regulations, making towns responsible for input reductions, and such a study may help determine the most effective actions to take.

One option for at least interim control that could be effective is to treat the incoming Farmington River water. Addition of a P binder such as aluminum can inactivate much of the incoming P and make it unavailable to algae. Many aluminum compounds act as coagulants, enhancing the settling of particles as well as extracting bioavailable P from the water column. A dosing station would be needed, consisting of a storage tank for aluminum product (most likely polyaluminum chloride), a discharge header that injects the aluminum product, and a pump system to move the aluminum product from the tanks to the discharge point. A discharge location somewhere near Rt 187 would be advantageous, but anywhere in the upper portion of the reservoir could work.

The water in Rainbow Reservoir would be less fertile and much clearer with a P inactivation system in place. Given the rapid flushing rate and infrequent algae problems, the system would not have to run all the time. Rather, inactivation would occur just during low flow periods to minimize the probability of algae blooms. Such inactivation systems have been very effective at reducing cyanobacteria blooms, tending to shift the N to P ratio in a way that favors other algae even if P levels are still high enough to support elevated algae abundance. But in many cases algae problems can be eliminated. The settling of the aluminum to the bottom would also provide some inactivation of surficial sediment, limiting future recycling of P from those sediments.

Summary and Recommendations

Data collected from past studies have indicated elevated nutrient concentrations in Rainbow Reservoir, but the very short detention time has minimized algal blooms in general and cyanobacteria in particular. More recently there have been cyanobacteria blooms, but there is no clear indication of an increase in nutrient loading. Increased temperature, which favors cyanobacteria over other algae, and lowered inflows that increase detention time are likely factors in the increase in cyanobacteria and are logically related to climate change. Sampling in 2021 revealed high concentrations of P and generally moderate but sometimes low ratios of N to P that favor cyanobacteria. However, 2021 exhibited a very wet summer and detention time was very short; algae concentrations were generally low and very few cyanobacteria were detected. Clarity was low to moderate but was mostly a function of non-algal particles suspended in the water column, a function of watershed runoff during an abnormally wet season.

Past data and assessment in 2021 suggest that low oxygen conditions that favor release of P from surficial sediments are not common in Rainbow Reservoir but are possible under low flows and increased detention time. The reservoir is not known to strongly stratify and was well mixed from top to bottom on all sampling dates in 2021. Testing of sediment in 2021 revealed low to moderate amounts of iron-bound P, the primary P form released under low oxygen conditions, suggesting that only a very small portion of the daily P load (<1%) could be attributed to that source. Biogenic P is organic P that could be released under oxic conditions through decay processes and 2021 testing suggests that this source is larger than the iron-bound P contribution, but the maximum estimated release rate suggests a contribution of <3% of the daily P load. Inputs of P from the Farmington River control P concentration in Rainbow Reservoir.

Despite the relatively small contribution of sediment P to the overall P load to Rainbow Reservoir, it is possible that cyanobacteria can grow at the sediment-water interface where oxygen is low in that sediment but adequate light penetrates to the bottom to allow growth. Those bottom originating cyanobacteria can form gas pockets within cells and rise in the water column to form surface blooms. An area of about 45 acres of Rainbow Reservoir provides suitable conditions for such cyanobacteria growth, all in the lower portion of the reservoir, mostly between water depths of 10 and 20 feet. Low detention time will limit such blooms, but during drought conditions it is possible that cyanobacteria blooms could occur by this mechanism. The alternative explanation for cyanobacteria blooms in Rainbow Reservoir is organic growth in surface water in response to elevated P inputs from the Farmington River, but the detention time is too short to allow such bloom development except in the most severe droughts.

Direct control of cyanobacteria is routinely offered through rapid flushing in Rainbow Reservoir, but when such flushing is inadequate, the use of algaecides may be justified. Application of a pelletized peroxide formulation could kill any growing colonies of cyanobacteria at the sediment-water interface and prevent blooms. Knowing when to apply such an algaecide is difficult to state clearly, given a limited record of blooms, but detention time may allow blooms to develop by that mechanism when flows drop below about 200 cfs. It is possible that windblown cyanobacteria accumulations could present a hazard at somewhat higher flows, so a higher flow threshold might be considered. Application to water between 10 and 20 feet deep where organic sediment is

dominant (45 acres in the lower part of the reservoir) would be recommended if this preventive approach is pursued.

Use of peroxide as an algaecide should present minimal threat to non-target organisms in Rainbow Reservoir as long as treatment does not occur during fish spawning, as the eggs may be susceptible. Blooms have been a summer phenomenon, however, a time at which fish spawning should be negligible in this system. If blooms are rare, this is a cost-effective approach, but does not attack the true cause of the problem. As an interim measure to minimize threats to human users and waterbody ecology, peroxide application may be useful and acceptable, but reduction in P concentration in Rainbow Reservoir is the preferred long-term approach to improving conditions in the reservoir.

All available data indicate that P concentration in Rainbow Reservoir is a function of incoming P concentrations in the Farmington River. P inactivation near Rt 187 could lower P in the incoming water sufficiently to minimize the potential for any algal blooms in the reservoir. Use of aluminum compounds has been effective in other systems and has minimized cyanobacteria in the receiving waterbodies. As flushing is normally adequate to prevent blooms, inactivation would only be necessary during times of low flow, so this could be a practical means to improve reservoir conditions. However, it would be preferable to manage P at or near the sources, providing benefits throughout the Farmington River system while limiting algal blooms in the reservoir. P sources in the watershed include point sources (9 wastewater treatment facilities) and non-point sources (mainly developed and agricultural land) and a multi-pronged approach will be needed over an extended period of time to reduce P loading.

The primary need at this stage is a more complete understanding of P loading throughout the watershed and comparison of drainage areas for features that lead to more or less P input. Data from the wastewater treatment facilities should be available to allow assessment of corresponding contributions. Data for various tributaries should be collected to facilitate an analysis of relative contributions from different sub-basins of the Farmington River system. The study should be designed to allow relative contributions from different drainage areas with known features to be quantified. Characteristics such as % urban (with sub-groups, possibly based on level of impervious surface) and % agricultural land (with sub-categories like row and cover crops, concentrated feeding areas, and pastureland) should be considered when choosing target tributaries and sampling points to provide maximum insight. Sampling should include pre-storm, early storm, and late storm assessment to facilitate evaluation of the role of diffuse runoff vs permitted discharges and aid consideration of options for P loading reduction (e.g., loading vs precipitation curves, needed detention capacity or other BMP needs). Analysis of 2021 loading suggests that at least a 37% decrease in P loading is needed to minimize cyanobacteria bloom potential in Rainbow Reservoir. Further refinement of that estimate is needed based on more data for P loading from the watershed.

APPENDIX

Figure A- 1. Temperature and Oxygen profile at Station 1 on 5/27/21	76
Figure A- 2. Temperature and Oxygen profile at Station 1 on 6/24/21.	76
Figure A- 3. Temperature and Oxygen profile at Station 1 on 7/01/21	
Figure A- 4. Temperature and Oxygen profile at Station 1 on 7/22/21.	77
Figure A- 5. Temperature and Oxygen profile at Station 1 on 7/29/21.	78
Figure A- 6. Temperature and Oxygen profile at Station 1 on 9/10/21	
Figure A- 7. Temperature and Oxygen profile at Station 1 on 9/16/21	
Figure A- 8. Temperature and Oxygen profile at Station 1 on 9/21/21	
Figure A- 9. Temperature and Oxygen profile at Station 1 on 9/30/21	80
Figure A- 10. Temperature and Oxygen profile at Station 2 on 5/27/21.	80
Figure A- 11. Temperature and Oxygen profile at Station 2 on 6/24/21.	
Figure A- 12. Temperature and Oxygen profile at Station 2 on 7/01/21.	81
Figure A- 13. Temperature and Oxygen profile at Station 2 on 7/22/21.	
Figure A- 14. Temperature and Oxygen profile at Station 2 on 7/29/21.	82
Figure A- 15. Temperature and Oxygen profile at Station 2 on 9/10/21	83
Figure A- 16. Temperature and Oxygen profile at Station 2 on 9/16/21	83
Figure A- 17. Temperature and Oxygen profile at Station 2 on 9/21/21.	84
Figure A- 18. Temperature and Oxygen profile at Station 2 on 9/30/21.	84
Figure A- 19. Temperature and Oxygen profile at Station 3 on 5/27/21.	85
Figure A- 20. Temperature and Oxygen profile at Station 3 on 6/24/21.	85
Figure A- 21. Temperature and Oxygen profile at Station 3 on 7/01/21.	
Figure A- 22. Temperature and Oxygen profile at Station 3 on 7/22/21.	
Figure A- 23. Temperature and Oxygen profile at Station 3 on 7/29/21	
Figure A- 24. Temperature and Oxygen profile at Station 3 on 9/10/21.	
Figure A- 25. Temperature and Oxygen profile at Station 3 on 9/16/21.	
Figure A- 26. Temperature and Oxygen profile at Station 3 on 9/21/21.	
Figure A- 27. Temperature and Oxygen profile at Station 3 on 9/30/21.	
Figure A- 28. Temperature and Oxygen profile at Station 4 on 5/27/21.	
Figure A- 29. Temperature and Oxygen profile at Station 4 on 6/24/21.	
Figure A- 30. Temperature and Oxygen profile at Station 4 on 7/01/21.	
Figure A- 31. Temperature and Oxygen profile at Station 4 on 7/22/21.	91
Figure A- 32. Temperature and Oxygen profile at Station 4 on 7/29/21.	91
Figure A- 33. Temperature and Oxygen profile at Station 4 on 9/10/21.	
Figure A- 34. Temperature and Oxygen profile at Station 4 on 9/16/21.	92
Figure A- 35. Temperature and Oxygen profile at Station 4 on 9/21/21.	93
Figure A- 36. Temperature and Oxygen profile at Station 4 on 9/30/21.	
Figure A- 37. Temperature and Oxygen profile at Station 5 on 6/24/21.	94
Figure A- 38. Temperature and Oxygen profile at Station 5 on 7/01/21.	94
Figure A- 39. Temperature and Oxygen profile at Station 5 on 7/22/21.	
Figure A. 40 Temperature and Oxygen profile at Station 5 on 7/29/21	95

Figure A- 41. Temperature and Oxygen profile at Station 5 on 9/10/21	96
Figure A- 42. Temperature and Oxygen profile at Station 5 on 9/16/21	96
Figure A- 43. Temperature and Oxygen profile at Station 5 on 9/21/21.	97
Figure A- 44. Temperature and Oxygen profile at Station 5 on 9/30/21.	
Table A. 1. Dhytanlankton cell counts for Dainbary Decomposin in 2021	27
Table A- 1. Phytoplankton cell counts for Rainbow Reservoir in 2021	
Table A- 3. Phytoplankton biomass for Rainbow Reservoir in 2021 (continued)	
Table A- 4. Phytoplankton biomass for Rainbow Reservoir in 2021 (continued).	
Table. A- 5 CT DEEP Electrofishing Data.	
Table A- 6. CT DEEP Electrofishing Data (continued).	
Table A- 7. Numbers of anadromous fish passed, Rainbow fishway, 1976-2021.	
Table A- 8. Macroinvertebrate data from upstream tributaries.	
Table A- 9. Site FR-EG1 E.coli Geometric mean 2007-2021.	
Table A- 10. Site FR-EG1 Temperature Averages 2007-2021.	
Table A- 11. Rainbow Reservoir Temperature Average per site and overall.	
Table A- 12. Rainbow Reservoir chemical data from CT DEEP 7/9/19-7/10/19.	
Table A- 13. Rainbow Reservoir chemical data from CT DEEP 8/15/19.	
Table A- 14. Rainbow Reservoir chemical data from CT DEEP 8/15/19 (continued)	
Table A- 15. Rainbow Reservoir chemical data from CT DEEP 8/15/19 (continued)	
Table A- 16. Rainbow Reservoir chemical data from CT DEEP 8/15/19 (continued)	
Table A- 17. Rainbow Reservoir chemical data from CT DEEP 8/15/19 (continued)	
Table A- 18. Rainbow Reservoir chemical data from CT DEEP 9/21/19.	
Table A- 19. Rainbow Reservoir chemical data from CT DEEP 9/21/19 (continued)	
Table A- 20. Rainbow Reservoir chemical data from CT DEEP 9/24/19.	
Table A- 21. Rainbow Reservoir chemical data from CT DEEP 9/24/19 (continued)	
Table A- 22. Rainbow Reservoir chemical data from CT DEEP 11/16/19-11/17/19.	
Table A- 23. Rainbow Reservoir chemical data from CT DEEP 11/16/19-11/17/19 (continued)	
Table A- 24. Rainbow Reservoir chemical data from CT DEEP 6/26/20.	57
Table A- 25. Rainbow Reservoir chemical data from CT DEEP 6/26/20 (continued)	58
Table A- 26. Rainbow Reservoir chemical data from CT DEEP 6/26/20 (continued)	59
Table A- 27. Rainbow Reservoir chemical data from CT DEEP 6/26/20 (continued)	60
Table A- 28. Rainbow Reservoir chemical data from CT DEEP 7/21/20.	61
Table A- 29. Rainbow Reservoir chemical data from CT DEEP 7/21/20 (continued)	62
Table A- 30. Rainbow Reservoir chemical data from CT DEEP 8/26/20.	63
Table A- 31. Rainbow Reservoir chemical data from CT DEEP 8/26/20 (continued)	64
Table A- 32. Rainbow Reservoir chemical data from CT DEEP 9/23/20.	65
Table A- 33. Rainbow Reservoir chemical data from CT DEEP 9/23/20 (continued)	
Table A- 34. Rainbow Reservoir chemical data from CT DEEP 10/15/20.	
Table A- 35. Rainbow Reservoir chemical data from CT DEEP 10/15/20 (continued)	
Table A- 36. CT DEEP Municipal NPDES Permit for MDC, Windsor. Nitrogen and Phosphorus	
Limits	
Table A- 37. CT DEEP NPDES Permit Farmington WPCA. Nitrogen and Phosphorus Limits	
Table A- 38. CT DEEP NPDES Permit for Plainville. Nitrogen and Phosphorus Limits	70

Table A- 39.	CT DEEP	NPDES Permit for Bristol. Nitrogen and Phosphorus Limits	. 71
Table A- 40.	CT DEEP	Municipal NPDES Draft Permit for Plymouth. Nitrogen and Phosphorus	
Limits			. 72
Table A- 41.	CT DEEP	NPDES Permit for Simsbury. Nitrogen and Phosphorus Limits	. 72
Table A- 42.	CT DEEP	Municipal NPDES Permit for Canton. Nitrogen and Phosphorus Limits	. 73
Table A- 43.	CT DEEP	NPDES Permit for New Hartford. Nitrogen and Phosphorus Limits	. 74
Table A- 44.	CT DEEP	Municipal NPDES Permit for Winchester. Nitrogen and Phosphorus Lim	its
			. 75

Table A- 1. Phytoplankton cell counts for Rainbow Reservoir in 2021.

	Rainbow Rainbow	w Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow R	ainbow Rain	nbow Rain	nbow Rainb	oow Rainboy	Rainbow	Rainbow Rain	oow Rainb	w Rainbow	Rainbow	Rainbow F	Rainbow Ra	inbow Ra	inbow Rainbow	Rainbow	Rainbow R	tainbow R	ainbow Rai	nbow Rain	nbow Ra	inbow Rain	nbow Rain	nbow Rain	bow Rainbo	w Rainbow	w Rainbow	Rainbow Ra	ainbow F	Rainbow Rainb	ow Rainbo	w Rainbov	Rainbow
AXON	R1 R2 05/27/21 05/27/2																																						
AXON	05/27/21 05/27/2	05/2//2	1 05/27/21	05/27/21	06/24/21	06/24/21	06/24/21	06/24/21 0	06/24/21 07/0	01/21 07/0	01/21 07/01	1/21 07/01/2	1 07/01/21	07/22/21 07/2	2/21 07/22	21 07/22/2	1 07/22/21	07/29/21	07/29/21 07	/29/21 0	7/29/21 07/29/21	1 09/10/21	09/10/21 0	09/10/21 (19/10/21 09/	10/21 09/1	16/21 09	9/16/21 09/	16/21 09/	16/21 09/1	16/21 09/21/	21 09/21/2	1 09/21/21	09/21/21 09	9/21/21	09/30/21 09/30	1/21 09/30/	21 09/30/21	. 09/30/2
BACILLARIOPHYTA																																							
Centric Diatoms																																							
Aulacoseira	87 2	26 2	0 0	0	0	0	0	0	223	0	0	0	0 0	0	0	0	0 62	40	0	30	0	0 0	91	137	0	120	17	54	0	19	0	0 1	17 41	34	0	0	0	46	39
Cyclotella Melosira	694 17	72 38	0 0	428	99	42	24	0	25	78	30	3/ 1	0 0	0	102	16 3 109 5	4 0 1 343	0	66	46	0 17	2 72	61	122	72	0	17	0	0	0	19	69 6	0 0	34	66	34	31	15 3	1 15
Stephanodiscus	094 17	0	0 200	1 420	0	0 0	0	0	0	0	0	19	0 0	16	0	0	0 16	0	0	- 0	0 17	7 0	0	0	0	0	0	0	0	0	0	0	0 0	0	00	0	0	0	0 0
Urosolenia	0	0	0 0	0	0	0	0	0	0	0	0	0	0 20	0	0	0 1	7 0	0	0	0	0	0 0	0	0	0	0	0	18	0	0	0	0	0 0	0	0	0	0	0	0 0
Araphid Pennate Diatoms																																							
Asterionella Diatoma	50 1	13 2	0 25	110	37	0	31	17	25	125	0	0	0 0	31	0	62	0 62	40	50	0	122 27	5 0	0	91	0	0	0	0	0	0	0	0	0 0	0	0	0		62 10 15 15	
Fragilaria/related taxa	74 19	98 30	0 50	166	74	1 28	0	204	248	47	122	112 3	4 0	94	34	121 3	4 62	100	332	304	182 8	6 0	122	76	72	34	66	0	304	192	38	69 19	99 41	235	166	241			0 0
Meridion		79 1) 0	12		16	34	0	0	15	0	0 0	16		31 1		0	0	15	0	0 18	0	0	0	17	17	0	0	0		17	0 0	17	0	0	0	0	0 0
Synedra	50 5	53 8	0 149	304	50	0	0	0	0	0	0	0	0 20	16	17	16 3	4 16	0	0	30	15 1	7 0	30	0	36	17	17	18	15	0	19	17 1	17 14	0	0	0	15	0 3	1 0
Tabellaria	0	0	0 0	0	0	14	0	0	50	78	30	37	0 0	0	68	62 3	4 31	0	0	0	0	0 36	0	0	0	34	0	0	15	38	19	17	0 0	0	17	0	0	0	9 0
Monoraphid Pennate Diatoms Achnanthidium/related taxa		0				56	109	04	12		04			04	51	47		60	83		30 5	2 36	61	46	36	69	00	54	61	38	58	34 3	20 0			24	31	62 4	
Cocconeis	25 1	13 1	0 0) 0	99	56	47	.0	12	16	15	10	0 0	47		47 3	0 62	40	17	15	30 5	2 30 0 36	91	30	36	34	33	18	15	.0	0.0	17 1	17 0	0	0	17		46 4	0 0
COLUMNIA	20											15				41 0		40		10	10	0 00	- 51	50	50			10	10								10	***	-
Biraphid Pennate Diatoms																																							
Amphora	0	0	0 0	0	25	14	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	15	0	3 0
Cymbella/related taxa	87 2	26 2	0 25	41	50	42	16	17	0	0	0	0	0 0	31	34	47 6 16 3	8 47	0	50	30	15 1	7 18	0	30	36	52	0	18	15	38	19	17 6	36 41	0	17	0	31	15 3	1 0
Eunotia Gomphonema/related taxa	62 2	0 1	0 0	0	12	14	0	0	0	0	15 46	0	0 0	16	17	0 4	4 0 7 0	0	0	0	0	0 0	15	0	18	17	17	0	30	0	0	17	0 14	0	U C	0	0	15 (0 13
Gyrosigma	02 2	0	0 0	. 0		20	0	0	0	0	0	0	0 0	0	.,	0 1	0 0	0	0	0	0	0 0	0	0	0	0	0	0	15	0	0	0	0 0	0	0	0	0	0	0 0
Navicula/related taxa	198 19	98 9	0 174	97	62	154	94	17	87	31	15	0	0 0	31	17	94 3	4 62	20	33	15	0	0 54	30	61	36	52	66	0	46	0	38	0 3	33 0	34	17	34	31	15 15	5 26
Nitzschia	211 15	58 18	0 186	331	174	98	94	17	37	31	137	37 1	7 20	62	68	62 6	8 62	20	0	15	30 5.	2 54	15	30	0	69	17	54	30	0	38	0	0 14	17	0	0	15	15 15	
Pinnularia	0	0	0 0	0	0	14	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 18	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0
Rhoicosphenia	12 2	26 4	0 0	0	12	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	34	0	0	15	19	0	0	0 0	0	0	0	0	0 /	3 0
Surirella	0	0	0 0	0	0	0	0	0	0	0	15	0	0 0	0	0	0 1	7 0	- 0	0	- 0	0	0 0	0	15	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 1) 0
CHLOROPHYTA																																							
Flagellated Chlorophytes																																							
Chlamydomonas	0	0	0 0	0	0	0	0	0	0	0	0	74 3	4 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0
Eudorina	0	0	0 0	0	0	0	0	136 204	0	0	0	149 40 446 61	8 713 2 2138	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	9 0
Pandorina	0	0	0 0	0	0	0	125	204	99	0	0	446 61	2 2138	0	0	0	0 0	0	0	0	61 13 243 27	8 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 ') 0
Other Flagellated Greens	0	0	0 0	0		0	- 0	- 0	0	0	0	0	0 0	0	0	0	0 0	- 0	0	0	243 27	5 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 () 0
Coccoid/Colonial Chlorophytes																																							
Ankistrodesmus	0	0	0 0	0	25	0	16	17	0	0	0	0	0 0	31	0	0	0 0	0	0	0	0	0 36	0	0	36	0	17	18	0	0	0	17	0 0	0	0	0	0	0	0 0
Chlorella	0	0	0 0	0	0	0	0	714	0	0	0	0 241	4 2416	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0
Coelastrum	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 20	6 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	9 0
Crucigenia	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	77	0	0 0	0	0	0	0	0 ') 0
Dictyosphaerium Elakatothrix	0	0	0 0	0	. 0	0	0	0	0	62	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	122	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0) 0
Oocystis	0	0	0 0) 0	0) 0	0	0	0	0.2	0	0	0 0	0	0	0	0 0	0	0	.0	61	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0
Pediastrum	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 62	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0
Scenedesmus	0	0	0 50	110	50	0	62	0	0	0	0	0 193	8 2178	0	0	0 6	8 62	0	0	0	0 13	8 0	0	0	72	0	0	0	0	0	154	0 6	36 0	67	66	69	62	0	0 0
Schroederia	0	0	0 0	0	0	0	0	17	12	0	0	0	0 0	0	0	0	0 0	0	0	0	46	0 0	0	0	0	0	0	0	0	19	0	0	0 0	0	0	0	0	0	9 0
Sphaerocystis	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	122	0 0	0	0	0	0	0	0	0	0	0	0	0 110	0	0	0	0	0 '	0 208
File week and the second state of																																							
Filamentous Chlorophytes Other Filamentous Greens	0	0	0 0				0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	122	0 0	0	0	0	0	0	0	0	0	58	0	0 138	588	1029	0	0	0 7	7 59
	,	-	- 0					3			-	-	- 0	-		-	- 0	,	-	-	/22	- 0	,	-			-					-	_ 130	500	1023		-	- "	UZ.
Desmids																																							
Octacanthium	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	16	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	17	0	0	0 (0 0
CHRYSOPHYTA																																							
Flagellated Classic Chrysophytes Chrysosphaerella	0	0	0 0				0	0	0	0	0	0	0 0	0	0	0	0 31	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0
Dinobryon	50 1	13 2	0 25	41	0) 14	16	17	496	156	0	0	0 0	47	0	16 6	8 31	0	17	0	15 1	7 18	0	0	18	0	0	0	0	0	0	0 1	17 69	84	17	52	0	0 3	1 39
Mallomonas	0	0 1	0 25	14	. 0	14	0	17	0	16	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	18	30	19	19	0	0 14	34	17	0	0		0 26
Synura	0	0 1	0 0	0	0	0	0	0	0	0	0	0	0 0	0	34	0	0 0	0	0	0	0	0 0	0	0	18	0	0	0	0	0	58	0	0 193	202	66	0	0	0 4	
Non-Motile Classic Chrysophytes Other Non-Motile Classic Goldens							_																												-				
utner Non-Motile Classic Goldens	0	U	υ 0	0	0	0	0	0	0	0	0	U	υ 0	0	0	U	0 0	0	0	0	0	0 0	U	0	0	0	0	0	0	0	0	U	υ 0	0	U	0	U	U (, 0
Haptophytes																																							
Tribophytes/Eustigmatophytes																																							
Centritractus	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 1	7 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	3 0
Pseudostaurastrum	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	16	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 '	0 د
Raphidophytes																																							
repriseptiyes																																							
CRYPTOPHYTA																																							
Cryptomonas	0	0 2	0 12	14	. 0	28	47	0	37	0	0	19	0 40	0	0	0	0 0	0	0	0	15	0 0	0	0	0	0	0	0	0	58	38	34 1	17 0	0	0	0	0	31 3	1 0
Rhodomonas	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 1960	0	0	0	0	0	0 0

Table A- 2. Phytoplankton cell counts for Rainbow Reservoir in 2021 (continued).

	Rainhow	Rainbow R	ainhow	Rainhow	Rainhow	Rainbow	Rainboy	v Rainhow	w Rainbor	w Rainho	w Rainbo	w Rainhow	Rainhow	Rainhow	Rainbow	Rainhow	Rainhow	Rainhow R	ainhow R	ainhow Rai	inhow Ra	ninhow Rain	how Ra	inbow Rainb	ow Raint	how Rainbor	w Rainbo	w Rainhow	Rainhov	Rainhow	Rainhow	Rainhow	Rainhow	Rainhow R	ninhow R	ainhow F	Rainhow	Rainhow	Rainhow	Rainbow	Rainhow I	Rainhow	Rainhow	Rainbr
	R1	R2	R3	R4	R5	R1	R2	R3	R4	R5	R1	R2	R3	R4	R5	R1	R2	R3	R4	R5	R1	R2 R	3	R4 R5	R1	1 R2	R3	R4	R5	R1	R2	R3	R4	R5	R1	R2	R3	R4	R5	R1	R2	R3	R4	R5
AXON	05/27/21	05/27/21 0	5/27/21	05/27/21	05/27/21	06/24/21	1 06/24/2	1 06/24/2	21 06/24/2	21 06/24/2	21 07/01/2	21 07/01/21	1 07/01/21	07/01/21	07/01/21	07/22/21	07/22/21	07/22/21 0	7/22/21 0	7/22/21 07	/29/21 07	7/29/21 07/	9/21 07	7/29/21 07/29	/21 09/1	0/21 09/10/2	21 09/10/	21 09/10/2	1 09/10/2	09/16/21	09/16/21	09/16/21	09/16/21	09/16/21 0	9/21/21 0	9/21/21	09/21/21	09/21/21	09/21/21	09/30/21	09/30/21	09/30/21	09/30/21	09/30
CYANOPHYTA																																												
Unicellular and Colonial Forms																																												
Chroococcus	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	68	62	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Filamentous Nitrogen Fixers																																												
Dolichospermum	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	0	0	0	468	0	0	0	0	0	0	0	0	0	0 0	0	0	0	192	172	0	0	0	0	0	0	0	0	
Filamentous Non-Nitrogen Fixers																																												
Planktolyngbya	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	720	0	0	0	0 0	0	0	0	0	0	0	0	0	664	888	0	0	0	
Pseudanabaena	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 3	904	0	0 0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	
EUGLENOPHYTA																																												
Trachelomonas	12	- 0	- 0	0) (0	0	0	0	0	0 1	0 1	0 0	- 0	0	- 0	0	0	16	0	0	0	0	0	18	15	0	0	0 0	- 0	15	0	0	0	- 0	0	- 0	0	- 0	0	- 0	- 0	
PYRRHOPHYTA																																												
Ceretium					_										- 00		47					47			470								- 40						47					
Peridinium Peridinium		0		0			0		0	0	0	16	0 1		20		1/	0	0	16	0	17	15	15	1/	0	0	0	0	0 0	0	0	19	0	0	0	0	0	1/	0	0	0	0	
Pendinum	- 0		0	U			0 1	14	U	U	0	16	0 1	0 0	- 0	U	0	- 0	0	0	0	1/	15	0	0	0	0	0	U	0 0	U	- 0	0	0	0	0	0	0	U	0	0	0	U	
DENSITY (CELLS/ML) SUMMARY																																												
BACILLARIOPHYTA	1574.8	990	1160	892.8	1476.6	706.5	8 57	4 436	8 34	40 706	8 452	4 501 6	6 260		59.4	200	493	1029.6	493	889.2	320	630.8	01.6	410.4 70	5.2	342 516	1.8 636	14 34	2 567	265.6	224	562.4	345.6	249.6	275.2	448.2	220.8	369.6	282.2	195.6	208	385	431.2	32
Centric Diatoms	781.2	198	400	285.2							248 109				19.8	15.6	136	124.8	102	421.2	40	664	76		99.2		152 25				72	002.4	19.2	19.2	68.8	83	96.6	67.2		51.6	61.6	61.6		
Araphid Pennate Diatoms	198.4		410	223.2						255 32						156	136	592.8	119	187.2	140		3496		95.6		152 16				18	334.4	230.4	76.8	120.4	215.8	55.2	252	182.6	258	107.8	154		
Monoraphid Pennate Diatoms	24.8		10	0	5/9.0	99:		12 15			2.4 26				19.0	78	68	93.6	34	109.2	100	99.6	15.2		51.6			76 7			72	76	38.4	57.6	51.6	49.8	33.2	202	102.0	51.6	46.2	107.8		
Biraphid Pennate Diatoms	570.4		340	384.4	469.2						124 62				19.8	140.4	153	218.4	238	171.6	40	83	60.8				0.8 13				72	152	57.6	96	34.4	99.6	69	50.4	33.2	34.4	92.4	61.6		
CHLOROPHYTA	0.04		0	49.6	110.4	74.4		0 202.	.8 108							31.2		15.6	68	124.8	0		30.4		6.8	36 121		0 10		16.6	18	2	19.2	288	17.2	66.4	248.4	655.2	1112.2	68.8	61.6	01.0	77	21
Flagellated Chlorophytes		0	0	0)	0	0 124.	18 3			0	0 669			0	0	0	0	0	0	0	0		12.8	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	
Coccoid/Colonial Chlorophytes	0	0	0	49.6	110.4	1 74	4	0 7		748 13	2.4 62	4	0	0 4352		31.2	0	0	68	124.8	0	0	30.4		344	36 121	16	0 10	R	0 166	18	0	19.2	230.4	17.2	66.4	110.4	67.2	66.4	68.8	61.6	0	0	2
Filamentous Chlorophytes	0	0	0	0	110.5) 14	0	0	0	0	0	0	0	0 0	0	0.2	0	0	0	0	0	0	0	121.6	0	0	0	0	0	0 0	0	0	0	57.6		0.4	138	588	1029.2	0.0	00	0	77	
Desmids	0	0	0	0)	0	0	0	0	0	0	0 1	0 0	0	0	0	15.6	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	16.6	0	0	0	0	
CHRYSOPHYTA	49.6	13.2	40	49.6	55.2		0 2	8 15.	6 1	34 45	96 171	6 (0 (0 0		46.8	34	31.2	68	62.4	0	16.6	0	15.2 3	4.4	18	0	0 3	6	0	18	30.4	19.2	76.8	0	16.6	276	319.2	99.6	51.6	0	0	77	
Flagellated Classic Chrysophytes	49.6	13.2	40	49.6	55.2		0 2	8 15.			196 171	.6	0 1	0 0	0	46.8	34	15.6	68	62.4	0	16.6	0		17.2	18	0	0 3	6	0 0	18	30.4	19.2	76.8	0	16.6	276	319.2	99.6	51.6	0	0	77	
Non-Motile Classic Chrysophytes	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Haptophytes	0	0	0	0			0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Tribophytes/Eustigmatophytes	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	0	15.6	0	0	0	0	0	0 1	17.2	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Raphidophytes	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CRYPTOPHYTA	0	0	20	12.4	13.8		0 2	8 46.	.8	0 37	7.2	0 0	0 18.6	5 0	39.6	0	0	0	0	0	0	0	0	15.2	0	0	0	0 1	0	0 0	0	0	57.6	38.4	34.4	16.6	1959.6	0	0	0	0	30.8	30.8	
CYANOPHYTA	0	0	0	0			0	0 1	0	0	0	0 0	0 0	0	0	0	68	62.4	0	468	0	0	0	0	0	720	0 3	04	0	0	0	0	0	192	172	0	0	0	664	688	0	0	0	
Unicellular and Colonial Forms	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	68	62.4	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Filamentous Nitrogen Fixers	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	0	0	0	468	0	0	0	0	0	0	0	0	0	0 0	0	0	0	192	172	0	0	0	0	0	0	0	0	
Filamentous Non-Nitrogen Fixers	0	0	0	0) (0	0	0	0	0	0 1	0 1	0 0	0	0	0	0	0	0	0	0	0	0	0	720		104	0	0 0	0	0	0	0	0	0	0	0	664	688	0	0	0	
EUGLENOPHYTA	12.4	0	0	0	0) (0	0 1	0	0	0	0 0	0 (0	0	0	0	0	0	15.6	0	0	0	0	0	18 15	5.2	0 1	0	0 0	0	15.2	0	0	0	0	0	0	0	0	0	0	0	
PYRRHOPHYTA	0	0	0	0	0) (0		0 31	.2 (0 0	0		0	17	0	0	15.6	0	33.2	15.2	15.2 1	7.2	0		0 1	0	0 0	0	0	19.2	0	0	0	0	0	16.6	0	0	0	0	
TOTAL	1636.8	1003.2	1220	1004.4	1656	781.2	2 64	4 70:	146	62 1351	1.6 717	.6 501.6	6 948.6	5 5474	7563.6	468	612	1138.8	629	1575.6	320	680.6	47.2	1109.6 151	3.6 1	1134 653	3.6 942	2.4 48	6 567.	282.2	270	608	460.8	844.8	498.8	547.8	2704.8	1344	2174.6	1204	369.6	415.8	616	67
CELL DIVERSITY	0.86	0.93	0.87	0.86							82 1.0					1.05	1.12	0.99	1.16	1.04	0.78		0.73			0.66 0.9					0.89		0.83	1.04	0.91	0.87	0.51	0.76	0.65	0.62	0.96	1.00		
CELL EVENNESS	0.75	0.84	0.72	0.82	0.84	0.90	0.8	8 0.9	91 0.6	.65 0.3	76 0.8	88 0.85	5 0.74	4 0.61	0.63	0.94	0.93	0.80	0.96	0.80	0.93	0.75	0.70	0.85 0	.84	0.59 0.9	90 0.	86 0.9	5 0.9	0.91	0.93	0.73	0.83	0.89	0.84	0.84	0.46	0.73	0.58	0.62	0.92	0.92	0.90	0.8
NUMBER OF TAXA										_											_	_		_																				
BACILLARIOPHYTA	12	12	12	7	7	12	2 1	3 1	8	7	8	9 11	1 6	5 3	3	11	13	13	14	13	7	7	9	7	9	9	9	10	8 1	3 9	7	- 11	6	8	9	8	7	6	5	7	10	- 11	8	
Centric Diatoms	2	2	2	1	1	1	1	1	1	0	2	2	1 :	2 1	- 1	- 1	2	2	3	3	1	1	2	0	2	1	2	2	1	1 2	2	0	- 1	1	- 1	2	2	2	- 1	2	2	2	- 1	
Araphid Pennate Diatoms	4	4	4	3	- 1	5 .	4	3	2	3	3	4	3 3	4 1	1	4	4	5	4	5	2	2	3	3	4	2	2	2	2	4 3	- 1	3	2	3	4	2	2	2	2	2	2	3	3	
Monoraphid Pennate Diatoms	1	1	1	0			1	Z	2	1	1	1 2	2	1 0	. 0	2	2	2	1	2	2	2	1	2	1	2	2	2	2	4 1	2	2	- 1	- 1	2	2	0	0	0	2	2	2	- 1	
Biraphid Pennate Diatoms CHLOROPHYTA	5	5		3	- 3	5 1		/	3	3	2	2	D .	1 1	- 1	- 4	5	4	- 6	3	2	2	3	2	2	4	3	4	3	5 3	- 2	- 6	2	3	2	2	3	2	2	- 1	4	- 4	3	
			0	1	- 1		2	0	4	2	4	1 0	0 3	3 5	4	- 1	0	1	1	2	0	0	1		4	1	0	0	0	1	- 1	0	1	3	1	1	2	2	3	- 1	1	0	- 1	
Flagellated Chlorophytes Coccoid/Colonial Chlorophytes	0	U	0	0			0	0	2	2	1	4	0	3	2	0	0	U	U	0	0	0		2	2		4	0	0	0 0	0	0	0	0	0	Ů,	0	0	0	0	0	0	0	
	0	U	0	- 1			2		4	3	1		0 1	. 2	2	- 1	0	U	1	2	U	0	1	3	2	1	1	U .	2	0 1	- 1	0	- 1	2	1	- 1	- 1	- 1	- 1	- 1	- 1	0	0	
Filamentous Chlorophytes	0	0	0	0			U	U	U	U	U	0 1	0 1	0 0	0	0	0	0	0	0	0	0	0	1	0	0	U	U	U	0 0	0	0	0	1	0	0	1	1	- 1	0	0	0	1	
Desmids CHRYSOPHYTA	- 0	- 0	- 0	0			0	0		0	0	0 1	0 1	0 0	- 0	0	0	- 1	0	0	0	0	U	U	U	0	U	U	U	0 0	- 0	- 0	0	0	0	- 0	0	0	- 1	- 0	0	- 0	- 0	
	1	1	3	2	2		U	2	1	2	1	z (. 0	0	- 1	- 1	2	- 1	2	0	- 1	0	- 1	2	1	U	0 3	2	. 0	- 1	1	- 1	2	0	- 1	3	3	3	- 1	0	0	2	
Flagellated Classic Chrysophytes	1	1 0	3	2	-		0	0	0	2	0	0	0 1	0 0	0	- 1	1	1	1	2	0	1	0	1	0	1	0	0	0	0 0	- 1	- 1	1	2	U	1	3	3	3	1	0	0	2	
Non-Motile Classic Chrysophytes	0	U	0	0			0	0	0	0	0	0 1	0 1	0 0	0	0	0	U	U	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	U	U C	0	0	0	0	0	0	0	
Haptophytes	0	U	0	0			0	0	0	U	0		0 1	. 0	0	0	0	U	U	U	U	0	0	U	U	0	U	U	0	0 0	0	0	0	U	U	U O	0	0	0	0	0	0	0	
Tribophytes/Eustigmatophytes Raphidophytes	- 0	0	0	0			0	0	0	0	0	0 1	0 1	0 0	0	0	0	- 1	0	0	0	0	U O	U	1	0	0	0	0	0 0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	
Raphidophytes CRYPTOPHYTA	0	0	0	0			0	4	4	0	4	0 1	0 1	0 0		0	0	0	0	0	0	0	U O	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	- 1	- 1	- 1			1	1	0	1	0 0	. 1		1		0	0		0		0	U	1	0			0 1		. 0	0	0	- 1	- 1	- 1	- 1	- 1	0	0	0	0	- 1	- 1	
CYANOPHYTA Unicellular and Colonial Forms			0	0			0	0 1	0	0	0	0 0		. 0	0	0	- 1	- 1	0	1	0	0	0	0	0	1	0		0	. 0	0	0	0	1	1	U	0	0	1	- 1	0	0	0	
	0	U	0	0			0	0	0	U	0		0 1	. 0	0	0	1	1	U	U	U	0	0	U	U	0	U	U	0	0 0	0	0	0	U	U	U O	0	0	0	0	0	0	0	
Filamentous Nitrogen Fixers Filamentous Non-Nitrogen Fixers	. 0		0	0			U	U	U	U	U	0 1	0 1	0 0	0	0	0	0	0	1	0	0	0	0	0	0	U	U	U	0 0	0	0	0	1	1	0	0	0	0	0	0	0	0	
Filamentous Non-Nitrogen Fixers EUGLENOPHYTA	0	0	0	0			0	0	0	0	0	0 1	0 1	0 0	0	0	0	0	0	0	0	0	U O	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	- 1	- 1	0	0	0	
	1	0	0				0	4	0	0	0	2 0			0	0		0		1	0	0	4		4	1	1	0	0	. 0	0	- 1	0	0	0	0	0	0	0	0	0	0	0	
PYRRHOPHYTA TOTAL	14	13	16	11	- 11	1 14	4 1		13 1	14 '	12 1	14 11			- :	40	40	47	**	20	7	40	**	16	16	13 1	11	11 1	2 1	3 10		13	100	15	12	11	13	11	13	10	11	12	12	_

Table A- 3. Phytoplankton biomass for Rainbow Reservoir in 2021.

TAXON	Rainbow F R1 05/27/21	R2 R3	3	R4	R5	R1	R2	R3	R4	R5 I	R1	R2 R:	3 R4	R5	R1	R2	R3	R4	R5	R1	R2 I	R3	R4 R5	R1	R2	R3	R4	R5	R1	R2	R3 F	R4	R5 R1	R2	R3	R4	R5	R1	R2	R3	R4 R5 09/30/21 09/30/21
BACILLARIOPHYTA																																									
Centric Diatoms																																									
Aulacoseira	26.0	7.9	6.0	0.0	0.0	0.0	0.0	0.0	0.0	67.0	0.0	0.0	0.0			0.0	0.0	0.0	18.7	12.0	0.0	9.1	0.0 0			41.0	0.0	36.1	5.0	16.2	0.0	5.8			5.0 12.4		0.0		0.0	13.9	0.0 11.7
Cyclotella	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0		.7 0.0	0.0	3.4	39.0	3.4	0.0	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	48.0	0.0	0.0	0.0	0.0	43.0	3.1	0.0	0.0 0.0
Melosira	208.3		114.0	85.6	128.3				0.0	7.4	23.4	9.1		0.0		30.6	32.8	15.3	103.0	0.0	19.9	13.7	0.0 51			36.5	21.6	0.0	5.0	0.0	0.0	0.0			19.9 16.6				9.2	4.6	9.2 46.8
Stephanodiscus Umrahania	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		1.0 0.0 1.0 23.8	1.6	0.0	0.0	0.0 20.4	39.0	0.0	0.0	0.0	0.0 43			0.0	0.0	0.0	0.0	216	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
Uroscienia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0 23.0	0.0	0.0	0.0	20.4	0.0	0.0	0.0	0.0	0.0 0	U U.I	0.0	0.0	0.0	0.0	0.0	21.6	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Araphid Pennate Diatoms																																									
Asterionella	9.9	2.6	4.0	5.0	22.1	7.4	0.0	6.2	3.4	5.0	25.0	0.0	00 0	0.0	6.2	0.0	12.5	0.0	12.5	8.0	10.0	0.0	24.3 55	0 01	0.0	18.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00 00	0.0	0.0	0.0	0.0	12.3	21.6 15.6
Diatoma	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	47	0.0	0.0			0.0	0.0	0.0	47	0.0	0.0	0.0	0.0 5			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	4.6	46.2 0.0
Fragilaria/related taxa	22.3		90.0	14.9	49.7	22.3	8.4		61.2	74.4	14.0	36.5	33.5 10	12 0.0		10.2	126.4	10.2	18.7	30.0	99.6	91.2	54.7 25	8 0.0	36.5	22.8	21.6	10.3	19.9	0.0	91.2	57.6	11.5 2	20.6 5	59.8 12.4	70.6	49.8	72.2	27.7	23.1	0.0 0.0
Meridian	7.4	23.8	3.0	0.0	0.0				10.2	0.0	0.0	4.6		0.0		5.1	9.4	5.1	0.0	0.0	0.0	4.6	0.0 0			0.0	0.0	5.2	5.0	0.0	0.0	0.0	0.0		0.0 0.0				0.0	0.0	0.0 0.0
Synedra	39.7	42.2	64.0	119.0	242.9	129.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0 15.8	12.5	13.6	12.5	27.2	12.5	0.0	0.0	24.3	12.2 13	8 0.0	133.8	0.0	288.0	13.8	13.3	14.4	12.2	0.0	15.4 1	13.8 13	32.8 11.0	0.0	0.0	0.0	12.3	0.0	24.6 0.0
Tabellaria	0.0	0.0	0.0	0.0	0.0	0.0	11.2	0.0	0.0	39.7	62.4	24.3	29.8	0.0	0.0	54.4	49.9	27.2	25.0	0.0	0.0	0.0	0.0 0	0 28.1	3 0.0	0.0	0.0	27.5	0.0	0.0	12.2	30.7	15.4 1	13.8	0.0 0.0	0.0	13.3	0.0	0.0	0.0	0.0 0.0
Monoraphid Pennate Diatoms																																									
Achnanthidium/related taxa	0.0		0.0	0.0	0.0			10.9	3.4	1.2	0.0	6.1	0.0	0.0	3.1	5.1	4.7	0.0	6.2	6.0	8.3	0.0	3.0 5	2 3.6	6.1	4.6	3.6	6.9	3.3	5.4	6.1	3.8			3.3 0.0	0.0	0.0	3.4	3.1	6.2	4.6 0.0
Cocconeis	9.9	5.3	4.0	0.0	0.0	0.0	22.4	18.7	0.0	0.0	6.2	6.1	7.4 0	0.0	18.7	6.8	18.7	13.6	18.7	16.0	6.6	6.1	6.1 0	0 14.4	4 36.5	12.2	14.4	13.8	0.0	7.2	6.1	0.0	0.0	6.9	6.6 0.0	0.0	0.0	6.9	6.2	18.5	0.0 0.0
Biraphid Pennate Diatoms																																									
Amphora	0.0	0.0	0.0	0.0	0.0	34.7	19.6	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				21.6	0.0	0.0 0.0
Cymbells/related taxa	86.8		20.0	24.8	41.4	49.6	42.0	15.6	17.0	0.0	0.0	0.0	0.0			85.0	93.6	68.0	46.8	0.0	49.8	30.4	15.2 17			30.4	36.0	51.6	0.0	18.0	15.2	38.4			86.4 41.4				30.8	15.4	30.8 0.0
Eunotia	0.0		0.0	0.0	0.0		14.0	0.0	0.0	0.0	0.0	15.2		0.0		68.0	15.6	34.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	17.2	0.0	0.0	30.4	0.0			0.0 13.8				0.0	0.0	0.0 13.0
Gomphonema/related taxa	62.0		10.0	0.0	0.0	0.0	28.0	0.0	0.0	0.0	0.0	45.6		0.0	0.0	54.4	0.0	17.0	0.0	0.0	0.0	0.0	0.0 0		0.0	0.0	18.0	17.2	16.6	0.0	0.0 48.6	0.0			0.0 0.0	0.0		0.0	0.0	15.4	0.0 0.0
Gyrosigma Navirush/minted taxa	0.0 99.2	99.0	45.0	0.0	0.0 48.3		77.0	0.0 46.8	0.0 8.5	0.0 43.4	15.6	0.0 7.6		0.0			0.0 46.8	17.0	31.2	10.0	16.6	7.6	0.0 0			167.2	99.0	103.2	33.2	0.0	48.6 22.8	0.0			16.6 0.0				15.4	0.0	0.0 0.0 7.7 13.0
Navcularelated taxa Nitrachia	99.2 168.6		45.0 144.0	148.8	48.3 265.0				13.6	43.4 29.8	15.6 25.0			1.0 0.0 1.6 15.8		8.5 54.4	46.8	17.0 54.4	31.2 49.9	16.0	0.0	12.2	24.3 41			167.2 24.3		103.2 55.0	13.3	43.2	22.8	0.0			0.0 11.0				15.4	12.3	7.7 13.0 12.3 10.4
Nitzschia Pinnularia	168.6		0.0	0.0	265.0				13.6	0.0	0.0	0.0		1.6 15.8		0.0	49.9 0.0	0.0	0.0	0.0	0.0	0.0	24.3 41 0.0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 11.0				0.0	0.0	12.3 10.4 0.0 0.0
Rhoicosphenia	14.9	31.7	48.0	0.0	0.0	14.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0	0 0.0	0.0	0.0	0.0	41.3	0.0	0.0	18.2	23.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Surirella	0.0		0.0	0.0	0.0		0.0		0.0	0.0	0.0	60.8		1.0 0.0		0.0	0.0	68.0	0.0	0.0	0.0	0.0	0.0 0			60.8	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
CHLOROPHYTA																																									
Flagellated Chlorophytes																																									
Chlamydomonas	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.6 3	1.4 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Eudorina	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	54.4	0.0	0.0	0.0	59.5 163	1.2 285.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Pandorina	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5	20.4	9.9	0.0	0.0	44.6 61	2 213.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.1 13	8 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Other Flagellated Greens	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.3 27	5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
Coccoid/Colonial Chlorophytes								16	17						3.1																			1.7							
Ankistrodesmus Chlorella	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0	71.4	0.0	0.0	0.0	0.0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0			0.0	3.6	0.0	0.0	1.8	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
Contreta	0.0	0.0	0.0	0.0	0.0		0.0	0.0	71.4	0.0	0.0	0.0	0.0 241			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 41			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
Crucipenia	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0		1.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 41			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
Dictyosphaerium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
Elakatothrix	0.0	0.0	0.0	0.0	0.0				0.0	0.0	6.2	0.0		1.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	3.0		0 0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
Oocystis	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.3 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
Pediastrum	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0		1.0 0.0		0.0	0.0	0.0	12.5	0.0	0.0	0.0	0.0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
Scenedesmus	0.0	0.0	0.0	5.0	11.0				0.0	0.0	0.0	0.0	0.0 193			0.0	0.0	6.8	6.2	0.0	0.0	0.0	0.0 13			0.0	7.2	0.0	0.0	0.0	0.0	0.0			6.6 0.0				6.2	0.0	0.0 0.0
Schroederia	0.0	0.0	0.0	0.0	0.0			0.0	42.5	31.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	114.0 0			0.0	0.0	0.0	0.0	0.0	0.0	48.0			0.0 0.0				0.0	0.0	0.0 0.0
Sphaerocystis	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.3 0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 22.1		0.0	0.0	0.0	0.0	0.0 41.6
, ,																																									
Filamentous Chlorophytes																																									
Other Filamentous Greens	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	194.6 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	92.2	0.0	0.0 220.8	940.8	1646.7	0.0	0.0	0.0	123.2 83.2
Desmids																																									
Detacanthium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.7	0.0	0.0	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0 0.0
CHRYSOPHYTA																																									
Flagellated Classic Chrysophytes																																									
Chrysosphaerella	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	12.5	0.0	0.0	0.0	0.0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0				0.0	0.0	0.0 0.0
Dinobryon	148.8		60.0	74.4	124.2				51.0	1488.0	468.0	0.0		0.0		0.0	46.8	204.0	93.6	0.0	49.8	0.0	45.6 51			0.0	54.0	0.0	0.0	0.0	0.0	0.0			49.8 207.0				0.0	0.0	92.4 117.0
Mallomonas	0.0		5.0	12.4	6.9				8.5	0.0	7.8	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0			0.0	0.0	0.0	0.0	9.0	15.2	9.6			0.0 6.9				0.0	0.0	0.0 13.0
ynura	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0	0.0	0.0	0.0	14.4	0.0	0.0	0.0	0.0	0.0	46.1	0.0	0.0 154.6	161.3	53.1	0.0	0.0	0.0	37.0 20.8
on-Motile Classic Chrysophytes																																									
Ither Non-Motile Classic Goldens	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00 00	0.0	0.0	0.0	0.0	0.0	0.0 0.0
indi Hormote Guade Goldena	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
aptophytes																																									
ribophytes/Eustigmatophytes																																									
Dentritractus	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 2			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 0.0				0.0	0.0	0.0 0.0
seudostaurastrum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0 0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
taphidophytes																																									
CRYPTOPHYTA																																									
Cyptomonas	0.0	0.0	4.0	2.5	2.8	0.0	5.6	53.0	0.0	153.8	0.0	0.0	29.8	1.0 35.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.3 0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.5	7.7 5	55.0 2	26.6 0.0	0.0	0.0	0.0	0.0	27.7	6.2 0.0
Rhodomonas	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		1.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0 391.9				0.0	0.0	0.0 0.0

Table A- 4. Phytoplankton biomass for Rainbow Reservoir in 2021 (continued).

																																															Rainbow	
	R1	R2	R3	R4	R5				R3	R4	R5	R1	R2	R3	R4	R5	R1					R5	R1	R2	R3	R4	R5	R1	R2	R3	R4	R5	R1	R2		R4					R3		R5	R1	R2	R3	R4	R5
XON	05/27/21	05/27/21	05/27/2	05/27/21	05/27	/21 06/24	4/21 06	/24/21 0	06/24/21	06/24/21	06/24/21	07/01/21	07/01/21	07/01/21	07/01/2	07/01/2	07/22	21 07/22	2/21 07/2	22/21 0	7/22/21 0	17/22/21	07/29/21	07/29/21	07/29/21	07/29/21	07/29/21	09/10/21	09/10/21	09/10/21	1 09/10/21	09/10/2	1 09/16/2	1 09/16/2	1 09/16/	1 09/16/2	21 09/1	6/21 09/2	1/21 0	J/21/21 09	./21/21	09/21/21	09/21/21	09/30/21	09/30/21	09/30/21	09/30/21	09/30
YANOPHYTA																																																
Inicellular and Colonial Forms																																																
Ohmococcus	0.0	0.0	0.	0.0	n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0 0.	n	0.0	0.7	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	.0 0.	.0 0	0 1	.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
UNIOCOULUS .		0.0	- 0.	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.		0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.							0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Filamentous Nitrogen Fixers																																																
Dolichospermum	0.0	0.0	0.	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0 0.	0	0.0	0.0	0.0	0.0	93.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0 0.	.0 0	0 1	.0 0	0.0	38.4	34.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
			-	-									-		-															-	-																	
ilamentous Non-Nitrogen Fixers																																																
Planktolyngbya	0.0	0.0	0.	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0 0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	72	0.0	0.0	0 00	0 0	0 0.	.0 0	0 1	.0 0	0.0	0.0	0.0	0.0	0.0	0.0	66	6.9	0.0	0.0	0.0	-
Pseudanabaena	0.0						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0 0.0	0 0					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
	-		-	-																										-	-																	
UGLENOPHYTA																																																
Frachelomonas	12.4	0.0	0.	0.0	n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0 0	n	0.0	0.0	0.0	0.0	15.6	0.0	0.0	0.0	0.0	0.0	18.0	15.2	0.0	0 00	0 0	0 0	0 0	0 1	2 (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
racrietorionas	123	0.0	- 0.	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0 0.		0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	10.0	10.2	0.0	0 0.0	0.	0.	.0 0	.0 1		7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PYRRHOPHYTA																																																
Ceratium	0.0	0.0	0	0.00	n	0.0	0.0	0.0	0.0	0.0	0.0	271.4	0.0	0.0	0.	0 344	5	0.0 29	95.8	0.0	0.0	271.4	0.0	288.8	0.0	264.5	299.3	0.0	0.0	0.0	0 00	0 0	0 0	0 0	0	.0 334	11	0.0	0.0	0.0	0.0	0.0	288.8	0.0	0.0	0.0	0.0	-
Peridinium	0.0	0.0					0.0	29.4	0.0	0.0	0.0	32.8	0.0	0.0					0.0	0.0	0.0	0.0	0.0	34.9	31.9	0.0	0.0		0.0								10	0.0	0.0	0.0	0.0	0.0	0.0					
Community	0.0	0.0	- 0.	0.1		0.0	0.0	23.4	0.0	0.0	0.0	32.0	0.0	0.0	0.	0.		0.0	0.0	0.0	3.0	0.0	0.0	34.3	31.5	0.0	0.0	0.0	0.0	0.0	0.0	0.	. 0.	. 0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DENSITY (UG/ML) SUMMARY																																																
BACILLARIOPHYTA	755.2	502.9	552.0	484.8	3 79	70 40	83.6	463.4	187.2	117.3	267.8	179.4	325.3	150.7	25.	5 55.	1 18	7 2 20	99.5	511.7	380.8	386.9	98.0	210.8	199.1	139.8	258.0	342.0	301.0	418.0	0 502.2	399.	0 114.	5 126.	0 287	.3 159		65.1 1	18.7	310.4	118.7	126.0	107.9	158.2	141.7	134.0	157.1	110
Centric Diatoms	234.4						29.8	12.6	9.4	0.0	74,4	26.5	9.1	50.2					34.0	71.8	39.1	160.7	12.0	19.9	22.8	0.0	94.6												20.6	24.9	29.0	20.2	19.9			18.5		
Araphid Pennate Diatoms	79.4						162.4	23.8	10.9	74.8	119.0	106.1	65.4	63.2						210.6	69.7	73.3	38.0	109.6	120.1	91.2	99.8												53.3	192.6	23.5	75.6	63.1			40.0		
Monoraphid Pennate Diatoms	9.9						9.9	28.0	29.6	34	110.0	6.2	12.2	7.4					119	23.4	13.6	25.0	22.0	14.0	61	01.2	5.2	18.0	426							2 3		5.8	10.3	10.0	0.0	0.0	03.1	10.3		24.6		
Biraphid Pennate Diatoms	431.5						281.5	399.0	137.3	39.1	73.2	40.6	238.6	29.8						205.9	258.4	127.9	26.0	66.4	50.2	39.5	58.5	268.2									1.0	69.1	34.4	83.0	66.2	30.2	24.9			50.8		
CHLOROPHYTA	0.0						7.4	0.0	20.3	190.4	40.9	6.2	0.0	122.8					0.0	4.7	6.8	18.7	0.0	0.0	3.0	387.6	96.3	3.6								0 48		15.2	1.7		242.9	947.5		6.9		0.0		
Flagellated Chlorophytes	0.0						0.0	0.0	12.5	74.8	9.9	0.0	0.0	122.8					0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.4	41.3	0.0									.0 1	0.0	0.0	0.0	0.0	947.5	1656.3			0.0		
Coccoid/Colonial Chlorophytes	0.0						7.4	0.0	7.8	115.6	31.0	6.2	0.0	0.0					0.0	0.0	6.8	18.7	0.0	0.0		162.6	41.3	3.6	12.2					7 1		10 48		23.0	1.7	6.6	22.1	6.7	6.6			0.0		
Filamentous Chlorophytes	0.0						0.0	0.0	0.0	110.0	0.0	0.2	0.0	0.0					0.0	0.0	0.0	0.0	0.0	0.0	0.0	194.6	0.0		0.0				0 0					92.2	0.0	0.0	220.8	940.8	1646.7	0.5		0.0		
Desmids Chiorophytes	0.0						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0 0.			0.0	4.7	0.0	0.0	0.0	0.0	0.0	194.0	0.0	0.0	0.0	0.0	0 0.0	0.		.0 0	.0 1		1.0	0.0	0.0	0.0		0.0	1040.7	0.0		0.0		
CHRYSOPHYTA	148.8						0.0	49.0	46.8	59.5	1488.0	475.8	0.0	0.0	0.	0 0.			77.2	59.3	204.0	106.1	0.0	49.8	0.0	45.6	54.2	54.0	0.0	0.0	0 684	. 0.	0 0.	.0 0	0 15			55.7	0.0	49.8	0.0 368.5	430.1	111.2	154.8		0.0		
Flagellated Classic Chrysophytes	148.8						0.0	49.0	46.8	59.5	1488.0	475.8	0.0	0.0	0.				27.2	46.8	204.0	106.1	0.0	49.8	0.0	45.6	51.6	54.0		0.0	0 68/		0 0.1	0 9.	0 15		.6	55.7	0.0	49.8	368.5	430.1	111.2	154.6		0.0		150
Non-Motile Classic Chrysophytes	0.0						0.0	0.0	0.0	0.0	0.0	4/5.6	0.0	0.0					0.0	0.0	0.0	0.0	0.0	49.6	0.0	45.6	0.10	0.0		0.0			0 0.	0 0			1.0	0.0	0.0	0.0	0.0	430.1	0.0			0.0		
Haptophytes	0.0						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.		0 0			1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
									0.0	0.0	0.0	0.0	0.0	0.0		0.		0.0	0.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0.0	0.		.0 0									0.0	0.0				
Tribophytes/Eustigmatophytes	0.0						0.0	0.0			0.0	0.0	0.0						0.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0 0.0	0.	.0 0.	.0 0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Raphidophytes CRYPTOPHYTA	0.0						0.0	0.0	0.0	0.0		0.0	0.0	0.0								0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	.0 0.	.0 0	0 0		1.0		0.0		0.0	0.0	0.0	0.0		0.0 27.7		
CYANOPHYTA	0.0						0.0	5.6	53.0	0.0	153.8	0.0	0.0	29.8	0.				0.0	0.0	0.0	93.6	0.0	0.0		24.3	0.0	0.0	0.0	3.0	0.0	0.0	0 0.0	0 0.		.0 11	.5	7.7	34.4	26.6					0.0	0.0		
Unicellular and Colonial Forms	0.0						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.				0.7	0.6	0.0	93.6	0.0	0.0	0.0	0.0	0.0	7.2	0.0	3.0							.0	0.0	0.0	0.0	0.0	0.0	6.6			0.0		
											0.0								0.7						0.0		0.0	0.0	0.0	0.0	0.00	0.		0 0				38.4	34.4									
Filamentous Nitrogen Fixers	0.0						0.0	0.0	0.0	0.0		0.0	0.0	0.0						0.0	0.0	93.6	0.0	0.0		0.0											0.0			0.0	0.0	0.0	0.0	0.0		0.0		
Filamentous Non-Nitrogen Fixers EUGLENOPHYTA	12.4						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					0.0	0.0	0.0	0.0 15.6	0.0		0.0	0.0	0.0										.0	0.0	0.0	0.0	0.0	0.0	6.6			0.0		
PYRRHOPHYTA	12.4						0.0	29.4	0.0	0.0	0.0	304.2	0.0	0.0					95.8	0.0	0.0	271.4	0.0		31.9	264.5	299.3	18.0										0.0	0.0	0.0	0.0	0.0		0.0		0.0		
TOTAL	916.4							547.4	307.3	367.2	1950.5	965.6	325.3	303.2						576.3	591.6	892.3	98.0	584.3	234.1	861.8	707.8	424.8											0.0		1121.9	1503.6				161.7		
JUIAL	910.4	542.5	629.1	5/9.1	94	2.5 45	91.0	347.4	307.3	367.2	1950.5	905.0	325.3	303.2	000.	1393.	3 33	3.1 12	23.2	0/0.3	591.6	692.3	96.0	504.3	234.1	001.0	/0/.6	424.0	320.3	421.0	0 361.4	399.	0 116	2 130.	0 317	./ 502	.6 3	02.1 2	09.6	393.4	1121.9	1503.6	2172.9	320.0	147.0	101.7	415.6	300
BIOMASS DIVERSITY	0.95	0.97	0.9	0.83		82 0	0.90	1.03	0.93	0.97	0.44	0.68	0.84	0.93	0.6	3 0.7		83 0	0.87	1.05	0.97	1.04	0.79	0.71	0.84	0.92	0.91	0.85	0.85	0.83	3 0.74	0.9	8 0.8	7 0.8	4 0.	8 0.6		1.04	0.95	0.83	0.79	0.53	0.41	0.68	0.94	1.02	0.89	0.0
BIOMASS DIVERSITY BIOMASS EVENNESS																																							0.95	0.83	0.79							
IIOMASS EVENNESS	0.83	0.87	0.7	0.80) 0	.79 0	0.78	0.84	0.84	0.85	0.41	0.59	0.81	0.93	0.7	0.8	3 0.	74 0	0.73	0.85	0.80	0.80	0.94	0.71	0.80	0.77	0.76	0.76	0.82	0.80	0.68	0.8	8 0.8	7 0.8	8 0.	8 0.0	53	0.89	88.0	0.80	0.71	0.51	0.37	0.68	0.91	0.95	0.82	0.3
ENSITY (UG/ML) SUMMARY																																															:\(30/2021 R4\)	
ACILLARIOPHYTA	758						484	463	187	117	268	179	325	151	2			187	400	512	381	387	98	211	199	140	258	342			8 500	2 39	9 11	15 12	26 2		59	165	119	310	119	126	108	158	142	134		
HLOROPHYTA						11	7	0	20	190	41	6	0	123	66	3 95		3	0	5	7	19	0	0	3	388	96	4	12	- 0	0 11	1	0	2	2		48	115	2	7	243	948	1658	1	6	0		
HRYSOPHYTA	149	40	7	3 87	7	131	0	49	47	60	1488	476	0	0		0	0 '	140	27	59	204	106	0	50	0	46	54	54	0		0 68	В	0	0	9	15	10	56	0	50	368	430	111	158	0	0	129	
CRYPTOPHYTA		0		4 2	2	3	0	6	53	0	154	0	0	30		0 3	6	0	0	0	0	0	0	0	0	24	0	0	0		0 0	0	0	0	0	0	12	8	55	27	392	0	0		0	28	. 6	
CYANOPHYTA		0		0 0	0	0	0	0	0	0	0	0	0	0		0	0	0	1	- 1	0	94	0	0	0	0	0	7	0		3 (0	0	0	0	0	0	38	34	0	0	0	7	- 1	0	0	. 0	
UGLENOPHYTA	12	0		0 0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	16	0	0	0	0	0	18	15		0 0	0	0	0	0	15	0	0	0	0	0	0	0		0	0	. 0	
YRRHOPHYTA		0		0 (0	0	0	29	0	0	0	304		0		0 34	c	0	296	0		271	0	324	32	264	299	0	0		0 0	2	0	0	0	0 3	24				0	0	289				0	

Table. A- 5 CT DEEP Electrofishing Data.

Station ID	RA	NBOW RESER	VOIR (id:1935	(7)
OBJECTIO	4227	4228	4229	4230
Sample Year	1989	1992	1998	2014
Sample ID	193571989	193571992	193571998	193572014
American Eel	12	11	9	0
Alewife	0	0	0	0
American Shad	0	0	2	. 0
Brown Builhead	0	0	1	- 1
Black Crappie	3	7	52	15
Bridled Shiner	Ó	0	0	0
Bluegili Sunfish	13	56	56	73
Blueback Herring	0	0	0	0
Brook Trout - Stocked	-0	0	0	0
Blacknose Dace	0	0	0	0
Bluntnose Minnow	0	0	0	0
Brown Trout - Stocked	2	2	0	0
Bluegill x Pumpkinseed Hybrid	0	0	0	0
Banded Sunfish	0		0	
Common Carp	7	2	4	- 4
Channel Catrish	Ó	0	0	0
Creek Chubsucker		0	0	0
Cuttips Minnow	0	0	0	0
Chain Pickerel	0	0	0	0
Creek Chub	-0	0	0	0
Common Shiner	0	0	0	. 0
Failfish	1	5	0	0
Fathead Minnow	0	0	. 0	0
Fourspine Stickleback	Ó	0	0	. 0
Goldfish	0	0	0	. 0
Green Sunfish	0	0	0	0
Golden Shiner	9	17	3	2
Hogchoker	0	0	0	. 0
Banded Killifish	. 0	0	0	0
Brook Lamprey	0	0	0	- 0
Longnose Dace	0	.0	0	0
Burbot	. 0	0	0	. 0
Largemouth Bass	11	15	7	14
Central Mudminnow	0	0	0	0
Mummichog	0	0	0	0
Northern Pike	. 0	0	0	0
Ninespine Stickleback	0	0	0	. 0
Pumpkinseed x Redbreast Hybrid	0	0	0	. 0
Pumpkinseed	30	4	56	33
Rock Bass	6	34	10	18
Redfin Pickerel	0	0	0	0
Redbreast Sunfish	8	3	5	7

Table A- 6. CT DEEP Electrofishing Data (continued).

Station ID		NBOW RESER		
OBJECTID	4227	4228	4229	4230
Sample Year	1989	1992	1998	2014
Sample ID	193571989	193571992	193571998	193572014
Reinbow Trout - Stocked	0	0	0	
Atlantic Salmon - Stocked	3	2	0	
Stimy Sculpin	0	0	0	
Swamp Darter	.0	0	0	
Striped Killifish	.0	. 0	0	
Sea Lamprey	0	0	-0	
Smallmouth Bass	11	35	92	57
Spottail Shiner	124	115	109	257
Tessellated Darter		0	0	30
Tidewater Silverside	0	0	0	
Tomcod	0	0	0	- 0
Three Spine Stickleback	0	0	0	
Tiger Trout - Stocked	0	0	0	
Walleye	0	0	0	
Brook Trout - Wild	0	0	0	(
Brown Trout - Wild	0	0	0	1
White Carlish	0	0	0	
White Perch	196	58	35	12
Reinbow Trout - Wild	0	0	0	
White Sucker	108	71	347	281
Yellow Bullhead	0	0	0	- (
Yellow Perch	95	259	157	483
No fish in sample	0	0	0	
Bowfin	0	. 0	0	
Brook S Iverside	0	0	0	
Black Bullhead	0	0	0	
Grass Carp	0	0	0	
Gizard Shad	0	0	0	-
Hickory Shed	0	0	0	
Inland Silverside	0	0	0	
Koi	0	0	0	- 0
Kokanee Salmon	0	0	0	- 0
Menhaden	0	0	0	
Striped Mulet	0	0	0	
Mimic Shinar	0	0	0	
Rainbow Smalt	0	0	0	
Fat Sleeper Goby	0	0	0	-
Tench	0	0	0	- 0
White Crappie	0	0	0	- 2
Striped Bass	0	0	0	
Mosquito Fish	0	0	0	- 0
Tiger Musky	0	0	0	
Warmouth	0	0	0	- 0

Table A-7. Numbers of anadromous fish passed, Rainbow fishway, 1976-2021.

Numbers of anadromous fish passed, Rainbow fishway, 1976-2021.

Year 1976 1977	shad		4.4	Blueback	Sea	Lamprey	Striped	Sea-run	Gizzard
		salmon	Alewife	herring	lamprey	juveniles	bass	trout	shad
G 7 7	1,189	0	0	5	n.a.	n.a.	0	na	0
	804	0	0	.5	n.a.	n.a.	0	na	0
978	1,053	(56)	1	11	129	n.a.	0	1	0
979	514	(32)	3	5	249	na	0	1	0
980	480	(26)	3	15	280	n.a.	1	0	0
981	167	(62)	0	6	27	n.a.	0	0	0
982	729	(41)	6	13	371	n.a.	1	4	0
983	1,570	(14)	3	57	3,700	na.	1	4	0
984	2,289	(6)	1	37	3,426	n.a.	0	13	0
985	1,042	(7)	0	19	393	n.a.	0	7	0
986	1,205	(39)	14	56	1,405	n.a.	0	2	(1)
987	792	(126)	3	34	2,985	na.	2	6	(1) (2)
988	387	(14)	0	16	883	n.a.	2	3	ó
1989	215		0	52	2,747	n.a.	5	34	
1990	432	(24)	Ö	49	2,125	na.	3	20	(1) (2)
991	591	(33)	Ö	55	1,448	1.2	3	18	1/(9)
992	793	(97)	o	25	622	7	6	20	(5)
993	460	1/(13)	4	14	1.708	ý.	ő	5	1/(9)
994	250	(42)	2	102	1,200	11	01	10	(20)
1995	246	(22)	3	503	376	-0	1	15	(123)
1995	668	(29)	5	1,254	2,722	ŏ	2	9	
1997	421	1/(60)	3	672	3,140	1	4	9	(8)
1998	262		3	498	2,681	ō	6	12	(22)
999	70	(50)	2 25 5	35	414	ő	1	12 5	(6) 6/(78)
2000	283		43			ő	1		
		(6)	3	1	1,037			3	16/(35)
20011	151	(6)	52	52	8,082	18	2	.5	(26)
002	110	(4)	71	37	1,660	72	0	13	1/(5)
003	76	(2) (13)	54	63	2,770	678	0	4	(1)
004	123	(13)	19	38	3,404	0,	0	4	(5)
005	. 8	(15)	1	4	2,354	0,	1	3	1
006	73	(43)	0	0	984	0,	1	2	0
2007	156	(7)	0	7	8,007	0,	0	7	0
2008	92	(24)	6	4	8,302	0,	0	4	0
2009	35	(12)	0	0	1,856	0"	1	5	.0
010	548	(4)	0	25	3,090	0,	0	5	0
011	267	(15)	0	0	6,509	0"	1	5	0
2012	172	(5) (6)	0	0	712	0"	2	10	0
013	84	(6)	0	17	1,999	04	1	4	0
014	531	9	0	26	4,276	0"	0	0	0
015	316	5	0	18	1,567	0,	0	2	0
016	141	0	0	0	449	04	0	2	0
017"	613	3	0	15	2,187	01	0	0	0
018	342	0	3	3	896	04	0	0	1
019	276	Ö	1	ő	950	o	ō	ŏ	ō
020	510	0	o.	ő	3,628	ŏ	ő	o o	ő
021	47	3	0	0	470	ŏ	ō	Ö	ő
otal	21,583	16 (1,028)	290	3,850	98,220	794	53	276	26 (359)
		(24)	6	84	2,232	26	1	6	1/(8)

sea lamprey transformants emigrating down to the ocean.

sea-run brown trout (Salmo trutta) only, except for one sam-brown (Atlantic salmon x brown trout hybrid passed in 1979 and two in 1982.

observed in window but not passed.

⁴does not include night-time video counts of lamprey juveniles observed in the window during the fall.

⁵counts from 2001 onward include night-time video counts.

[&]quot;Starting in 2017 the fishway was operated without sorting gates and all fish passage was documented on video.

Note: Numbers in parenthese indicate fish entered the trap but were retained and not passed.

Table A-8. Macroinvertebrate data from upstream tributaries.

Station ID	Waterbody	Location	Town	Basin ID	Watershed	Lat	Long	Year	Most Sensitive
14435	Salmon Brook	adjacent to Granbrook Park	East Granby	4320	Farmington	41.9366	-72.7749	2016	5
14435	Salmon Brook	adjacent to Granbrook Park	East Granby	4320	Farmington	41.9366	-72.7749	2009	7
14435	Salmon Brook	adjacent to Granbrook Park	East Granby	4320	Farmington	41.9366	-72.7749	2002	5
15171	EB Salmon Brook	downstream Rt 20	Granby	4320	Farmington	41.955	-72.7794	2007	5
15171	EB Salmon Brook	downstream Rt 20	Granby	4320	Farmington	41.955	-72.7794	2006	3
15171	EB Salmon Brook	downstream Rt 20	Granby	4320	Farmington	41.955	-72.7794	2005	4
15171	EB Salmon Brook	downstream Rt 20	Granby	4320	Farmington	41.955	-72.7794	2004	5
15171	EB Salmon Brook	downstream Rt 20	Granby	4320	Farmington	41.955	-72.7794	2003	3
15171	EB Salmon Brook	downstream Rt 20	Granby	4320	Farmington	41.955	-72.7794	2002	5
15171	EB Salmon Brook	downstream Rt 20	Granby	4320	Farmington	41.955	-72.7794	2001	6
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2019	12
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2016	1
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2011	2
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2007	1
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2006	3
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2005	2
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2004	4
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2003	4
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2002	4
15170	WB Salmon Brook	adjacent Salmon Brook Park	Granby	4319	Farmington	41.9438	-72.7957	2001	4
15105	Hop Brook	below old mill pond adj. Waterfall Way	Simsbury	4318	Farmington	41.8701	-72.8106	2009	1
15105	Hop Brook	below old mill pond adj. Waterfall Way	Simsbury	4318	Farmington	41.8701	-72.8106	2008	2

Table A- 9. Site FR-EG1 E.coli Geometric mean 2007-2021.

					Geometric	Mean				
2021	2019	2018	2017	2016	2015	2014	2013	2013	2011	2007
130	74	293	219	181	74	135	78	169	365	158

Table A- 10. Site FR-EG1 Temperature Averages 2007-2021.

			F	R-EG1 Tem	perature A	verage per y	year (°C)				
	2021	2019	2018	2017	2016	2015	2014	2013	2012	2011	2007
1	21.1	16	21	14	18	17	19	18	20	17	20
	22.3	17	19	20	21	17.5	19.5	20	20	17.5	22
	19.3	23	22	20	22	21	22.5	23	24	21	18
	21.9	25	22	22	26	22	20	21	22	23	17
	22.4	23	21	19	22	21	23	20	25.5	20	21
	22.5	25	20	22	24	24	20.5	21	23		
Average	21.58	21.50	20.83	19.50	22.17	20.42	20.75	20.50	22.42	19.70	19.60

Table A- 11. Rainbow Reservoir Temperature Average per site and overall.

	Rainbow Reservoir Temperature Average per sampling day (°C)													
5/27/2021 6/24/2021 7/1/2021 7/22/2021 7/29/2021 9/10/2021 9/16/2021 9/21/2021 9/30/2021 Average														
20.5	21.8	25.8	19.8	22.6	20.1	20.7	19.9	17	20.9					

Table A- 12. Rainbow Reservoir chemical data from CT DEEP 7/9/19-7/10/19.

Sample								7						
Name	I_SW1	1 01	1_02	1_03	1_04	I_SW2	1_05	J_SW1	J_01	J_02	J_SW2	1_03	J_04	J_05
Date	7/9/2019	7/9/2019	7/9/2019	7/9/2019	7/9/2019	7/9/2019	7/9/2019	7/10/2019	7/10/2019	7/10/2019	7/10/2019	7/10/2019	7/10/2019	7/10/2019
Notes_1	spoonville													
lat_garmi n	0	0	41.89265	41.91081	0	0	0	0	0	0	0	41.89511	41.89263	41.90413
lon_garm in	0	0	-72.74342	-72.70385	0	0	0	0	0	0	0	-72.74195	-72.74367	-72.71418
Cl (mg/L)	37.27639	57.104498	59.352469	47.049468	14.815864	40.501772	1.7218152	40.068604	18.451829	48.3922968	39.918699	30.320664	22.884875	49.132943
NO3_N (mg/L)	0.554985	0.5854612	1.3208236	4.3674942	1.4816801	0.4893042		0.58701563	0.1602182	4.47797499	0.1846698	2.6186338	0.2792282	2.9505062
PO4 (mg/L)	0.2437135	0.2437135	0.2437135	0.2437135	0.2437135	0.2437135	0.2437135	0.24371351	0.2437135	0.24371351	0.2437135	0.5055844	0.2437135	0.2437135
504_5 (mg/L)	2.437601	6.3192544	6.2883854	5.1673028	2.7725378	2.5490322	2.6702236	2.52200911	8.7082032	5.32092542	2.9095729	15.478139	2.270239	4.920663
NH3 (mg/L)	0.0532958	0.0532958	0.249	0.0532958	0.0532958	0.0532958	0.0532958	0.05329581	0.0532958	0.05329581	0.0532958	0.0532958	0.0532958	0.0532958
NPOC (mg/L)	3.157	1.301	1.081	1.086	1.19	2.98	0.6464	2.647	1.335	1.083	2.962	1.005	0.8633	0.5628
TN (mg/L)	0.7721	0.6361	1.399	4.421	1.574	0.7359	0.1088	0.7331	0.2753	4.461	0.4136	2.5	0.1255	2.853
air_temp				35										
air_press ure				29.89										
seep_sur f_temp			15.66	14.57										
seep_sub surface_t emp			14.32	12.71										
seep_con			267	61										
seep_DO			4.71	8.81										
seep_sa mple_na me			Farm 27 R	Farm 27 R										
seep_gas _ID			0, 19	27,22										

Table A- 13. Rainbow Reservoir chemical data from CT DEEP 8/15/19.

Sample Name	AM 01	AM 02	AM SW1	AM 04	AM 05	AM 06	AM 07	AM 08	AM 09	AM 10
	8/15/2019	8/15/2019		8/15/2019	8/15/2019	8/15/2019	The state of the s	8/15/2019	8/15/2019	Name and Address of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, which is the Owner,
Date			8/15/2019							8/15/2019
Notes_1	spoonville 1	spoonville 1	spoonville 1	spoonville 1						
lat_garmi										
n	41.89645	41.8963	41.89647	41.89573	41.89575	41.89516	41.89515	41.8951	41.895	41.89462
lon_garm	~~ ~~~	70 74500	70 71501		70 74045			70 74000	70 74404	
in	-72.74532	-72.74532	-72.74531	-72.74313	-72.74315	-72.74213	-72.74212	-72.74203	-72.74196	
CI (mg/L)	55.55922008	28.98085956	48.2861917	102.614392	160.9734647	66.53013591	49.0741867	29.31228354	29.60333734	29.4018007
NO3_N (mg/L)	2.615351535	0.494599259	0.78774624	3.86639555	3.39250592	3.90856553	5.01166508	3.446525812	4.441175326	4.438874443
PO4 (mg/L)	0.243713507	0.243713507	0.24371351	0.24371351	0.243713507	0.243713507	0.24371351	0.243713507	0.243713507	0.243713507
SO4_S (mg/L)	5.054356479	4.747420379	3.41970763	5.46791501	6.93825935	5.819489616	5.6268742	4.589420493	3.899463609	9.532490758
NH3									100	
(mg/L)	0.053295805	0.108999997	0.132	0.186	0.136000007	0.053295805	0.05329581	0.112999998	0.053295805	0.053295805
NPOC									1	
(mg/L)	1.553	1.33	2.627	1.491	1.412	1.964	0.8808	1.218	1.157	0.8347
TN										
(mg/L)	2.544	0.5782	0.926	3.618	2.488	3.662	4.579	3.191	4.109	4.117
CH4										
(ppm)	0.47070825	0.47070825	8.47486499	0.47070825	0.47070825	0.47070825	0.47070825	1.003848872	0.47070825	0.47070825
CO2										
(ppm)	17942.20037	2801.859919	525.457886	4473.83531	7447.232339	5440.538513	3472.87465	5968.425449	6312.430537	3414.123307
N20										
(ppm)	5.901439646	0.390560188	0.39056019	9.92808074	8.063980422	7.716308639	6.63549312	4.967809136	4.098922235	4.031998463
N2 (ppm)	18.51519745	16.15657662		16.8715772	17.41067713	19.60923385	19.2941534	20.02327152	18.03121284	18.58582095
O2 (ppm)	8.13752076	8.193395316		8.04859527	8.135789386	7.846615988	7.91538245	7.692770859	7.726051372	7.861059189
Ar (ppm)	0.666612317	0.609742504		0.5920979	0.604156623	0.69602637	0.67700875	0.702976145	0.660107841	0.629468858
N2:Ar	27.77506054	26.49737639		28.4945737	28.81815158	28.17311915	28.4991196	28.48357183	27.31555622	29.52619612
Wet Weight (g)	318.76	378.61		410.98	269.05		454.84	301.69	372.36	333.05
WW	320.70	370.01	_	420.50	203.03		454.64	302.03	372.30	333.03
Gravel	44.66	66.1		162.85	107.76		204.54	155.79	181.38	255.35
WW Sub	44.00	00.1		102,03	107.70		204.54	133.73	101.50	255.55
(g)	229.61	267.51		178.84	122.82		208.09	104.62	164.81	57.78
WW Soil	213.38	254.99		164.84	115.9		203.77	102.47	156.9	56.88
Dry	213.30	2,54,33		104.04	113.3		203.77	102.47	2,50.5	50.00
Weight	164.77	205.83		132.24	90.35		161.35	78.6		45.62
SWC (%)	29.50172968	23.88378759		24.6521476	28.27891533		26.2906725	30.36895674	15	24.68215695
V of Core (cm3)	181.5787	181.5787		181.5787	181.5787		181.5787	181.5787	181.5787	181.5787

Table A- 14. Rainbow Reservoir chemical data from CT DEEP 8/15/19 (continued).

Sample												
Name	AM_11	AL_SW1	AL_01	AL_02	AL_03	AL_04	AL_05	AL_06	AL_07	AL_08	AL_09	AL_10
Date	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019
Notes_1	spoonville 1											
lat_garmin	41.89299	0	41.89283	41.89399	41.89299	41.89271	41.89257	41.89281	41.89256	41.89292	41.89263	41.89298
lon_garmin	-72.74218	0	-72.74429	-72.74584	-72.74449	-72.74386	-72.74362	-72.74429	-72.74315	-72.74451	-72.74367	-72.74454
CI (mg/L)	60.1256581	47.3209809	59.47500239	160.86135	44.0476221	42.0391299	30.20486957	60.02928902	79.7560273	45.3883191	27.9704157	42.976103
NO3_N (mg/L)	1.02280992	0.76792651	1.238971727	3.12890227	1.65722944	1.45724888	0.02705025	1.346852948	0.77752768	1.26749729	0.02705025	2.28061401
PO4 (mg/L)	0.24371351	0.24371351	0.243713507	0.24371351	2.43221548	0.24371351	0.243713507	0.243713507	0.24371351	0.68529632	0.24371351	0.66533534
SO4_S (mg/L)	5.18466861	3.27448078	12.08212006	6.70865047	22.6661155	3.96387744	1.652698063	12.28247944	8.19725634	26.164787	2.30987464	26.2397641
NH3 (mg/L)	0.11	0.114	0.053295805	0.108	0.21600001	0.119	0.053295805	0.162	0.05329581	0.116	0.123	0.05329581
NPOC (mg/L)	1.57	2.501	0.9584	0.9951	1.215	0.9771	0.9208	0.9858	0.8014	0.9959	0.8555	0.9714
TN (mg/L)	0.9767	0.8873	1.132	2.953	1.526	1.326	0.1143	1.313	0.7739	1.248	0.155	1.979
CH4 (ppm)			0.998444578	0.47070825	1.18832942	0.47070825	0.47070825	0.47070825	0.47070825	1.05639644	0.47070825	0.47070825
CO2 (ppm)			11912.00694	7125.97648	11237.5854	10138.1672	8859.544001	11242.87191	396.478715	10731.1973	9522.55321	8418.49085
N20 (ppm)			5.869990269	7.48368718	7.51237528	6.04215764	0.390560188	6.058601036	2.92035609	5.98075909	0.99922422	5.54578996
N2 (ppm)	9		18.97966577	17.7743396	19.6709797	19.8100445	19.01251375	18.93540892	18.7045261	19.8225613	19.7941322	18.1289677
O2 (ppm)			8.182271984	8.240508	8.19709394	8.17179572	8.282066638	8.208506709			8.32334189	8.60158104
Ar (ppm)			0.69114241	0.66731327	0.71129529	0.7267911	0.697320546	0.705625202	0.67987501	0.70137216	0.72227308	0.69461826
N2:Ar			27.46129525	26.6356754	27.6551523	27.2568615	27.26509903	26.83493854	27.5117128	28.2625434	27.4053301	26.0991809
Wet Weight			300.8	271.2	323.61	308.34	388.98	297.27				258.31
WW Gravel										-	-	
(g)			41.54	0	65.49	69.43	240.26	148.19				159.43
WW Sub (g)			231.09	271.2	210.98	215.52	112.37	121.95				74.91
WW Soil			214.23	245.4	185.56	205.79	94.21					64.86
Dry Weight			173.53	187.19	139.45	171.87	73.8	87.19	4.5		46	48.24
SWC (%)			23.45415778	31.0967466	33.0656149	19.7358469	27.65582656	28.58125932	,		y .	34.4527363
V of Core (cm3)			181.5787	181.5787	181.5787	181.5787	181.5787	181.5787				181.5787

Table A- 15. Rainbow Reservoir chemical data from CT DEEP 8/15/19 (continued).

Sample																		
Name	AM_01	AM_02	AM_SW1	AM_04	AM_05	AM_06	AM_07	AM_08	AM_09	AM_10	AM_11	AL_01	AL_02	AL_03	AL_04	AL_05	AL_06	AL_10
Date	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019
Notes_1	spoonville 1	spoonville :	spoonville :	spoonville 1	spoonville 1	spoonville	spoonville	spoonville 1	spoonville	spoonville 1	spoonville:	spoonville 1	spoonville:	spoonville	spoonville 1	spoonville	spoonville :	spoonville 1
lat_garmi																		
n	41.89645	41.8963	41.89647	41.89573	41.89575	41.89516	41.89515	41.8951	41.895	41.89462	41.89299	41.89283	41.89399	41.89299	41.89271	41.89257	41.89281	41.89298
lon_garm																		
in	-72.74532	-72.74532	-72.74531	-72.74313	-72.74315	-72.74213	-72.74212	-72.74203	-72.74196	-72.74133	-72.74218	-72.74429	-72.74584	-72.74449	-72.74386	-72.74362	-72.74429	-72.74454
Bulk																		
Density	1.15338418	1.49758755		1.62513555	1.09104207		2.0150491	1.29084524		1.6575182		1.18444509	1.0309029	1.1286566	1.32890036	1.7296082	1.2962974	1.1436914
Bulk																		
Density																		
Gravel	0.245953958	0.36402948		0.89685629	0.59346168		1.1264537	0.85797508	0.9989057	1.40627728		0.22877133	0	0.3606701	0.38236864	1.3231728	0.81612	0.8780215
Bulk																		
Density																		
Gravel												0.05557077	4 0000000	0.7670066	0.04650470		0.4004775	
Free Sand %	0.907430222 95.44820052				0.49758039 93.3591588			0.43287016 98.7277354		0.25124092 95.6159579		0.95567377 99.4237308			0.94653172 98.8363298		0.4801775 93.691937	
Clay %	1.213813194			96.5970962				1.27226463		1.09601052		0.57626923	97.590025		1.16367022	95.257453	3.4407616	
Silt %	3.337986284			3.40290381			0.929656			3.28803157		0.57020923	2.4039746			4.7425474	2.8673013	
SIIL 70	3.33/300204	1.21439437		3.40290301	4.70003000		0.929030	0		5.20003137		0	2.4039740	3.944000	0	4.7423474	2.00/3013	7.2555697
(Thermal																		
Conducti																		
vity)	1.6873	1.9232		1.2091	1.786		1.7994	1.8665	2.1845	1.382		1.8777	1,606	1,5714	1,7989	1.3312	1.6888	0.9424
(volumet	210075	213232		112032	11700		217554	1,0005	212040	2,502		1.0777	11000	210724	217303	110011	1,0000	0.5424
ric																		
specific																		
heat																		
capacity)	2.968	2.6053		2.1373	3.0193		2.8119	3.2194	3.0152	2.8517		2.772	2.8801	3.0605	2.1144	3.0493	2.0431	2.615
D																		
(thermal																		
diffusivit																		
y)	0.568	0.738		0.566	0.592		0.64	0.58	0.724	0.485		0.677	0.558	0.513	0.851	0.437	0.555	0.36
Organic																		
Matter %	0.968188105	0.84151473			0.83449235		0.8391608	1.12201964	0.1402525	1.3986014		0.69348128	2.1067416	0.7002801	0.41608877	1.1034483	1.10957	1.1157601

Table A- 16. Rainbow Reservoir chemical data from CT DEEP 8/15/19 (continued).

Sample										
Name	AM 01	AM 02	AM SW1	AM 04	AM 05	AM 06	AM 07	AM 08	AM 09	AM 10
Date	8/15/2019	_	8/15/2019	_	_	_	_	_	_	_
Notes 1						spoonville 1				
lat garmi	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1
	41.89645	41.8963	41.89647	41.89573	41.89575	41.89516	41.89515	41.8951	41.895	41.89462
n Ion garm	41.05043	41.0903	41.03047	41.055/3	41.05575	41.09310	41.05515	41.0551	41.093	41.05402
lon_garm	70 74500	72 74522	70 74504	72 74242	70 74045	72 74242	70 74040	72 74202	72 74105	70 74400
in	-72.74532	-72.74532	-72.74531	-72.74313	-72.74315	-72.74213	-72.74212		-72.74196	
air_temp	22.8	22.7	22.7	25.7	22.8	24.1		24.4	24.6	26.2
air_press	20.03	20.02	20.02	20.02	20.02	20.01		20.01	20.01	20.00
ure	29.93	29.93	29.93	29.93	29.93	29.91		29.91	29.91	29.88
surface_c										
ond			261							
surface_t										
emp			21.99							
surface_										
DO			8.59							
surface_s										
ample_n										
ame			AM03							
surface_g										
asID			222, 212							
seep_sur										
f_temp	14.7	19		17.6	16.2	13.3		12.4	14.2	19.7
seep_sub										
surface t										
emp	14.1	18		15.8	15.2	12.7		11.9	12.8	15.6
seep con										
d	365	217		323	603	500		287	258	315
seep DO	5.17	6.94		2.78	3.79	4.14		10.74	13.87	7.34
seep_sa										
mple na										
me	AM01	AM02		AM04	AM05	AM06		AM08	AM09	AM10
seep gas										
ID	253, 247	221, 51		220, 227	217, 202	229, 231		215, 240	200, 204	213, 203
seep MI	200, 241			223, 227	227, 202			223, 240	200, 201	223, 200
MS	ΔΜ01. ΔΜ02	AM03, AM04		ΔM05, ΔΜ06	AM07. AM08	AM09, AM10		ΔΜ13. ΔΜ14	AM15, AM16	ΔM17. ΔM18
sed_sam	AIVIOZ, AIVIOZ	AIVIOS, AIVIO		Alvios, Alvios	Alvior, Alvioo	AIVIOS, AIVIZO		AIVILO, AIVIL	AITIZO, AIVIZO	AIVIZ7, AIVIZO
ple	AM01	AM02		AM04	AM05	N/A		AM08	AM09	AM10
hie	MINIOT	AIVIUZ		AIVIU4	AIVIUJ	N/A		AIVIUO	AIVIUS	MIVITU

Table A- 17. Rainbow Reservoir chemical data from CT DEEP 8/15/19 (continued).

Sample											
Name	AM 11	AL 01	AL 02	AL 03	AL 04	AL 05	AL 06	AL 07	AL 08	AL 09	AL 10
Date	8/15/2019	8/15/2019	_	8/15/2019	8/15/2019		8/15/2019		8/15/2019	8/15/2019	
Notes 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1	spoonville 1
lat_garmi	i .										
n	41.89299	41.89283	41.89399	41.89299	41.89271	41.89257	41.89281	41.89256	41.89292	41.89263	41.89298
lon_garm											
in	-72.74218	-72.74429	-72.74584	-72.74449	-72.74386	-72.74362	-72.74429	-72.74315	-72.74451	-72.74367	-72.74454
air_temp	27										
air_press											
ure	29.86										
surface_c											
ond											
surface_t											
emp											
surface_											
DO											
surface_s											
ample_n											
ame											
surface_g											
asID											
seep_sur											
f_temp		14.5	16.71	11.6	13.6	12.1	13.1	22.9	12.5	13.9	15.1
seep_sub											
surface_t											
emp		13.4	14.73	10.1	11.9	11	11.4		11.2	12.5	13.6
seep_con											
d		203	353	197		71	205	251	220	75	213
seep_DO		7.3	7.7	8.2	7.9						
seep_sa											
mple_na		A101	4102	A102	A104	ALOE	A106	A107	A100	4100	A110
me		AL01	AL02	AL03	AL04	AL05	AL06	AL07	AL08	AL09	AL10
seep_gas ID		200 222	6 220	200 220	210 22	245 206	224 216	254.26	225 56	252 210	222 242
seep MI		209, 233	6, 230	208, 239	219, 22	245, 206	234, 216	254, 36	235, 56	252, 218	232, 242
MS MS			5152	61.62	71 72	9192	10.1, 10.2	12.1, 12.2	15.1, 15.2	10 1 10 2	20 1 20 2
sed sam			5.1, 5.2	6.1, 6.2	7.1, 7.2	9.1, 9.2	10.1, 10.2	12.1, 12.2	13.1, 13.2	19.1, 19.2	20.1, 20.2
ple		IB01	IB05	IB06	IB07	IB09	IB10	IB12	IB15	IB19	IB20
bie		IBUI	IBUS	IBUO	IBU/	צטפון	1810	ID1Z	1013	1013	1620

Table A- 18. Rainbow Reservoir chemical data from CT DEEP 9/21/19.

Sample											
Name	BEO1	BE02_SW1	BE03	BE04	BE05	BE06	BE07	BE08	BE09	BE10	BE11_SW2
Date	9/21/2019	9/21/2019	9/21/2019	9/21/2019	9/21/2019	9/21/2019	9/21/2019	9/21/2019	9/21/2019	9/21/2019	9/21/2019
Notes_1	spoonville 2										
lat_garmi n	41.896363	41.896464	41.89636	41.895712	41.895775	41.895097	41.895149	41.895032	41.895017	41.894592	41.894523
lon_garmi n	-72.745264	-72.74529	-72.745323	-72.743102	-72.743109	-72.742277	-72.742032	-72.74194	-72.741963	-72.74134	-72.74141
CI (mg/L)	84.5709353	46.827605	36.122411	90.296925	89.029728	74.31828	58.572521	34.885122	26.296709	28.532984	47.902343
NO3_N (mg/L)	6.1553009	0.770725	0.1154071	3.6912571	2.9537151	4.39873805	5.3179889	3.9673845	5.3841378	4.2077535	0.9029184
PO4 (mg/L)	0.56589497	0.490345	0.6476912	0.5784824	0.5879221	0.61938297	0.6036535	0.5942149	0.5879221	0.7451502	0.5753356
SO4_S (mg/L)	8.37187049	3.5387801	7.2786638	5.3121132	6.009333	5.90006631	5.7906129	4.7862779	4.1341225	9.7727853	3.9497305
NH3 (mg/L)	0.05329581	0.0532958	0.0532958	0.0532958	0.0532958	0.05329581	0.0532958	0.0532958	0.0532958	0.253	0.0532958
NPOC (mg/L)	1.192	2.356	1.556	1.4	1.42	1.97	1.268	1.435	1.115	0.7421	2.571
TN (mg/L)	6.47	0.9844	0.2792	3.825	3.07	4.45	5.265	3.9	5.461	4.15	1.052
CH4 (ppm)	0.47070829	7.3705966	4.44955	0.4707083		0.47070829	0.4707083	0.9758967	0.4707083	0.4707083	6.8944738
CO2 (ppm)	25215.2714	988.20763	12005.966	5025.4717		6625.47306	3935.4154	6388.8396	7391.8207	2313.5472	167.63573
N20 (ppm)	19.4306179	0.3905602	0.3905602	10.845402		8.94667203	8.26955	4.5343555	4.1149825	3.6052124	0.3905602
N2 (ppm)	18.9144196		18.421463	16.794051	17.729534	19.1812934	18,94808	19.150394	17.450114	18.092957	
O2 (ppm)	8.34640693		8.3172236	8.4813035	8.4070683	8.34210547	8.4527408	8.3931956	8.5003948	8.5345532	
Ar (ppm)	0.65476842		0.6963342	0.5992533	0.6236426	0.69264685	0.6767392	0.683149	0.6483125	0.6302731	
N2:Ar	28.8871896		26.454915	28.024962	28.428998	27.6927462	27.999088	28.032529	26.916208	28.706535	

Table A- 19. Rainbow Reservoir chemical data from CT DEEP 9/21/19 (continued).

Sample	2000	2752500 CORES	202020	20000	5020	9290		SERVICE.	2000	(2.0000)	E2027 04-5-200
Name	BE01	and a printer and a Control of Co	BE03	BE04	BE05	BE06	BE07	BE08	BE09	BE10	BE11_SW2
Date	9/21/2019							The state of the s		9/21/2019	
Notes_1	spoonville 2	spoonville 2	spoonville 2	spoonville 2	spoonville 2	spoonville 2	spoonville 2	spoonville 2	spoonville 2	spoonville 2	spoonville 2
lat_garmi n	41.896363	41.896464	41.89636	41.895712	41.895775	41.895097	41.895149	41.895032	41.895017	41.894592	41.894523
lon_garmi n	-72,745264	-72,745286	-72.745323	-72.743102	-72.743109	-72.742277	-72.742032	-72.74194	-72.741963	-72.741339	-72.741407
air_temp											28.1
air_press ure											30.03
surface_c		268	6								260.2
surface_t emp		17.04									
surface_ DO		10.18									
surface_s ample_na me		BE Stream1									BE11 (BE_stream2)
surface_g		-									-
asID		253, 08									40, 17
seep_surf temp	14.04		15.375		16.129	14.52	13.101	13.484	15.336	17.259	
seep_sub surface_t											
emp	14.32		15.005		15.677	13.529	12.764	13.002	13.46	14.939	
seep_con	530		311	604	575	501.4	442.4	289.9	251.1	304.9	
seep_DO	1.92		3.62	2.08	2.09						
seep_sam			BE03	BE04	BE05	BE06	BE07	BE08	BE09	BE10	
seep_gas											
ID	4, 230		20, 99	21,50		205, 24	74, 215	63, 60	86, 66	212, 273	
seep_MI MS_	BE01_1, BE01_2				BE05 7, BE05 8		BE07_11, BE07_12				
sed_samp le	and the second of the state of the second of		BE03	BE04	BE05	BE06	BE07	BE08	BE09	BE10	

Table A- 20. Rainbow Reservoir chemical data from CT DEEP 9/24/19.

Sample												
Name	BHSW1	BH01	BH02	BH03	BH04	BH05	BH06	BH07	BH08	BH09	BH10	BHSW2
Date	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019
Notes_1	spoonville 2											
lat_garmi												
n	0	41.89401	41.89293	41.89295	41.89285	41.89283	41.89281	41.89265	41.8926	41.89265	41.89257	41.89288
lon_garmi												
n	0	-72.7458	-72.74451	-72.74447	-72.74437	-72.74429	-72.74422	-72.74381	-72.74368	-72.7435	-72.74307	-72.74215
CI (mg/L)	46.25856377	158.3833946	50.3638847	55.3525662	39.213836	63.7777356	54.862417	75.1885909	28.889255	35.499548	79.978995	46.569423
NO3_N												
(mg/L)	0.815928587	2.83220781	2.52639904	1.92070026	1.724334	1.05624298	1.1084904	1.93360493	0.1661015	0.0270502	0.7632396	0.8061774
PO4												
(mg/L)	0.55960081	0.243713507			0.776573	0.60679954	0.6162372	0.24371351	0.5218295	0.4934937	0.6571259	0.5596008
SO4_S												
(mg/L)	3.412341658	6.168397415	20.2793829	19.4657565	16.615884	9.42872844	10.23997	4.70979492	2.1183267	1.4894334	7.7239013	3.3926504
NH3												
(mg/L)	0.053295805	0.053295805	0.05329581	0.05329581	0.0532958	0.05329581	0.0532958	0.05329581	0.145	0.0532958	0.0532958	0.0532958
NPOC												
(mg/L)	2.591	0.7607	0.743	1.005	0.9242	0.7456	0.856	0.4926	0.461	0.4911	0.2612	2.521
TN (mg/L)	0.9865	2.738	2.428	1.902	1.601	1.112	1.128	1.812	0.267	0.1377	0.7905	0.9264
CH4												
(ppm)	5.832659316	0.47070829	0.47070829	0.47070829	0.4707083	0.47070829	0.4707083	0.47070829	0.4707083	0.4707083	0.4707083	5.7367866
CO2												
(ppm)	961.9721831	6757.038665	9177.26856	11703.9397	10846.672	12192.1925	10167.663	17069.8886	10995.088	11307.077	167.63573	533.69803
N20												
(ppm)	0.390560188				6.1857436			5.6349851	1.1107452	0.3905602	2.7064984	0.3905602
N2 (ppm)		18.07623214	17.9696379	18.2076541	19.288887	17.0815149	16.793864	18.7052708	19.291774	19.297435	19.208589	
O2 (ppm)		8.566960869	8.42074093	8.47359811	8.3796564	8.34487351	8.3574183	8.27538436	8.1146329	8.265076	8.2845109	
		0.505400555	0.50000555	0.53303555	0.7000017	0.65300533	0.5344555	0.500007:-	0.705055	0.7055445	0.7403675	
Ar (ppm)		0.686408898	0.68822553	0.63283446	0.7229047	0.65380329	0.6344893	0.69003747	0.7262453	0.7265116	0.7103875	
A12. A		25 22440554	25 4404525	20 7745627	25 502 575	25 4252525	25 450245	27.4076452	26 562745	26 564772	27 020524	
N2:Ar		26.33449564	26.1101006	28.7715907	26.682476	26.1263826	26.468315	27.1076162	26.563715	26.561772	27.039594	

Table A- 21. Rainbow Reservoir chemical data from CT DEEP 9/24/19 (continued).

Sample												
Name	BHSW1	BH01	BH02	BH03	BH04	BH05	BH06	BH07	BH08	BH09	BH10	BHSW2
Date	9/24/2019			9/24/2019		9/24/2019				9/24/2019		9/24/2019
Notes 1											spoonville 2	
lat garmi												
n	0	41.89401	41.89293	41.89295	41.89285	41.89283	41.89281	41.89265	41.8926	41.89265	41.89257	41.89288
lon_garmi												
n	l 0	-72.7458	-72.74451	-72.74447	-72.74437	-72.74429	-72.74422	-72.74381	-72.74368	-72.7435	-72.74307	-72.74215
air_temp	19.8											23.1
air_press												
ure	29.67											29.63
surface_c												
ond	251.5											250.2
surface_t												
emp	19.99											21.09
surface_												
DO												
surface_s												
ample_na												
me	BH_Stream1											BH_Stream2
surface_g	I											
asID	90, 275											260, 235
seep_surf												
_temp			13.3	12.4	12.7	14	13	12.4	12.5	11.8	14.2	
seep_sub												
surface_t												
emp		12.3	12.4	11	10.9	13.8	11.8	11.4	11.5	11.1	13.1	
seep_con												
d		696.7	398.6	404.3	346.6	317.3	301.1	334.5	142.2	155.8	455	
seep_DO		0	0	0	0	0	0	0	0	0	0	
seep_sam											B.146	
ple_name		BH01	BH02	BH03	BH04	BH05	BH06	BH07	BH08	BH09	BH10	
seep_gas		200 277	222 54	240.20	244 220	202 25	02 207	264 244	200 402	240 44	00.41	
_ID		208, 277	222, 51	240, 39	244, 239	202, 35	92, 207	261, 214	200, 102	249, 14	89, 41	
seep_MI		DUOT DUOS	DUIGA DUIGA	DUOS DUOS	DUOZ DUOS	DUIGO DUIGO	DUIAA DUIAA	DUIA 2 DUIA 4	DUAE DUAE	DUIAZ DUIAG	DUIAO DUISO	
MS_		BH01, BH02	вниз, вни4	BH05, BH06	вно7, вно8	BH09, BH10	BH11, BH12	BH13, BH14	BH15, BH16	BH17, BH18	вн19, вн20	
sed_samp		DUO	DUO	DUO	DUOA	DUOF	DUOS	DUO7	DUO	DUIGO	DUIAO	
le		BH01	BH02	BH03	BH04	BH05	BH06	BH07	BH08	BH09	BH10	

Table A- 22. Rainbow Reservoir chemical data from CT DEEP 11/16/19-11/17/19.

Sample Name	BQSW1	BQ02	BQ03	BO04	BQ05	BQ06	BQ07	BQ08	8Q09 SW2	DDSW1	BR01	BR02	BR03	BR04
Date	-			11/16/2019				an organic		The second secon	D1102		201102	
Notes 1				spoonville 3	-	-								-
lat_garmi n	0								0				41.89292	
lon_garmi n	0	-72.74323	-72.74217	-72.74224	-72.74197	-72.74362	-72.74367	-72.74386	0	0	-72.74584	-72.74454	-72.74451	-72.74451
CI (mg/L)	43.3983342	95.055448	102.89191	74.9180165	59.709587	39.347659	44.89886	49.061059	42.643005	42.635542	159.24073	95.500424	46.356147	103.064752
NO3_N (mg/L)	0.73914532	1.8128684	6.3842261	5.46437549	4.8042396	0.0270502	0.2431622	1.529076	0.689602	0.6951465	3.016291	3.38968283	1.6983632	3.55040977
PO4 (mg/L)	0.91474286	0.9241582	0.9743616	1.01827373	1.0025925	0.795423	0.7577202	0.8236929	0.9084656	0.8990491	0.7011455	0.81741123	1.2000369	0.7640048
SO4_S (mg/L)	3.12542408	6.2524137	7.1134607	7.06184115	6.2918426	1.5908855	2.2448716	4.8247903	3.0911941	2.7680673	6.8691608	9.17591344	17.000862	6.99039131
NH3 (mg/L)	0.05329581	0.0532958	0.0532958	0.05329581	0.0532958	0.0532958	0.0532958	0.0532958	0.0532958	0.0532958	0.0532958	0.05329581	0.0532958	0.05329581
NPOC (mg/L)	3.306	1.767	1.518	1.062	1.208	0.6205	0.9985	0.8702	3.123	3.23	0.8889	0.8181	0.8937	0.7641
TN (mg/L)	0.9302	1.678	5.927	4.995	4.529	0.1185	0.3521	1.461	0.8343	0.8292	2.845	3.215	1.566	3.23
CH4 (ppm)	5.90933195	34.73044	0.4707083	0.47070829	0.4707083	0.4707083	1.9979158	0.4707083	6.2086197	8.4599653	1.2652915		4.5669363	0.47070829
CO2 (ppm)	677.349089	6057.8377	3795.3282	5139.17656	6651.8525	11410.627	12926.059	13079.149	1035.9557	1011.2118	8580.3444		11620.729	14695.9592
N20 (ppm)	0.39056019	2.8009493	8.2632414	11.0688716	8.774157	0.3905602	0.7693724	4.1906958	0.3905602	0.3905602	5.8014558		5.3207086	5.71123969

Table A- 23. Rainbow Reservoir chemical data from CT DEEP 11/16/19-11/17/19 (continued).

Sample			
Name BQSW1 BQ02 BQ03 BQ04 BQ05 BQ06 BQ07 BQ08 BQ09_SW2 BRSW1	BR01 BR02	BR03	BR04
Date 11/16/2019			2.110
Notes 1 spoonville 3 spoonville		3 spoonville 3	
lat_garmi	spoonville 3 spoonville	3 spoonville 3	spoonville 3
	0 41.89399 41.892	98 41.89292	41.89293
	0 41.09399 41.092	90 41.09292	41.09293
lon_garmi n 0 -72.74323 -72.74217 -72.74224 -72.74197 -72.74362 -72.74367 -72.74386 0	0 -72.74584 -72.744	54 -72.74451	-72.74451
air temp 4 1.3	0 -72.74304 -72.744	-72.74451	-72.74451
air_press			-
ure 30.42 30.36			
surface_c			
ond 106.9 216.2 216.	2		
surface t			
emp 3.6 3.6			
surface			
DO 12.35 0 12.35	3		
surface_s			
ample_na			
me e			
surface_g			
asID 296, 293 295, 308? 309, 302			
seep_surf			
_temp 11 10.4 9.6 10.4 6.5 5.4 5.2			
seep_sub			
surface_t			
emp 11.6 10.8 9.9 10.8 7.8 5 7.3			
seep_con			
d 535 657 529 438.2 186.5 203 269.1	615	438.9	510
seep_DO 2.16 2.2 3.13 2.09 2.96 4.39	2.63	3.51	4.24
seep_sam			
ple_name	BR01	BR03	BR04
seep_gas			
_ID 310, 284 218, 13 272, 294 280, 300 56, 282 225, 340	219, 666	288, 267	292, 216
seep_MI			
MS	BR01_1, BR01_2	BR03	BR
sed_samp			
le l			1 1

Table A- 24. Rainbow Reservoir chemical data from CT DEEP 6/26/20.

Cample asses	CNAO1 CVA	CNAO2	CM03	CM04	CM05	CM06	CM07	CM08	CM09	CM10
Sample_name		CM02								
Date	6/26/2020			6/26/2020	6/26/2020			6/26/2020	6/26/2020	
Month	June	June	June	June	June	June	June	June	June	June
Lat		41.895126		41.895155	41.895144		41.89507	41.895151	41.895094	41.89513
Long		-72.74236		-72.74208	-72.74201	-72.74198		-72.742	-72.74191	
Sample Category	SW	GW	GW	GW	GW	GW	GW	GW	GW	GW
Sample Type	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal
Locations			Rainbow_A	Rainbow_A	Rainbow_A		Rainbow_A	Rainbow_A	Rainbow_A	
GC Sample ID	CM01_77	CM02_61	CM03_231	CM04_305	CM05_05	CM06_100	CM07_280	CM08_276		CM10_87
CH4_ppb	4.812759				0.3813703			0.3699992	0.3717167	0.38556
CO2_ppb	2673.2455	22713.722	9671.0779	11581.604	16476.254	15713.405	18729.263	18762.033	18307.337	21553.05
N20_ppb	0.5502216	26.664279	41.341499	40.411779	30.403762	28.695428	20.424904	21.951395	21.02324	17.97911
Notes		IB21	IB22	IB23	IB24	IB26, mixed	IB25	IB27	IB28	IB29
FLIR_img		1070-1072	1073-1074	1075-1076	1077-1078	1079-1082	1083-1084;	1086		1088-1090
extent										
air_temp	20.8									
air_pressure	29.86									
surface_cond	218									
surface_temp	23.01									
surface_DO	7.3									
surface_sampleID	CM01									
	CM01_270									
surface_gas_ID	; CM01_77	12.06	12.31	10.22	10.25	42.2	12.2	10.33	45.03	42.77
seep_surf_temp		12.96		10.32	10.25			10.33	15.82	12.77
seep_subsurf_temp		12	10.816	9.96	10.19		11.63	9.7	11.68	10.303
seep_cond		532	628	564	454	435	363	361	293	250
seep_DO		2.97	2.03	2.84	2.56		2.6	3.37	3.51	3.17
seep_sampleID		CM02	CM03	CM04	CM05	CM06	CM07	CM08	CM09	CM10
		CM02 52:	CM03_27;	CM04 81;	CMOS OS	CM06 100-	CM07 202	CM09 275.	CM09_258;	CM10 03:
seep_gas_ID		CM02_53; CM02_61	CM03_27; CM03_231	CM04_81; CM04_305	CM05_05; CM05_224	CM06_100; CM06_268		CM08_276; CM08_297	CM09_238; CM09_232	'
		CM02_6;	CM03_231	CM04_A;	CM05_A;	CM06_A;	CM07_A;	CM08_A;	CM09_A;	CM10_6;
seep_MIMS_ID		CM02_B	CM03_B	CM04_B	CM05_B	CM06_B	CM07_B	CM08_B	CM09_B	CM10_B

Table A- 25. Rainbow Reservoir chemical data from CT DEEP 6/26/20 (continued).

Sample_name	CM11	CM12	CM13	CM14	CM15	CM16	CM17	CM18	CM19	CM20	CM21	CM22
Date	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	#######	########
Month	June	June	June	June	June	June	June	June	June	June	June	June
Lat	41.895089	41.892994	41.893042	41.892924	41.892918	41.892898	41.892946	41.892875	41.892826	41.892847	41.89297	
Long	-72.741834	-72.74452	-72.74438	-72.744438	-72.74448	-72.74442	-72.74443	-72.7444	-72.74436	-72.74442	-72.7443	
Sample Category	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	SW
Sample Type	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal
Locations	Rainbow_A	Rainbow_B	Rainbow_B	Rainbow_B	Rainbow_B	Rainbow_B	Rainbow_B	Rainbow_B	Rainbow_B	Rainbow_B	Rainbow_	Rainbow_
GC Sample ID	CM11_267	CM12_234		CM14_275	CM15_201	CM16_209	CM17_301	CM18_304	CM19_256	CM20_307	CM21_298	CM22_210
CH4_ppb	0.4157876	0.4126877		0.4045958	0.382734	0.3499529	0.3717591	0.4303395	0.4259776	0.3527008	0.36326	7.785429
CO2_ppb	26384.928	45035.441		45601.514	44083.782	41518.161	44050.423	52565.452	51517.684	52327.353	33262.2	2404.188
N20_ppb	18.118701	33.809187		38.739708	41.038406	41.045244	42.301346	54.336326	42.685852	41.747477	24.97787	1.095096
Notes	IB30	IB31	IB32	IB33	IB34	IB35	IB36	IB37	IB38	IB39	IB40	
FLIR_img	1091-1092	1093	1094	1095	1096	1098	1099	1100	1101	1102	1104	
extent												
air_temp												
air_pressure												
surface_cond												219
surface_temp												23.7
surface_DO												7.77
surface_sampleID												CM22
												CM22_21
												0;
												CM22_26
surface_gas_ID												5
seep_surf_temp	16.8	13.19	16.55	14.31	15.66	12.363	11.407	13.201	13.059	11.687	17.24	
seep_subsurf_temp	12.03	11.998	13.31	11.795	11.757	10.499	9.86	10.207	11.588	10.697	12.09	
seep_cond	233	467	491	464	463	458	458	372	360	366	253	
seep_DO	3.27	4.26	3.38	2.66	1.91	3.43	1.96	2.14	2.92	2.08	4.76	
seep_sampleID	CM11	CM12	CM13	CM14	CM15	CM16	CM17	CM17	CM19	CM20	CM21	
											CM21_79	
									CM19_239		;	
	CM11_52;	CM12_234	CM13_49;	CM14_275;	CM15_17;	CM16_25;	CM17_301;	CM18_257;	;	CM20_270;	CM21_29	
seep_gas_ID	CM11_267	; CM12_48	CM13_242	CM14_336	CM15_201	CM15_209	CM17_220	CM18_304	CM19_256	CM20_307	8	
	CM11 A;	CM12 A;	CM13 A;	CM14 A;	CM15 A;	CM16 A;	CM17_A;	CM18 A;	CM19 A;	CM20 A;	CM21 A;	
	CIVITI_A,	CIVITZ_A,	CIVITS_A,	CIVITA_A,	CIVITO_A,	CIVITO_A,	CIVILY_A,	CIVITO_A,	CIVILID_A,	CIVIZO_A,	CIVIZI_N,	

Table A- 26. Rainbow Reservoir chemical data from CT DEEP 6/26/20 (continued).

6 1	C4 404 C144	C1 102	C1 102	C1 10.1	CAROE	CLASS	C1107	C1 100	C1 100	C1110
Sample_name	CM01_SW	CM02	CM03	CM04	CM05	CM06	CM07	CM08	CM09	CM10
Date	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020		6/26/2020
Month	June	June	June	June	June	June	June	June	June	June
Lat		41.895126	41.895155	41.895155	41.895144	41.895151	41.89507	41.895151	41.895094	41.895126
Long		-72.74236	-72.74219	-72.74208	-72.74201	-72.74198	-72.74204	-72.742	-72.74191	-72.74191
Sample Category	SW	GW								
Sample Type	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal
Locations	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A
NO3 (mg N / L)	0.602243	4.0256364	5.5806159	5.3576038	4.4504666	4.4513217	4.4208029	4.3281288	4.4669922	4.9564448
CI (mg / L)	40.412332	73.13933	85.868492	73.029093	55.9339	53.388694	41.136164	40.488539	28.621491	22.776869
SO4 (mg SO4 / L)	9.4364461	20.887	20.925946	20.345833	18.171206	17.573344	16.054294	16.274287	14.217883	12.873452
PO4 (mg PO4 / L)	0.4414055	0.1606371	0.1606371	0.1606371	0.1606371	0.1606371	0.3388912	0.3606557	0.393788	0.3679681
NPOC_ppm	3.154	2.043	1.298	1.317	1.159	1.059	1.276	1.261	1.233	1.114
TDN_ppm	0.6551	3.937	5.565	5.308	4.377	4.346	4.32	4.19	4.376	4.465
N2 conc		737.23009	721.71096	708.50654	726.02707	742.41067	736.63599	750.79875	713.13705	705.10737
O2 conc		259.39574	260.93033	255.76096	250.31002	247.12698	242.72751	241.31595	238.07575	235.27471
Ar conc		18.30388	17.915713	17.520722	17.866366	18.141942	18.125919	18.241461	17.669036	17.928217
N2:Ar		40.277257	40.283686	40.438204	40.636528	40.922337	40.639925	41.158916	40.360836	39.329476
N2_ppm		20.642442	20.207907	19.838183	20.328758	20.787499	20.625808	21.022365	19.967838	19.743006
Ar_ppm		0.7321552	0.7166285	0.7008289	0.7146546	0.7256777	0.7250368	0.7296584	0.7067614	0.7171287
N2_um		737.23009	721.71096	708.50654	726.02707	742.41067	736.63599	750.79875	713.13705	705.10737
Ar_um		18.30388	17.915713	17.520722	17.866366	18.141942	18.125919	18.241461	17.669036	17.928217
N2_excess		1.1846156	1.187523	1.2573957	1.3470779	1.4763209	1.3486142	1.5833017	1.2224098	0.7560292

Table A- 27. Rainbow Reservoir chemical data from CT DEEP 6/26/20 (continued).

Sample_name	CM11	CM12	CM13	CM14	CM15	CM16	CM17	CM18	CM19	CM20	CM21	CM22
Date	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020	6/26/2020
Month	June	June	June	June								
Lat	41.895089	41.892994	41.893042	41.892924	41.892918	41.892898	41.892946	41.892875	41.892826	41.892847	41.892967	
Long	-72.74183	-72.74452	-72.74438	-72.74444	-72.74448	-72.74442	-72.74443	-72.7444	-72.744362	-72.74442	-72.74428	
Sample Category	GW	GW	GW	SW								
Sample Type	Temporal	Temporal	Temporal	Temporal								
Locations	Rainbow_A	Rainbow_B	Rainbow_B	Rainbow_B	Rainbow_							
NO3 (mg N / L)	4.5059771	2.9015365	2.3166787	1.941125	2.0532416	2.1502565	2.0122179	2.1796589	2.7005677	2.6381261	2.3421007	0.462750
Cl (mg / L)	20.589845	74.650944	57.135987	53.834965	56.505526	54.856307	54.734632	60.603318	57.523433	58.015476	40.339045	40.32220
SO4 (mg SO4 / L)	12.548236	43.417401	91.78865	86.570469	78.746901	78.393294	77.678076	25.732208	19.704641	19.671803	11.381571	8.558105
PO4 (mg PO4 / L)	0.3826791	0.3950263	0.5308189	0.4979832	0.544093	0.542762	0.5215745	0.4049615	0.3716351	0.3643083	0.3716351	0.417452
NPOC_ppm	1.091	1.027	0.6853	1.015	0.7461	0.9417	1.092	0.9542	1.074	1.028	0.7954	2.61
TDN_ppm	4.428	2.808	2.275	1.869	1.945	2.013	1.912	2.047	2,566	2,498	2.14	0.596
N2 conc	716.58308	726.09573	701.7259	774.59702	745.78572	759.35871	759.83028	752.81815	745.52546	758.68623	681.71025	
O2 conc	229.9894	222.96417	258.48194	257.60304	260.29729	256.54154	253.85824	255.8051	252.02664	250.76549	259.04231	
Ar conc	18.11199	18.940917	18.449384	19.690355	18.892409	19.062991	19.12194	18.394838	17.999005	18.186101	17.739182	
N2:Ar	39.564016	38.334772	38.035194	39.338906	39.475416	39.834184	39.736045	40.925512	41.42037	41.717917	38.429634	
N2_ppm	20.064326	20.330681	19.648325	21.688716	20.882	21.262044	21.275248	21.078908	20.874713	21.243214	19.087887	
Ar_ppm	0.7244796	0.7576367	0.7379754	0.7876142	0.7556964	0.7625196	0.7648776	0.7357935	0.7199602	0.727444	0.7095673	
N2_um	716.58308	726.09573	701.7259	774.59702	745.78572	759.35871	759.83028	752.81815	745.52546	758.68623	681.71025	
Ar_um	18.11199	18.940917	18.449384	19.690355	18.892409	19.062991	19.12194	18.394838	17.999005	18.186101	17.739182	
N2 excess	0.8620882	0.3062237	0.1707548	0.7602934	0.8220229	0.9842582	0.9398794	1.4777564	1.7015313	1.836082	0.3491203	

Table A- 28. Rainbow Reservoir chemical data from CT DEEP 7/21/20.

Sample_name	CZ03	CZ04	CZ05	CZ06	CZ07	CZ08	CZ09	CZ10
Date	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020
Month	July	July	July	July	July	July	July	July
Lat	41.895155	41.895155	41.895144	41.895151	41.89507	41.895151	41.895094	41.895126
Long	-72.742185	-72.74208	-72.74201	-72.74198	-72.74204	-72.742	-72.74191	-72.74191
Sample Category	GW	GW	GW	GW	GW	GW	GW	GW
Sample Type	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal
Locations	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A	Rainbow_A
NO3 (mg N / L)	5.7775135	5.1148693	4.8671521	4.7707508	4.2336188	4.4507516	5.1004896	5.21361
Cl (mg / L)	87.292738	68.559585	56.765444	52.180121	37.826727	37.130516	24.225033	21.401136
SO4 (mg SO4 / L)	21.114435	19.033224	18.015355	17.147868	15.872677	15.986308	13.68956	12.251653
PO4 (mg PO4 / L)	0.1606371	0.1606371	0.3293012	0.3425006	0.3753092	0.4212153	0.3863749	0.4124465
NPOC_ppm	1.165	1.345	1.318	0.8347	1.227	1.145	1.063	1.331
TDN_ppm	5.714	4.952	5.01	4.557	4.078	4.256	4.941	5.122
N2 conc	729.66097	742.41145	753.5998	751.72477	781.4939	755.18392	748.18284	722.91226
O2 conc	268.53448	244.4182	240.10682	238.28365	213.41554	273.28149	269.4246	272.38975
Ar conc	18.146588	18.324597	18.568907	18.612664	19.009628	18.862934	18.796205	18.591294
N2:Ar	40.209266	40.514475	40.583961	40.387811	41.110427	40.035336	39.804995	38.884451
N2_ppm	20.430507	20.78752	21.100794	21.048294	21.881829	21.14515	20.949119	20.241543
Ar_ppm	0.7258635	0.7329839	0.7427563	0.7445066	0.7603851	0.7545174	0.7518482	0.7436518
N2_um	729.66097	742.41145	753.5998	751.72477	781.4939	755.18392	748.18284	722.91226
Ar_um	18.146588	18.324597	18.568907	18.612664	19.009628	18.862934	18.796205	18.591294
N2_excess	1.1538701	1.2918857	1.3233074	1.2346082	1.561375	1.0752192	0.9710587	0.5547886
Notes	IB22	IB23	IB24	IB25	IB26	IB27	IB28	IB29
FLIR_img	829	830	831	832	834	835	836	838
seep_surf_temp	13.23	11.98	11.555	14.654	11.316	11.199	11.877	12.528
seep_subsurf_temp	12.15	11.4	11.452	13.092	10.958	10.826	12.47	11.556
seep_cond	631	556	461	439	351	349	278	246
seep_DO	1.94	2.33	2.99	4.52	2.36	2.72	3.23	3.44
	CZ02_A;	CZ03_A;	CZ04_A;	CZ05_A;	CZ06_A;	CZ07_A;	CZ08_A;	CZ09_A;
seep_MIMS_ID	CZ02_B	CZ03_B	CZ04_B	CZ05_B	CZ06_B	CZ07_B	CZ08_B	CZ09_B

Table A- 29. Rainbow Reservoir chemical data from CT DEEP 7/21/20 (continued).

	200		3	9			i	2				0
Sample_name	CZ11	CZ12	CZ13	CZ14	CZ15	CZ16	CZ17	CZ18	CZ19	CZ20	CZ21	CZ22_SW
Date	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020	7/21/2020
Month	July	July	July	July	July	July	July	July	July	July	July	July
Lat	41.895089	41.892994	41.893042	41.892924	41.892918	41.892898	41.892946	41.892875	41.892826	41.892847	41.892967	
Long	-72.741834	-72.74452	-72.74438	-72.74444	-72.74448	-72.74442	-72.74443	-72.7444	-72.74436	-72.74442	-72.74428	
Sample Category	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	SW
Sample Type	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal
Locations	Rainbow_A	Rainbow_B										
NO3 (mg N / L)	5.2009478	2.4887334	2.1960823	1.9838713	1.8342263	2.3173068	1.9430408	2.2566188	2.5873019	2.6520515	2.1970294	0.4583251
CI (mg / L)	22.069423	136.87474	62.645833	62.972212	59.481604	53.743768	53.730155	58.86776	54.077569	56.542922	56.03087	39.049966
SO4 (mg SO4 / L)	12.284115	35.998922	117.26114	86.059696	85.561616	70.096638	78.863159	24.015961	19.744575	19.484496	18.462284	7.7518576
PO4 (mg PO4 / L)	0.4161998	0.1606371	0.5123694	0.549425	0.564154	0.5032033	0.5520958	0.4037168	0.3863749	0.372859	0.393788	0.4249854
NPOC_ppm	1.182	1.144	1.05	0.9961	1.113	0.92	0.9761	0.9143	1.275	1.074	1.1	2.931
TDN_ppm	5.06	2.329	2.037	1.678	1.734	2.145	1.808	2.125	2.41	2.462	2.019	0.6018
N2 conc	737.131	714.5003	579.70111	815.35957	598.29842	770.16567	812.24613	815.54092	779.92208	779.27133	761.16984	
O2 conc	272.20295	270.53347	290.39629	262.21377	280.30713	262.56169	262.54391	249.59065	255.62565	255.13454	254.55058	
Ar conc	18.79832	19.245528	15.900931	20.456788	15.852228	19.547207	20.559765	19.810574	19.254199	19.25581	18.953672	
N2:Ar	39.212599	37.125524	36.457054	39.857653	37.74223	39.400291	39.506586	41.16695	40.506597	40.469414	40.159492	
N2_ppm	20.639668	20.006008	16.231631	22.830068	16.752356	21.564639	22.742892	22.835146	21.837818	21.819597	21.312755	
Ar_ppm	0.7519328	0.7698211	0.6360373	0.8182715	0.6340891	0.7818883	0.8223906	0.792423	0.770168	0.7702324	0.7581469	
N2_um	737.131	714.5003	579.70111	815.35957	598.29842	770.16567	812.24613	815.54092	779.92208	779.27133	761.16984	
Ar_um	18.79832	19.245528	15.900931	20.456788	15.852228	19.547207	20.559765	19.810574	19.254199	19.25581	18.953672	
N2_excess	0.7031774	-0.240598	-0.54288	0.9948707	0.0382763	0.7880518	0.8361184	1.586935	1.2883233	1.271509	1.1313625	
Notes	IB30	IB31	IB32	IB33	IB34	IB35	IB36	IB37	IB38	IB39	IB40	
FLIR_img	839	841	842	843	845	846	847	848	849	850	852	
seep_surf_temp	12.416	16.92	16.62	15.59	13.39	12.65	12.33	15.77	16.75	14.48	15.24	
seep_subsurf_temp	11.544	13.68	14.08	13.43	13.46	10.92	10.42	11.64	12.36	12.86	13.09	
seep_cond	241	612	562	473	490	446	456	366	350	357	353	
seep_DO	3.1	3.75	3.15	2.14	1.66	3.5	3.77	2.75	2.83	2.69	2.84	
200-00-	CZ10_A;	CZ11_A;	CZ12_A;	CZ13_A;	CZ14_A;	CZ15_A;	CZ16_A;	CZ17_A;	CZ18_A;	CZ19_A;	CZ20_A;	
seep_MIMS_ID	CZ10_B	CZ11_B	CZ12_B	CZ13_B	CZ14_B	CZ15_B	CZ16_B	CZ17_B	CZ18_B	CZ19_B	CZ20_B	

Table A- 30. Rainbow Reservoir chemical data from CT DEEP 8/26/20.

Sample name	DTSW1	DT01	DT02	DT03	DT04	DT05	DT06	DT07	DT08	DT09
Date	8/26/2020			8/26/2020		8/26/2020				
Month	August									
Lat		41.89513	41.89516	41.89516	41.89514	41.895151	41.89507	41.89515	41.89509	41.89513
Long		-72.74236	-72.74219	-72.74208	-72.74201	-72.74198	-72.74204	-72.742	-72.74191	-72.74191
Sample Category	SW	GW								
Sample Type	Temporal									
Locations	Rainbow_A									
NO3 (mg N / L)	0.427229	4.612909	5.646667	5.116607	4.668012	4.7230647	4.205246	4.423186	4.719153	5.511181
CI (mg / L)	42.55791	83.41385	91.41737	76.47785	58.2808	58.671713	37.72882	39.29231	23.95083	124.1491
SO4 (mg SO4 / L)	9.215863	20.38533	20.40412	20.00676	18.0856	17.432501	15.03385	15.51081	13.27323	11.81116
PO4 (mg PO4 / L)	0.160637	0.160637	0.160637	0.160637	0.160637	0.1606371	0.160637	0.160637	0.160637	0.160637
NPOC_ppm	2.902	1.875	0.9924	1.08	0.9311	0.8948	1.135	0.8959	1.027	1.208
TDN_ppm	0.6207	4.88	6.007	5.536	4.944	4.912	4.454	4.756	5.01	5.762
N2 conc		774.4789	751.2904	752.0422	750.8798	771.19736	789.733	793.6173	763.8309	724.1162
O2 conc		279.4742	283.7958	284.5171	276.9765	277.65116	281.5877	278.8558	278.4316	278.2577
Ar conc		19.33629	18.80829	18.61149	18.71202	19.122155	19.41497	19.47239	18.98492	18.45743
N2:Ar		40.05313	39.94464	40.40742	40.1282	40.330044	40.67649	40.75604	40.23355	39.2317
N2_ppm		21.68541	21.03613	21.05718	21.02463	21.593526	22.11252	22.22128	21.38727	20.27525
Ar_ppm		0.773452	0.752332	0.744459	0.748481	0.7648862	0.776599	0.778895	0.759397	0.738297
N2_um		774.4789	751.2904	752.0422	750.8798	771.19736	789.733	793.6173	763.8309	724.1162
Ar_um		19.33629	18.80829	18.61149	18.71202	19.122155	19.41497	19.47239	18.98492	18.45743
N2_excess		1.083265	1.034208	1.243476	1.117213	1.208486	1.36515	1.40112	1.164851	0.711814
GC Sample ID	DT_SW01_2	DT01_25	DT02_61	DT03_272	DT04_225	DT05_221	DT06_305	DT07_207	DT08_245	DT09_313
CH4_ppb	3.261173	0.351488	0.342935	0.34464	0.324542	0.3363376	0.357952	0.337723	0.341961	0.337057
CO2_ppb	2795.473	24900.22	10851.57	11503.27	16783.42	16527.932	16408.23	13187.65	17337.56	23217.31
N20_ppb	0.581454	29.55036	39.15145	40.03351	34.45368	31.640538	19.38844	21.23751	18.51754	14.61673
FLIR_img		1281	1282	1283	1284	1286	1285	1287	1288	1289
surface_cond	234									
surface_temp	24.35									
surface_DO	7.58									
seep_surf_temp		13.34	13.637	13.225	12.78	13.271	12.84	12.668	13.351	13.31
seep_subsurf_temp		13.138	13.232	12.65	12.681	13.003	12.231	11.963	12.786	12.737
seep_cond		581	667	590	483	464	359	376	289	263
seep_DO		2.32	2.37	2.84	4.81	3.9	2.72	3.68	3.92	3.99
seep_gas_ID		DT01_79;	DT02_305;	DT03_325;	DT04_225;	DT05_221;	DT06_305;	DT07_242;	DT08_51;	DT09_348;

Table A- 31. Rainbow Reservoir chemical data from CT DEEP 8/26/20 (continued).

Sample_name	DT10	DT11	DT12	DT13	DT14	DT15	DT16	DT17	DT18	DT18	DT20	DTSW2
Date	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Month	August											
Lat	41.895089	41.89299	41.89304	41.89292	41.89292	41.8929	41.89295	41.89288	41.89283	41.89285	41.892967	
Long	-72.74183	-72.74452	-72.74438	-72.74444	-72.74448	-72.74442	-72.74443	-72.7444	-72.74436	-72.74442	-72.74428	
Sample Category	GW	SW										
Sample Type	Temporal											
Locations	Rainbow_A	Rainbow_B										
NO3 (mg N / L)	5.3681648	2.56468	2.306758	1.964776	1.757995	2.342044	1.874055	2.094064	2.089977	2.140366	2.2673767	0.480979
Cl (mg / L)	27.761971	188.7484	66.70135	60.47791	57.39956	53.60431	53.24755	60.06874	62.87022	64.19249	66.105178	41.87858
SO4 (mg SO4 / L)	11.105089	50.5973	103.1219	99.87987	61.88477	52.27795	58.37599	29.11359	19.68606	18.93159	20.499815	9.308561
PO4 (mg PO4 / L)	0.1606371	0.160637	0.427964	0.464496	0.160637	0.160637	0.160637	0.160637	0.160637	0.160637	0.1606371	0.160637
NPOC_ppm	1.027	1.104	1.304	1.214	1.022	0.9964	1.005	1.003	1.037	0.974	0.9352	2.789
TDN_ppm	5.792	2.588	2.207	1.876	1.843	2.394	1.948	2.125	2.196	2.261	2.333	0.5657
N2 conc	702.36551	689.4097	630.1168	736.0773	751.5221	755.0705	782.8801	789.7422	731.1621	775.612	724.41552	
O2 conc	284.39158	284.1451	280.0293	282.046	276.5044	277.6874	279.53	276.6294	281.6162	337.0252	333.59431	
Ar conc	18.108265	18.52881	17.01204	18.4791	18.91033	19.16689	19.65309	19.55157	18.4864	19.03491	18.263782	
N2:Ar	38.787014	37.20745	37.03947	39.83296	39.74136	39.39452	39.83497	40.39278	39.55134	40.74682	39.664048	
N2_ppm	19.666234	19.30347	17.64327	20.61017	21.04262	21.14197	21.92064	22.11278	20.47254	21.71714	20.283635	
Ar_ppm	0.7243306	0.741152	0.680481	0.739164	0.756413	0.766676	0.786123	0.782063	0.739456	0.761396	0.7305513	
N2_um	702.36551	689.4097	630.1168	736.0773	751.5221	755.0705	782.8801	789.7422	731.1621	775.612	724.41552	
Ar_um	18.108265	18.52881	17.01204	18.4791	18.91033	19.16689	19.65309	19.55157	18.4864	19.03491	18.263782	
N2_excess	0.5107276	-0.203552	-0.279513	0.983706	0.942284	0.785442	0.984614	1.236853	0.856357	1.39695	0.9073225	
GC Sample ID	DT10_232	DT11_33	DT12_222	DT13_666	DT14_258	DT15_230	DT16_8	DT17_217	DT18_266	DT19_70	DT20_228	DTSW02_2
CH4_ppb	0.3214287	0.31958	0.365644	0.337108	0.404324	0.344745	0.36403	0.372137	0.384815	0.361989	0.3529029	7.74651
CO2_ppb	23589.45	47247.75	42860.47	47007.98	47418.63	41083.58	46192.64	48576.76	52172.56	54645.59	47952.547	1186.966
N20_ppb	13.448781	34.85498	33.57711	37.54827	44.20429	50.56866	54.09163	46.14434	25.64355	30.8383	21.660752	0.58956
FLIR_img	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	
surface_cond												
surface_temp												
surface_DO												
seep_surf_temp	13.159	15.795	16.188	14.375	12.609	12.582	12.692	12.935	14.317	13.153	15.126	
seep_subsurf_temp	12.738	13.755	14.346	12.919	11.677	11.189	11.404	11.314	12.518	12.674	12.936	
seep_cond	267	741	557	519	446	409	422	381	390	383	395	
seep_DO	3.87	4.07	4.4	3.21	2.45	4.08	2.36	3.25	3.36	2.98	5.04	
seep_gas_ID	DT10_53;	DT11_201;	DT12_292;	DT13_666;	DT14_258;	DT15_308;	DT16_08;	DT17_212;	DT18_266;	DT19_296;	DT20_288;	

Table A- 32. Rainbow Reservoir chemical data from CT DEEP 9/23/20.

Sample_name	EFSW1	EF01	EF02	EF03	EF04	EF05	EF06	EF07	EF08	EF09	EF10
Date	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020
Month	September										
Lat		41.89513	41.89516	41.89516	41.89514	41.89515	41.89507	41.89515	41.895094	41.89513	41.89509
Long		-72.74236	-72.74219	-72.74208	-72.74201	-72.74198	-72.74204	-72.742	-72.74191	-72.74191	-72.74183
Sample Category	SW	GW									
Sample Type	Temporal										
Locations	Rainbow_A										
NO3 (mg N / L)	0.835321	5.313186	5.222478	5.507578	5.000425	4.661747	5.016777	4.839525	4.7168054	5.497024	5.577034
Cl (mg / L)	53.72158	93.67959	89.44603	88.20574	66.71463	61.08319	54.69873	49.40929	35.977972	27.02142	29.40247
SO4 (mg SO4 / L)	14.07361	19.64393	19.83749	22.4735	19.09768	18.0829	17.20433	16.04509	14.075426	12.809	11.72514
PO4 (mg PO4 / L)	0.160637	0.160637	0.160637	0.160637	0.160637	0.160637	0.160637	0.160637	0.1606371	0.160637	0.160637
NPOC_ppm	2.35	1.156	1.084	0.9601	0.7586	0.9709	0.7614	0.9196	0.6897	1.056	1.13
TDN_ppm	0.9208	5.834	5.699	4.939	5.36	5.131	5.077	5.372	5.052	5.689	6.109
N2 conc		742.1698	745.7746	759.2595	764.3169	771.0674	766.4774	768.3016	767.85532	731.2694	699.810
O2 conc		302.0828	301.4516	303.3642	301.5855	302.9662	301.7877	301.5466	303.09893	299.772	295.959
Ar conc		18.77377	18.81981	18.91021	19.07951	19.2303	19.13728	19.14939	19.206568	18.73552	18.0698
N2:Ar		39.53226	39.62711	40.15077	40.05956	40.09648	40.05152	40.12147	39.978789	39.03118	38.72813
N2_ppm		20.78075	20.88169	21.25927	21.40087	21.58989	21.46137	21.51244	21.499949	20.47554	19.594
Ar ppm		0.750951	0.752792	0.756408	0.76318	0.769212	0.765491	0.765976	0.7682627	0.749421	0.722793
N2_um		742.1698	745.7746	759.2595	764.3169	771.0674	766.4774	768.3016	767.85532	731.2694	699.8107
Ar um		18.77377	18.81981	18.91021	19.07951	19.2303	19.13728	19.14939	19.206568	18.73552	18.06983
N2 excess		0.84773	0.890621	1.127418	1.086175	1.102869	1.082539	1.114167	1.0496484	0.621141	0.484102
GC Sample ID	EFSW 360	EF01_251	EF02 283	EF03 231	EF04 60	EF05 215	EF06 225	EF07 299	EF08 333	EF09 48	EF10 270
CH4 ppb	3.724658	0.347811	0.347754	0.330126	0.35933	0.336454	0.343388	0.343752	0.3413738	0.347762	0.347818
CO2_ppb	1736.753	18459.34	11041.52	11585.21	14824.15	18929.8	15627.67	13490.92	19806.543	24375.99	25729.4
N20 ppb	0.638521	36.33259	37.58231	44.75749	39.41651	38.95225	30.03177	26.18317	21.037883	16.95752	16.3707
FLIR img		968	970, 971	972	973-975	976	977	978-979	980	981	982
surface cond	314										
surface temp	14.64										
surface DO	9.96		Į.								
	EFSW 360										
	:										
surface_gas_ID	EFSW_312										
seep_surf_temp		13.52	13.04	13.1	13.02	12.89	13.01	12.78	13.28	13.44	13.0
seep_subsurf_temp		13.4	13.03	12.95	12.86	12.73		12.39	12.96	12.79	13.19
seep_cond		676	669	623	523	481	440	423	333	275	27
seep DO		3.82	3.08	3.1	3.15	2.56		2.63	2.51	2.92	3
300P_00		EF01 74;	EF02 254;	EF03 231;		EF05 278;	EF06_225;	EF07_239;	EF08 280;	EF09_48;	EF10 13;
seep gas ID		EF01 251	EF02 283	EF03 322	EF04 60	EF05 215	EF06 81	EF07 299	EF08 333	EF09_284	EF10 270
		EF01 A;	EF02_A;	EFO3 A;	EFO4 A;	EF05 A;	EFO6_A;	EF07_A;	EF08 A;	EF09 A;	EF10 A;
seep MIMS ID		EFO1 B	EFO2 B	EFO3 B	EFO4 B	EFO5 B	EFO6 B	EFO7 B	EFO8 B	EFO9 B	EF10 B

Table A- 33. Rainbow Reservoir chemical data from CT DEEP 9/23/20 (continued).

Sample name	EF11	EF12	EF13	EF14	EF15	EF16	EF17	EF18	EF19	EF20
Date	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020
Month	September									
Lat	41.89299	41.89304	41.89292	41.89292	41.8929	41.89295	41.89288	41.89283	41.89285	41.89297
Long	-72.74452	-72.74438	-72.74444	-72.74448	-72.74442	-72.74443	-72.7444	-72.74436	-72.74442	-72.74428
Sample Category	GW									
Sample Type	Temporal									
Locations	Rainbow_B	Rainbow_E								
NO3 (mg N / L)	0.251651	1.4104	1.931454	2.450215	1.984979	1.577715	2.63412	2.529796	2.138732	1.99453
Cl (mg / L)	187.8015	107.0874	128.9057	87.54426	62.21197	57.36011	62.8059	60.83262	61.53905	59.0436
SO4 (mg SO4 / L)	67.24942	72.2907	38.43827	36.53764	68.09496	66.12578	20.12046	24.66392	21.09669	20.9243
PO4 (mg PO4 / L)	0.160637	0.160637	0.160637	0.160637	0.160637	0.160637	0.160637	0.160637	0.160637	0.16063
NPOC_ppm	1.192	1.129	0.7444	0.8278	0.859	0.9266	0.9793	1.026	0.9946	1.01
TDN_ppm	0.2888	1.435	1.654	2.53	1.988	1.749	2.822	2.575	2.304	2.21
N2 conc	724.9411	708.5953	735.5735	715.0691	772.1466	795.4656	714.9367	695.5556	727.0455	689.114
O2 conc	298.2286	296.0479	300.9845	297.738	299.5653	297.6959	298.6481	298.0409	299.733	298.866
Ar conc	19.3743	18.66441	18.55937	18.65413	19.78352	20.12025	18.64142	18.36187	18.87414	18.2347
N2:Ar	37.41768	37.96505	39.63354	38.33301	39.02978	39.53557	38.35205	37.88043	38.52073	37.7911
N2_ppm	20.29835	19.84067	20.59606	20.02193	21.6201	22.27304	20.01823	19.47556	20.35727	19.2951
Ar_ppm	0.774972	0.746576	0.742375	0.746165	0.791341	0.80481	0.745657	0.734475	0.754965	0.72939
N2_um	724.9411	708.5953	735.5735	715.0691	772.1466	795.4656	714.9367	695.5556	727.0455	689.114
Ar_um	19.3743	18.66441	18.55937	18.65413	19.78352	20.12025	18.64142	18.36187	18.87414	18.2347
N2_excess	-0.108487	0.139034	0.893525	0.305425	0.620507	0.849226	0.314036	0.10077	0.390315	0.06041
GC Sample ID	EF11_256	EF12_341	EF13_350	EF14_666	EF15_242	EF16_93	EF17_292	EF18_351	EF19_217	EF20_100
CH4_ppb	0.351649	0.346683	0.391532	0.326194	0.323148	0.352218	0.365748	0.31999	0.332239	0.40589
CO2_ppb	33184.23	29105.67	59772.01	51396.71	47842.15	49744.97	52106.83	51095.27	53542.14	47296.0
N20_ppb	3.059601	5.823913	65.79882	40.30449	61.1877	64.05967	30.32131	23.5739	27.48677	21.9643
FLIR_img	983	984	985	986	988	989	990	991-992	993-994	995-1000
surface_cond										
surface_temp										
surface_DO										
surface_gas_ID										
seep_surf_temp	14.55	13.41	13.03	12.46	11.95	11.82	13.23	13.88	12.22	13.1
seep_subsurf_temp	12.45	11.94	11.64	11.52	11.24	10.92	11.41	11.95	11.51	12.
seep_cond	677	596	540	502	476	442	388	377	386	36
seep_DO	4.15	4.98	2.43	3.15	2.35	2.1	3.59		3.21	3.7
	EF11_256;	EF12_210;	EF13_253;	EF14_32;				EF18_351;	EF19_208;	
seep_gas_ID	EF11_249	EF12_341	EF13_350	EF14_666	EF15_242	EF16_93	EF17_245	EF18_40	EF19_217	EF20_244
	EF11_A;	EF12_A;	EF13_A;	EF14_A;	EF15_A;	EF16_A;	EF17_A;	EF18_A;	EF19_A;	EF20_A;
seep_MIMS_ID	EF11_B	EF12_B	EF13_B	EF14_B	EF15_B	EF16_B	EF17_B	EF18_B	EF19_B	EF20_B

Table A- 34. Rainbow Reservoir chemical data from CT DEEP 10/15/20.

Sample name	EP01	EP02	EP03	EP04	EP05	EP06	EP07	EP08	EP09	EP10
Date		10/15/2020		The state of the s	10/15/2020	- Control of the Cont				10/15/2020
Month	October	October	October	October	October	October	October	October	October	October
Lat	41.895126	41.895155	41.895155	41.895144	41.895151	41.89507	41.895151	41.895094	41.895126	41.895089
Long	-72.74236		-72.742077	-72.742007	-72.74198				-72.74191	-72.741834
Sample Category	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW
Sample Type	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal	Temporal
Locations	Rainbow A	Rainbow A	Rainbow A	Rainbow A	Rainbow_A	Rainbow A	Rainbow A	Rainbow A	Rainbow A	Rainbow A
NO3 (mg N / L)	5.6553845	6.2017657	5.57151041	5.4883808	5.2432062	5.2836572	5.1803264	4.9927513	4.9030831	5.02328448
CI (mg / L)	92.72589	97.712243	90.5848893	78.277936	77.19144	72.7843	70.352669	50.581959	38.12268	35.089744
SO4 (mg SO4 / L)	17.887579	19.589843	21.0445328	20.50228	20.862917	19.776961	17.99131	15.639559	14.035414	12.7901063
PO4 (mg PO4 / L)	0.1606371	0.1606371	0.16063713	0.1606371	0.1606371	0.1606371	0.1606371	0.1606371	0.1606371	0.16063713
NPOC_ppm	1.172	0.7681	0.7506	0.6073	0.735	0.8081	0.9578	0.7326	1.018	1.04
TDN_ppm	6.237	6.551	5.871	5.488	5.519	5.295	5.502	5.154	5.118	5.352
N2 conc	715.18706	709.98641	718.442623	728.61654	725.22027	739.5098	742.06986	736.56849	714.43855	713.621836
O2 conc	125.57696	123.76657	112.359932	102.58052	150.97126	111.35808	111.21607	136.97496	177.9883	164.821623
Ar conc	17.758158	17.609592	17.7024729	17.780924	17.693466	18.074766	18.145957	18.133387	17.845027	17.7584695
N2;Ar	40.273719	40.318162	40.5843087	40.977428	40.988028	40.913935	40.894501	40.619466	40.035723	40.1848727
N2_ppm	20.025238	19.879619	20.1163934	20.401263	20.306168	20.706274	20.777956	20.623918	20.004279	19.9814114
Ar_ppm	0.7103263	0.7043837	0.70809891	0.711237	0.7077386	0.7229906	0.7258383	0.7253355	0.7138011	0.71033878
N2_um	715.18706	709.98641	718.442623	728.61654	725.22027	739.5098	742.06986	736.56849	714.43855	713.621836
Ar_um	17.758158	17.609592	17.7024729	17.780924	17.693466	18.074766	18.145957	18.133387	17.845027	17.7584695
N2_excess	1.1830157	1.2031131	1.32346438	1.501233	1.5060264	1.4725215	1.4637333	1.3393627	1.0753939	1.14283943
GC Sample ID	EP01_51	EP02_308	EP03_268	EP04_222	EP05_263	EP06_297	EP07_42	EP08_94	EP09_321	EP10_72
CH4_ppb	0.3399794	0.3278042	0.34669455	0.3611637	0.356175	0.3562303	0.3463903	0.3388472	0.3460597	0.34337077
CO2_ppb	20812.849	11830.884	12533.2244	15825.501	20509.79	18456.991	15542.406	23538.633	35486.817	30669.8412
N20_ppb	35.596966	41.02096	53.3948589	48.337876	49.5416	47.595018	47.647889	27.628934	25.576558	22.2251917

Table A- 35. Rainbow Reservoir chemical data from CT DEEP 10/15/20 (continued).

Sample_name	EP11	EP12	EP13	EP14	EP15	EP16	EP17	EP18	EP19	EP20
Date	10/15/2020	10/15/2020	10/15/2020	10/15/2020	10/15/2020	10/15/2020	10/15/2020	10/15/2020	10/15/2020	10/15/2020
Month	October									
Lat	41.892994	41.893042	41.892924	41.892918	41.892898	41.892946	41.892875	41.892826	41.892847	41.892967
Long	-72.744517	-72.744376	-72.744438	-72.744477	-72.744415	-72.744429	-72.744404	-72.744362	-72.74442	-72.744282
Sample Category	GW									
Sample Type	Temporal									
Locations	Rainbow_B									
NO3 (mg N / L)	2.4833132	2.19268038	2.4291191	2.2551695	2.14306942	2.4557724	2.5243046	2.6313048	2.2164209	1.8621738
CI (mg / L)	104.94399	100.884918	163.56949	137.64797	70.058407	47.376356	53.585017	56.933432	53.956049	58.165455
SO4 (mg SO4 / L)	24.058069	56.2728979	18.106638	14.449868	55.2957936	32.143189	23.087441	20.913856	16.741557	13.123469
PO4 (mg PO4 / L)	0.1606371	0.16063713	0.1606371	0.1606371	0.16063713	0.1606371	0.1606371	0.1606371	0.1606371	0.1606371
NPOC_ppm	0.7984	0.8849	0.942	0.7938	0.7782	0.9264	0.9204	0.8984	0.9337	0.7752
TDN_ppm	2.555	2.232	2.413	2.37	2.288	2.609	2.711	2.853	2.722	2.018
N2 conc	680.90577	715.091411	659.73176	644.72892	738.99759	764.10192	746.34437	641.54892	704.80961	733.48413
O2 conc	165.00372	179.546873	235.48114	207.56113	123.753452	137.26971	150.32312	212.08692	132.50721	138.31782
Ar conc	17.669696	18.0030185	16.657878	17.003741	18.7732339	19.065773	18.661452	16.834816	18.052154	19.099999
N2:Ar	38.535227	39.7206398	39.60479	37.916888	39.3644268	40.077155	39.993906	38.10846	39.042964	38.402313
N2_ppm	19.065362	20.0225595	18.472489	18.05241	20.6919325	21.394854	20.897642	17.96337	19.734669	20.537556
Ar_ppm	0.7067879	0.72012074	0.6663151	0.6801496	0.75092935	0.7626309	0.7464581	0.6733927	0.7220862	0.7639999
N2_um	680.90577	715.091411	659.73176	644.72892	738.99759	764.10192	746.34437	641.54892	704.80961	733.48413
Ar_um	17.669696	18.0030185	16.657878	17.003741	18.7732339	19.065773	18.661452	16.834816	18.052154	19.099999
N2_excess	0.3968698	0.93291331	0.8805259	0.1172566	0.77183381	1.0941294	1.0564843	0.2038855	0.6264685	0.3367659
GC Sample ID	EP11_286	EP12_266	EP13_245	EP14_310	EP15_666	EP16_360	EP17_282	EP18_283	EP19_352	EP20_244
CH4_ppb	0.3295312	0.34995933	0.3425819	0.3481853	0.35634087	0.3661509	0.3505926	0.3652481	0.3617593	0.325393
CO2_ppb	57187.202	57820.8304	65949.711	55294.9	50697.0346	49655.38	49574.512	44134.881	58227.822	56220.549
N20_ppb	41.672823	48.5106881	36.993452	14.227481	57.2771056	54.491493	46.123831	24.968162	30.271298	33.614738

Table A- 36. CT DEEP Municipal NPDES Permit for MDC, Windsor. Nitrogen and Phosphorus Limits

Location	n: Windsor		Receiving Stream: Farmington River						
Flow/Time Based monitoring									
Parameter	Units	Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type			
Nitrogen, Ammonia (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite			
Phosphorus, Total	mg/l	-	NA	-	Monthly	Daily composite			

Table A- 37. CT DEEP NPDES Permit Farmington WPCA. Nitrogen and Phosphorus Limits

Location:	Farmington		Receiving Stream: Farmington River						
Flow/Time Based monitoring									
Parameter Unit		Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type			
Nitrogen, Ammonia (total as N)	Nitrogen, Ammonia (total as N) mg/l		15	-	3/week	Daily composite			
Nitrogen, Ammonia (total as N)	mg/l	July-Sept	7	-	3/week				
Nitrogen, Ammonia (total as N)	mg/l	October	11.6	-	3/week				
Nitrogen, Ammonia (total as N)	mg/l	Nov-May	NA	-	3/week				
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	📑 ily composite			
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite			
Phosphorus, Total	mg/l	Apr 1st -Oct 31st	3.11	6.22	Weekly	Daily composite			
Phosphorus, Total	mg/l	Nov 1st - Mar31st	-	-	Monthly	Daily composite			
Phosphorus, Total after upgrade	lbs/day	Apr 1st -Oct 31st	2.79	5.58	Weekly	Daily composite			
Phosphorus, Total (Average Seasonal Load Cap)	lbs/day	Apr 1st -Oct 31st	70.11	NA	Weekly	Calculated			

 Table A- 38. CT DEEP NPDES Permit for Plainville. Nitrogen and Phosphorus Limits

Location	Re	ceiving Stream: P	equabuck River				
Flow/Time Based monitoring							
Parameter	Units	Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type	
Nitrogen, Ammonia (total as N)	mg/l	Jan-Mar	17.0	49.0	3/week	Daily composite	
Nitrogen, Ammonia (total as N)	mg/l	April	15.0	45.0	3/week	Daily composite	
Nitrogen, Ammonia (total as N)	mg/l	May	8.0	24.0	3/week	Daily composite	
Nitrogen, Ammonia (total as N)	mg/l	Jun-Oct	2.0	6.0	3/week	Daily composite	
Nitrogen, Ammonia (total as N)	mg/l	Nov 1st - Mar31st	8.0	23.0	3/week	Daily composite	
Nitrogen, Ammonia (total as N)	mg/l	December	16.0	46.0	3/week	Daily composite	
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite	
Phosphorus, Total	mg/l	-	NA	NA	Weekly	Daily composite	

Table A- 39. CT DEEP NPDES Permit for Bristol. Nitrogen and Phosphorus Limits

Location: Bristol			Re	ceiving Stream: P	equabuck River				
	Flow/Time Based monitoring								
Parameter	Units	Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type			
Nitrogen, Ammonia (total as N)	mg/l	Jan	17	-	3/week	Daily composite			
	mg/l	Feb	14	-	3/week	Daily composite			
	mg/l	Mar	-	-	3/week	Daily composite			
	mg/l	Apr	5.5	-	3/week	Daily composite			
	mg/l	May	4.5	-	3/week	Daily composite			
	mg/l	June	3.4	-	3/week	Daily composite			
	mg/l	July	2	-	3/week	Daily composite			
	mg/l	Aug	2	-	3/week	Daily composite			
	mg/l	Sept	2	-	3/week	Daily composite			
	mg/l	Oct	2.7	-	3/week	Daily composite			
	mg/l	Nov	15	-	3/week	Daily composite			
	mg/l	Dec	16	-	3/week	Daily composite			
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite			
Phosphorus, Total	mg/l	Apr 1st -Oct 31st	0.14	0.31	2/week	Daily composite			
Phosphorus, Total	mg/l	Nov 1st - Mar31st	NA	-	Monthly	Daily composite			
Phosphorus, Total	lbs/day	Apr 1st -Oct 31st	-	-	2/week	Daily composite			
Phosphorus, Total (Average Seasonal Load Cap)	lbs/day	Oct	7.48	-	2/week	Calculated			

Table A- 40. CT DEEP Municipal NPDES Draft Permit for Plymouth. Nitrogen and Phosphorus Limits

Location: Plymouth			Re	ceiving Stream: P	equabuck River	
		Flow/Time Ba	sed monitoring			
Parameter	Units	Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type
Nitrogen, Ammonia (total as N)	mg/l	Jan-Feb	6	-	3/week	Daily composite
	mg/l	Mar-Apr	9	-	3/week	Daily composite
	mg/l	May	8	-	3/week	Daily composite
	mg/l	June	4	-	3/week	Daily composite
	mg/l	July-Sept	2.5	-	3/week	Daily composite
	mg/l	Oct	4	-	3/week	Daily composite
	mg/l	Nov-Dec	5	-	3/week	Daily composite
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	Daily composite
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite
Phosphorus, Total	mg/l	Apr 1st -Oct 31st	0.78	1.56	2/week	Daily composite
Phosphorus, Total	mg/l	Nov 1st - Mar31st	NA	-	Monthly	Daily composite
Phosphorus, Total	lbs/day	Apr 1st -Oct 31st	-	-	Weekly	Daily composite
Phosphorus, Total (Average Seasonal Load Cap)	lbs/day	Oct	-	NA	Weekly	Calculated

Table A- 41. CT DEEP NPDES Permit for Simsbury. Nitrogen and Phosphorus Limits

Location: Simsbury			Re	Receiving Stream: Farmington River			
Flow/Time Based monitoring							
Parameter	Units	Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type	
Nitrogen, Ammonia (total as N)	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite	
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite	
Phosphorus, Total	mg/l	May-Sept	NA	-	Monthly	Daily composite	

Table A- 42. CT DEEP Municipal NPDES Permit for Canton. Nitrogen and Phosphorus Limits

Location: Canton			Re	ceiving Stream: Fa	armington River				
	Flow/Time Based monitoring								
Parameter	Units	Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type			
Nitrogen, Ammonia (total as N)	mg/l	-	NA	1	Monthly	Daily composite			
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite			
Phosphorus, Total	mg/l	Apr 1st -Oct 31st	NA	•	Weekly	Daily composite			
Phosphorus, Total	mg/l	Nov 1st - Mar31st	NA	-	Monthly	Daily composite			
Phosphorus, Total (Average Seasonal Load Cap)	lbs/day	October	24.8	NA	Monthly	Daily composite			

Table A- 43. CT DEEP NPDES Permit for New Hartford. Nitrogen and Phosphorus Limits

Location: New Hartford			Re	ceiving Stream: Fa	armington River	-			
	Flow/Time Based monitoring								
Parameter	Units	Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type			
Nitrogen, Ammonia (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	lbs/day	12 mo rolling avg	13.3	-	Monthly	Daily composite			
Phosphorus, Total	lbs/day	Apr 1st -Oct 31st	-	NA	Monthly	Daily composite			
Phosphorus, Total (Average Seasonal Load Cap)	lbs/day	Oct	10.92	NA	Monthly	Calculated			

Table A- 44. CT DEEP Municipal NPDES Permit for Winchester. Nitrogen and Phosphorus Limits

Location: Winchester				Receiving Stream	n: Still River	mple Freq. Sample Type			
	Flow/Time B								
Parameter	Units	Month	Avg monthly limit	Max daily limit	Sample Freq.	Sample Type			
Nitrogen, Ammonia (total as N)	mg/l	Jan	7.2	18	3/week	Daily composite			
	mg/l	Feb	9	23	3/week	Daily composite			
	mg/l	Mar	11.7	29	3/week	Daily composite			
	mg/l	Apr	17.2	43	3/week	Daily composite			
	mg/l	May	7.7	21	3/week	Daily composite			
	mg/l	June	3.2	9	3/week	Daily composite			
	mg/l	July	1.3	3.5	3/week	Daily composite			
	mg/l	Aug	1.3	3.5	3/week	Daily composite			
	mg/l	Sept	1.3	3.5	3/week	Daily composite			
	mg/l	Oct	3.8	10	3/week	Daily composite			
	mg/l	Nov	5.1	13	3/week	Daily composite			
	mg/l	Dec	7.2	18	3/week	Daily composite			
Nitrogen, Nitrate (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Nitrite (total as N)	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total Kjeldahl	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	mg/l	-	NA	-	Monthly	Daily composite			
Nitrogen, Total	lbs/day	-	NA	-	Monthly	Daily composite			
Phosphorus, Total	mg/l	Apr 1st -Oct 31st	2.31	4.63	Weekly	Daily composite			
Phosphorus, Total	mg/l	Nov 1st - Mar31st	-	-	Monthly	Daily composite			
Phosphorus, Total	lbs/day	Apr 1st -Oct 31st	-	-	Weekly	Daily composite			
Phosphorus, Total (Average Seasonal Load Cap)	lbs/day	October	-	-	Weekly	Calculated			

Figure A- 1. Temperature and Oxygen profile at Station 1 on 5/27/21.

Figure A- 2. Temperature and Oxygen profile at Station 1 on 6/24/21.

Figure A- 3. Temperature and Oxygen profile at Station 1 on 7/01/21.

Figure A- 4. Temperature and Oxygen profile at Station 1 on 7/22/21.

Figure A- 5. Temperature and Oxygen profile at Station 1 on 7/29/21.

Figure A- 6. Temperature and Oxygen profile at Station 1 on 9/10/21.

Figure A- 7. Temperature and Oxygen profile at Station 1 on 9/16/21.

Figure A- 8. Temperature and Oxygen profile at Station 1 on 9/21/21.

Figure A- 9. Temperature and Oxygen profile at Station 1 on 9/30/21.

Figure A- 10. Temperature and Oxygen profile at Station 2 on 5/27/21.

Figure A- 11. Temperature and Oxygen profile at Station 2 on 6/24/21.

Figure A- 12. Temperature and Oxygen profile at Station 2 on 7/01/21.

Figure A- 13. Temperature and Oxygen profile at Station 2 on 7/22/21.

Figure A- 14. Temperature and Oxygen profile at Station 2 on 7/29/21.

Figure A- 15. Temperature and Oxygen profile at Station 2 on 9/10/21

Figure A- 16. Temperature and Oxygen profile at Station 2 on 9/16/21.

Figure A- 17. Temperature and Oxygen profile at Station 2 on 9/21/21.

Figure A- 18. Temperature and Oxygen profile at Station 2 on 9/30/21.

Figure A- 19. Temperature and Oxygen profile at Station 3 on 5/27/21.

Figure A- 20. Temperature and Oxygen profile at Station 3 on 6/24/21.

Figure A- 21. Temperature and Oxygen profile at Station 3 on 7/01/21.

Figure A- 22. Temperature and Oxygen profile at Station 3 on 7/22/21.

Figure A- 23. Temperature and Oxygen profile at Station 3 on 7/29/21.

Figure A- 24. Temperature and Oxygen profile at Station 3 on 9/10/21.

Figure A- 25. Temperature and Oxygen profile at Station 3 on 9/16/21.

Figure A- 26. Temperature and Oxygen profile at Station 3 on 9/21/21.

Figure A- 27. Temperature and Oxygen profile at Station 3 on 9/30/21.

Figure A- 28. Temperature and Oxygen profile at Station 4 on 5/27/21.

Figure A- 29. Temperature and Oxygen profile at Station 4 on 6/24/21.

Figure A- 30. Temperature and Oxygen profile at Station 4 on 7/01/21.

Figure A- 31. Temperature and Oxygen profile at Station 4 on 7/22/21.

Figure A- 32. Temperature and Oxygen profile at Station 4 on 7/29/21.

Figure A- 33. Temperature and Oxygen profile at Station 4 on 9/10/21.

Figure A- 34. Temperature and Oxygen profile at Station 4 on 9/16/21.

Figure A- 35. Temperature and Oxygen profile at Station 4 on 9/21/21.

Figure A- 36. Temperature and Oxygen profile at Station 4 on 9/30/21.

Figure A- 37. Temperature and Oxygen profile at Station 5 on 5/27/21.

Figure A- 38. Temperature and Oxygen profile at Station 5 on 6/24/21.

Figure A- 39. Temperature and Oxygen profile at Station 5 on 7/22/21.

Figure A- 40. Temperature and Oxygen profile at Station 5 on 7/29/21.

Figure A- 41. Temperature and Oxygen profile at Station 5 on 9/10/21.

Figure A- 42. Temperature and Oxygen profile at Station 5 on 9/16/21.

Figure A- 43. Temperature and Oxygen profile at Station 5 on 9/21/21.

Figure A- 44. Temperature and Oxygen profile at Station 5 on 9/30/21.

